Properties

Label 720.2.u.a.179.41
Level $720$
Weight $2$
Character 720.179
Analytic conductor $5.749$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(179,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.u (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 179.41
Character \(\chi\) \(=\) 720.179
Dual form 720.2.u.a.539.41

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23687 - 0.685679i) q^{2} +(1.05969 - 1.69619i) q^{4} +(0.419806 - 2.19631i) q^{5} -0.263783i q^{7} +(0.147653 - 2.82457i) q^{8} +(-0.986717 - 3.00440i) q^{10} +(0.913594 - 0.913594i) q^{11} +(-1.49018 + 1.49018i) q^{13} +(-0.180870 - 0.326265i) q^{14} +(-1.75412 - 3.59487i) q^{16} +2.90538 q^{17} +(-0.296217 + 0.296217i) q^{19} +(-3.28049 - 3.03947i) q^{20} +(0.503563 - 1.75643i) q^{22} -3.14640 q^{23} +(-4.64753 - 1.84404i) q^{25} +(-0.821369 + 2.86493i) q^{26} +(-0.447426 - 0.279528i) q^{28} +(2.43765 - 2.43765i) q^{29} +2.53546i q^{31} +(-4.63454 - 3.24361i) q^{32} +(3.59358 - 1.99216i) q^{34} +(-0.579348 - 0.110738i) q^{35} +(-1.53556 - 1.53556i) q^{37} +(-0.163272 + 0.569491i) q^{38} +(-6.14164 - 1.51006i) q^{40} +10.7792 q^{41} +(-4.51269 + 4.51269i) q^{43} +(-0.581504 - 2.51775i) q^{44} +(-3.89169 + 2.15742i) q^{46} +6.67809i q^{47} +6.93042 q^{49} +(-7.01280 + 0.905871i) q^{50} +(0.948500 + 4.10674i) q^{52} +(2.95356 - 2.95356i) q^{53} +(-1.62300 - 2.39006i) q^{55} +(-0.745073 - 0.0389483i) q^{56} +(1.34361 - 4.68649i) q^{58} +(9.76773 - 9.76773i) q^{59} +(-1.02388 - 1.02388i) q^{61} +(1.73851 + 3.13603i) q^{62} +(-7.95640 - 0.834111i) q^{64} +(2.64730 + 3.89847i) q^{65} +(3.67191 + 3.67191i) q^{67} +(3.07880 - 4.92808i) q^{68} +(-0.792508 + 0.260279i) q^{70} +7.85546i q^{71} -12.4323 q^{73} +(-2.95219 - 0.846384i) q^{74} +(0.188543 + 0.816337i) q^{76} +(-0.240990 - 0.240990i) q^{77} +10.7196i q^{79} +(-8.63182 + 2.34344i) q^{80} +(13.3324 - 7.39107i) q^{82} +(-3.50410 + 3.50410i) q^{83} +(1.21970 - 6.38111i) q^{85} +(-2.48735 + 8.67586i) q^{86} +(-2.44561 - 2.71540i) q^{88} +13.2383 q^{89} +(0.393083 + 0.393083i) q^{91} +(-3.33421 + 5.33690i) q^{92} +(4.57903 + 8.25992i) q^{94} +(0.526229 + 0.774936i) q^{95} -11.1057i q^{97} +(8.57202 - 4.75204i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 8 q^{16} - 16 q^{19} + 72 q^{34} + 8 q^{40} + 8 q^{46} - 96 q^{49} + 64 q^{55} - 32 q^{61} + 48 q^{64} + 24 q^{70} + 40 q^{76} - 88 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23687 0.685679i 0.874598 0.484848i
\(3\) 0 0
\(4\) 1.05969 1.69619i 0.529844 0.848095i
\(5\) 0.419806 2.19631i 0.187743 0.982218i
\(6\) 0 0
\(7\) 0.263783i 0.0997006i −0.998757 0.0498503i \(-0.984126\pi\)
0.998757 0.0498503i \(-0.0158744\pi\)
\(8\) 0.147653 2.82457i 0.0522031 0.998636i
\(9\) 0 0
\(10\) −0.986717 3.00440i −0.312027 0.950073i
\(11\) 0.913594 0.913594i 0.275459 0.275459i −0.555834 0.831293i \(-0.687601\pi\)
0.831293 + 0.555834i \(0.187601\pi\)
\(12\) 0 0
\(13\) −1.49018 + 1.49018i −0.413300 + 0.413300i −0.882887 0.469586i \(-0.844403\pi\)
0.469586 + 0.882887i \(0.344403\pi\)
\(14\) −0.180870 0.326265i −0.0483397 0.0871979i
\(15\) 0 0
\(16\) −1.75412 3.59487i −0.438531 0.898716i
\(17\) 2.90538 0.704659 0.352329 0.935876i \(-0.385390\pi\)
0.352329 + 0.935876i \(0.385390\pi\)
\(18\) 0 0
\(19\) −0.296217 + 0.296217i −0.0679568 + 0.0679568i −0.740268 0.672312i \(-0.765302\pi\)
0.672312 + 0.740268i \(0.265302\pi\)
\(20\) −3.28049 3.03947i −0.733540 0.679646i
\(21\) 0 0
\(22\) 0.503563 1.75643i 0.107360 0.374472i
\(23\) −3.14640 −0.656070 −0.328035 0.944666i \(-0.606386\pi\)
−0.328035 + 0.944666i \(0.606386\pi\)
\(24\) 0 0
\(25\) −4.64753 1.84404i −0.929505 0.368809i
\(26\) −0.821369 + 2.86493i −0.161084 + 0.561860i
\(27\) 0 0
\(28\) −0.447426 0.279528i −0.0845556 0.0528258i
\(29\) 2.43765 2.43765i 0.452660 0.452660i −0.443577 0.896236i \(-0.646291\pi\)
0.896236 + 0.443577i \(0.146291\pi\)
\(30\) 0 0
\(31\) 2.53546i 0.455382i 0.973733 + 0.227691i \(0.0731177\pi\)
−0.973733 + 0.227691i \(0.926882\pi\)
\(32\) −4.63454 3.24361i −0.819279 0.573395i
\(33\) 0 0
\(34\) 3.59358 1.99216i 0.616293 0.341653i
\(35\) −0.579348 0.110738i −0.0979277 0.0187181i
\(36\) 0 0
\(37\) −1.53556 1.53556i −0.252444 0.252444i 0.569528 0.821972i \(-0.307126\pi\)
−0.821972 + 0.569528i \(0.807126\pi\)
\(38\) −0.163272 + 0.569491i −0.0264861 + 0.0923836i
\(39\) 0 0
\(40\) −6.14164 1.51006i −0.971078 0.238762i
\(41\) 10.7792 1.68343 0.841713 0.539925i \(-0.181547\pi\)
0.841713 + 0.539925i \(0.181547\pi\)
\(42\) 0 0
\(43\) −4.51269 + 4.51269i −0.688178 + 0.688178i −0.961829 0.273651i \(-0.911769\pi\)
0.273651 + 0.961829i \(0.411769\pi\)
\(44\) −0.581504 2.51775i −0.0876651 0.379566i
\(45\) 0 0
\(46\) −3.89169 + 2.15742i −0.573798 + 0.318095i
\(47\) 6.67809i 0.974100i 0.873374 + 0.487050i \(0.161927\pi\)
−0.873374 + 0.487050i \(0.838073\pi\)
\(48\) 0 0
\(49\) 6.93042 0.990060
\(50\) −7.01280 + 0.905871i −0.991760 + 0.128109i
\(51\) 0 0
\(52\) 0.948500 + 4.10674i 0.131533 + 0.569503i
\(53\) 2.95356 2.95356i 0.405703 0.405703i −0.474534 0.880237i \(-0.657383\pi\)
0.880237 + 0.474534i \(0.157383\pi\)
\(54\) 0 0
\(55\) −1.62300 2.39006i −0.218845 0.322276i
\(56\) −0.745073 0.0389483i −0.0995646 0.00520468i
\(57\) 0 0
\(58\) 1.34361 4.68649i 0.176424 0.615367i
\(59\) 9.76773 9.76773i 1.27165 1.27165i 0.326428 0.945222i \(-0.394155\pi\)
0.945222 0.326428i \(-0.105845\pi\)
\(60\) 0 0
\(61\) −1.02388 1.02388i −0.131095 0.131095i 0.638515 0.769610i \(-0.279549\pi\)
−0.769610 + 0.638515i \(0.779549\pi\)
\(62\) 1.73851 + 3.13603i 0.220791 + 0.398277i
\(63\) 0 0
\(64\) −7.95640 0.834111i −0.994550 0.104264i
\(65\) 2.64730 + 3.89847i 0.328357 + 0.483545i
\(66\) 0 0
\(67\) 3.67191 + 3.67191i 0.448595 + 0.448595i 0.894887 0.446292i \(-0.147256\pi\)
−0.446292 + 0.894887i \(0.647256\pi\)
\(68\) 3.07880 4.92808i 0.373359 0.597618i
\(69\) 0 0
\(70\) −0.792508 + 0.260279i −0.0947228 + 0.0311093i
\(71\) 7.85546i 0.932272i 0.884713 + 0.466136i \(0.154354\pi\)
−0.884713 + 0.466136i \(0.845646\pi\)
\(72\) 0 0
\(73\) −12.4323 −1.45509 −0.727543 0.686062i \(-0.759338\pi\)
−0.727543 + 0.686062i \(0.759338\pi\)
\(74\) −2.95219 0.846384i −0.343185 0.0983901i
\(75\) 0 0
\(76\) 0.188543 + 0.816337i 0.0216273 + 0.0936403i
\(77\) −0.240990 0.240990i −0.0274634 0.0274634i
\(78\) 0 0
\(79\) 10.7196i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(80\) −8.63182 + 2.34344i −0.965066 + 0.262005i
\(81\) 0 0
\(82\) 13.3324 7.39107i 1.47232 0.816207i
\(83\) −3.50410 + 3.50410i −0.384625 + 0.384625i −0.872765 0.488140i \(-0.837675\pi\)
0.488140 + 0.872765i \(0.337675\pi\)
\(84\) 0 0
\(85\) 1.21970 6.38111i 0.132295 0.692129i
\(86\) −2.48735 + 8.67586i −0.268217 + 0.935542i
\(87\) 0 0
\(88\) −2.44561 2.71540i −0.260703 0.289463i
\(89\) 13.2383 1.40326 0.701629 0.712542i \(-0.252456\pi\)
0.701629 + 0.712542i \(0.252456\pi\)
\(90\) 0 0
\(91\) 0.393083 + 0.393083i 0.0412063 + 0.0412063i
\(92\) −3.33421 + 5.33690i −0.347615 + 0.556410i
\(93\) 0 0
\(94\) 4.57903 + 8.25992i 0.472291 + 0.851946i
\(95\) 0.526229 + 0.774936i 0.0539900 + 0.0795068i
\(96\) 0 0
\(97\) 11.1057i 1.12761i −0.825908 0.563804i \(-0.809337\pi\)
0.825908 0.563804i \(-0.190663\pi\)
\(98\) 8.57202 4.75204i 0.865905 0.480029i
\(99\) 0 0
\(100\) −8.05278 + 5.92898i −0.805278 + 0.592898i
\(101\) 0.625096 + 0.625096i 0.0621994 + 0.0621994i 0.737522 0.675323i \(-0.235996\pi\)
−0.675323 + 0.737522i \(0.735996\pi\)
\(102\) 0 0
\(103\) 7.47669i 0.736701i 0.929687 + 0.368350i \(0.120077\pi\)
−0.929687 + 0.368350i \(0.879923\pi\)
\(104\) 3.98908 + 4.42914i 0.391161 + 0.434312i
\(105\) 0 0
\(106\) 1.62797 5.67837i 0.158123 0.551532i
\(107\) 10.7929 + 10.7929i 1.04339 + 1.04339i 0.999015 + 0.0443705i \(0.0141282\pi\)
0.0443705 + 0.999015i \(0.485872\pi\)
\(108\) 0 0
\(109\) −0.260948 0.260948i −0.0249942 0.0249942i 0.694499 0.719493i \(-0.255626\pi\)
−0.719493 + 0.694499i \(0.755626\pi\)
\(110\) −3.64625 1.84334i −0.347657 0.175755i
\(111\) 0 0
\(112\) −0.948264 + 0.462707i −0.0896025 + 0.0437217i
\(113\) −3.88893 −0.365839 −0.182920 0.983128i \(-0.558555\pi\)
−0.182920 + 0.983128i \(0.558555\pi\)
\(114\) 0 0
\(115\) −1.32088 + 6.91046i −0.123173 + 0.644404i
\(116\) −1.55157 6.71786i −0.144059 0.623738i
\(117\) 0 0
\(118\) 5.38387 18.7789i 0.495625 1.72874i
\(119\) 0.766390i 0.0702549i
\(120\) 0 0
\(121\) 9.33069i 0.848245i
\(122\) −1.96846 0.564353i −0.178216 0.0510942i
\(123\) 0 0
\(124\) 4.30063 + 2.68680i 0.386208 + 0.241282i
\(125\) −6.00115 + 9.43325i −0.536759 + 0.843736i
\(126\) 0 0
\(127\) 18.1176 1.60768 0.803840 0.594846i \(-0.202787\pi\)
0.803840 + 0.594846i \(0.202787\pi\)
\(128\) −10.4130 + 4.42385i −0.920384 + 0.391017i
\(129\) 0 0
\(130\) 5.94746 + 3.00670i 0.521627 + 0.263705i
\(131\) −14.0610 14.0610i −1.22851 1.22851i −0.964526 0.263988i \(-0.914962\pi\)
−0.263988 0.964526i \(-0.585038\pi\)
\(132\) 0 0
\(133\) 0.0781369 + 0.0781369i 0.00677533 + 0.00677533i
\(134\) 7.05942 + 2.02392i 0.609841 + 0.174840i
\(135\) 0 0
\(136\) 0.428988 8.20646i 0.0367854 0.703698i
\(137\) 10.3404i 0.883440i 0.897153 + 0.441720i \(0.145632\pi\)
−0.897153 + 0.441720i \(0.854368\pi\)
\(138\) 0 0
\(139\) 11.8106 + 11.8106i 1.00176 + 1.00176i 0.999998 + 0.00176137i \(0.000560663\pi\)
0.00176137 + 0.999998i \(0.499439\pi\)
\(140\) −0.801760 + 0.865337i −0.0677611 + 0.0731344i
\(141\) 0 0
\(142\) 5.38633 + 9.71618i 0.452011 + 0.815363i
\(143\) 2.72283i 0.227695i
\(144\) 0 0
\(145\) −4.33048 6.37716i −0.359627 0.529594i
\(146\) −15.3771 + 8.52454i −1.27262 + 0.705496i
\(147\) 0 0
\(148\) −4.23181 + 0.977386i −0.347853 + 0.0803407i
\(149\) −5.72046 5.72046i −0.468639 0.468639i 0.432835 0.901473i \(-0.357513\pi\)
−0.901473 + 0.432835i \(0.857513\pi\)
\(150\) 0 0
\(151\) −14.9974 −1.22047 −0.610234 0.792221i \(-0.708925\pi\)
−0.610234 + 0.792221i \(0.708925\pi\)
\(152\) 0.792948 + 0.880422i 0.0643166 + 0.0714117i
\(153\) 0 0
\(154\) −0.463316 0.132831i −0.0373350 0.0107039i
\(155\) 5.56865 + 1.06440i 0.447285 + 0.0854948i
\(156\) 0 0
\(157\) 0.0261720 0.0261720i 0.00208875 0.00208875i −0.706062 0.708150i \(-0.749530\pi\)
0.708150 + 0.706062i \(0.249530\pi\)
\(158\) 7.35019 + 13.2587i 0.584750 + 1.05481i
\(159\) 0 0
\(160\) −9.06957 + 8.81719i −0.717013 + 0.697060i
\(161\) 0.829967i 0.0654106i
\(162\) 0 0
\(163\) 17.1126 + 17.1126i 1.34036 + 1.34036i 0.895700 + 0.444659i \(0.146675\pi\)
0.444659 + 0.895700i \(0.353325\pi\)
\(164\) 11.4226 18.2836i 0.891953 1.42771i
\(165\) 0 0
\(166\) −1.93142 + 6.73680i −0.149907 + 0.522877i
\(167\) −19.4611 −1.50594 −0.752971 0.658053i \(-0.771380\pi\)
−0.752971 + 0.658053i \(0.771380\pi\)
\(168\) 0 0
\(169\) 8.55875i 0.658365i
\(170\) −2.86679 8.72892i −0.219873 0.669477i
\(171\) 0 0
\(172\) 2.87233 + 12.4364i 0.219013 + 0.948268i
\(173\) −11.3427 11.3427i −0.862367 0.862367i 0.129245 0.991613i \(-0.458744\pi\)
−0.991613 + 0.129245i \(0.958744\pi\)
\(174\) 0 0
\(175\) −0.486428 + 1.22594i −0.0367705 + 0.0926722i
\(176\) −4.88680 1.68169i −0.368356 0.126762i
\(177\) 0 0
\(178\) 16.3741 9.07724i 1.22729 0.680368i
\(179\) −4.50621 4.50621i −0.336810 0.336810i 0.518356 0.855165i \(-0.326544\pi\)
−0.855165 + 0.518356i \(0.826544\pi\)
\(180\) 0 0
\(181\) 10.0971 10.0971i 0.750512 0.750512i −0.224062 0.974575i \(-0.571932\pi\)
0.974575 + 0.224062i \(0.0719320\pi\)
\(182\) 0.755721 + 0.216663i 0.0560178 + 0.0160601i
\(183\) 0 0
\(184\) −0.464575 + 8.88723i −0.0342489 + 0.655176i
\(185\) −4.01719 + 2.72792i −0.295350 + 0.200561i
\(186\) 0 0
\(187\) 2.65434 2.65434i 0.194104 0.194104i
\(188\) 11.3273 + 7.07669i 0.826129 + 0.516121i
\(189\) 0 0
\(190\) 1.18223 + 0.597670i 0.0857683 + 0.0433595i
\(191\) −23.8545 −1.72605 −0.863025 0.505161i \(-0.831433\pi\)
−0.863025 + 0.505161i \(0.831433\pi\)
\(192\) 0 0
\(193\) 13.8585i 0.997560i 0.866729 + 0.498780i \(0.166218\pi\)
−0.866729 + 0.498780i \(0.833782\pi\)
\(194\) −7.61492 13.7362i −0.546719 0.986205i
\(195\) 0 0
\(196\) 7.34408 11.7553i 0.524577 0.839665i
\(197\) 11.9818 11.9818i 0.853664 0.853664i −0.136918 0.990582i \(-0.543720\pi\)
0.990582 + 0.136918i \(0.0437197\pi\)
\(198\) 0 0
\(199\) −11.4336 −0.810507 −0.405253 0.914204i \(-0.632817\pi\)
−0.405253 + 0.914204i \(0.632817\pi\)
\(200\) −5.89485 + 12.8550i −0.416829 + 0.908985i
\(201\) 0 0
\(202\) 1.20178 + 0.344546i 0.0845567 + 0.0242422i
\(203\) −0.643010 0.643010i −0.0451304 0.0451304i
\(204\) 0 0
\(205\) 4.52517 23.6744i 0.316051 1.65349i
\(206\) 5.12661 + 9.24769i 0.357188 + 0.644317i
\(207\) 0 0
\(208\) 7.97093 + 2.74303i 0.552685 + 0.190195i
\(209\) 0.541243i 0.0374386i
\(210\) 0 0
\(211\) 6.45820 6.45820i 0.444601 0.444601i −0.448954 0.893555i \(-0.648203\pi\)
0.893555 + 0.448954i \(0.148203\pi\)
\(212\) −1.87995 8.13966i −0.129115 0.559034i
\(213\) 0 0
\(214\) 20.7498 + 5.94891i 1.41843 + 0.406659i
\(215\) 8.01679 + 11.8057i 0.546741 + 0.805142i
\(216\) 0 0
\(217\) 0.668811 0.0454019
\(218\) −0.501684 0.143832i −0.0339783 0.00974150i
\(219\) 0 0
\(220\) −5.77388 + 0.220194i −0.389275 + 0.0148455i
\(221\) −4.32953 + 4.32953i −0.291236 + 0.291236i
\(222\) 0 0
\(223\) −0.620487 −0.0415509 −0.0207754 0.999784i \(-0.506614\pi\)
−0.0207754 + 0.999784i \(0.506614\pi\)
\(224\) −0.855609 + 1.22251i −0.0571678 + 0.0816826i
\(225\) 0 0
\(226\) −4.81009 + 2.66656i −0.319962 + 0.177377i
\(227\) 10.0579 10.0579i 0.667564 0.667564i −0.289588 0.957152i \(-0.593518\pi\)
0.957152 + 0.289588i \(0.0935182\pi\)
\(228\) 0 0
\(229\) 14.9831 14.9831i 0.990113 0.990113i −0.00983872 0.999952i \(-0.503132\pi\)
0.999952 + 0.00983872i \(0.00313181\pi\)
\(230\) 3.10461 + 9.45304i 0.204712 + 0.623315i
\(231\) 0 0
\(232\) −6.52538 7.24523i −0.428412 0.475673i
\(233\) 2.07914i 0.136209i −0.997678 0.0681046i \(-0.978305\pi\)
0.997678 0.0681046i \(-0.0216952\pi\)
\(234\) 0 0
\(235\) 14.6671 + 2.80350i 0.956779 + 0.182880i
\(236\) −6.21718 26.9187i −0.404704 1.75226i
\(237\) 0 0
\(238\) −0.525498 0.947924i −0.0340630 0.0614448i
\(239\) 13.2816 0.859113 0.429557 0.903040i \(-0.358670\pi\)
0.429557 + 0.903040i \(0.358670\pi\)
\(240\) 0 0
\(241\) −3.84064 −0.247397 −0.123699 0.992320i \(-0.539476\pi\)
−0.123699 + 0.992320i \(0.539476\pi\)
\(242\) 6.39786 + 11.5408i 0.411270 + 0.741873i
\(243\) 0 0
\(244\) −2.82170 + 0.651704i −0.180641 + 0.0417210i
\(245\) 2.90943 15.2213i 0.185877 0.972455i
\(246\) 0 0
\(247\) 0.882830i 0.0561731i
\(248\) 7.16159 + 0.374368i 0.454761 + 0.0237724i
\(249\) 0 0
\(250\) −0.954446 + 15.7826i −0.0603645 + 0.998176i
\(251\) −10.6627 + 10.6627i −0.673022 + 0.673022i −0.958412 0.285389i \(-0.907877\pi\)
0.285389 + 0.958412i \(0.407877\pi\)
\(252\) 0 0
\(253\) −2.87453 + 2.87453i −0.180720 + 0.180720i
\(254\) 22.4091 12.4229i 1.40607 0.779481i
\(255\) 0 0
\(256\) −9.84611 + 12.6117i −0.615382 + 0.788229i
\(257\) 11.6239 0.725081 0.362540 0.931968i \(-0.381910\pi\)
0.362540 + 0.931968i \(0.381910\pi\)
\(258\) 0 0
\(259\) −0.405054 + 0.405054i −0.0251688 + 0.0251688i
\(260\) 9.41785 0.359162i 0.584071 0.0222743i
\(261\) 0 0
\(262\) −27.0329 7.75027i −1.67010 0.478813i
\(263\) −29.3422 −1.80932 −0.904658 0.426138i \(-0.859874\pi\)
−0.904658 + 0.426138i \(0.859874\pi\)
\(264\) 0 0
\(265\) −5.24701 7.72685i −0.322321 0.474657i
\(266\) 0.150222 + 0.0430682i 0.00921070 + 0.00264068i
\(267\) 0 0
\(268\) 10.1193 2.33718i 0.618137 0.142766i
\(269\) −8.91793 + 8.91793i −0.543736 + 0.543736i −0.924622 0.380886i \(-0.875619\pi\)
0.380886 + 0.924622i \(0.375619\pi\)
\(270\) 0 0
\(271\) 31.2790i 1.90007i −0.312150 0.950033i \(-0.601049\pi\)
0.312150 0.950033i \(-0.398951\pi\)
\(272\) −5.09640 10.4445i −0.309014 0.633288i
\(273\) 0 0
\(274\) 7.09020 + 12.7897i 0.428335 + 0.772655i
\(275\) −5.93066 + 2.56124i −0.357632 + 0.154449i
\(276\) 0 0
\(277\) −4.04579 4.04579i −0.243088 0.243088i 0.575038 0.818126i \(-0.304987\pi\)
−0.818126 + 0.575038i \(0.804987\pi\)
\(278\) 22.7064 + 6.50986i 1.36184 + 0.390436i
\(279\) 0 0
\(280\) −0.398329 + 1.62006i −0.0238047 + 0.0968170i
\(281\) 19.2114 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(282\) 0 0
\(283\) −10.0809 + 10.0809i −0.599247 + 0.599247i −0.940112 0.340865i \(-0.889280\pi\)
0.340865 + 0.940112i \(0.389280\pi\)
\(284\) 13.3244 + 8.32434i 0.790655 + 0.493959i
\(285\) 0 0
\(286\) 1.86699 + 3.36778i 0.110397 + 0.199141i
\(287\) 2.84337i 0.167839i
\(288\) 0 0
\(289\) −8.55875 −0.503456
\(290\) −9.72892 4.91839i −0.571302 0.288818i
\(291\) 0 0
\(292\) −13.1743 + 21.0875i −0.770969 + 1.23405i
\(293\) 4.81368 4.81368i 0.281218 0.281218i −0.552376 0.833595i \(-0.686279\pi\)
0.833595 + 0.552376i \(0.186279\pi\)
\(294\) 0 0
\(295\) −17.3524 25.5535i −1.01029 1.48778i
\(296\) −4.56402 + 4.11056i −0.265278 + 0.238922i
\(297\) 0 0
\(298\) −10.9979 3.15306i −0.637089 0.182652i
\(299\) 4.68869 4.68869i 0.271154 0.271154i
\(300\) 0 0
\(301\) 1.19037 + 1.19037i 0.0686118 + 0.0686118i
\(302\) −18.5498 + 10.2834i −1.06742 + 0.591742i
\(303\) 0 0
\(304\) 1.58446 + 0.545259i 0.0908750 + 0.0312727i
\(305\) −2.67859 + 1.81893i −0.153376 + 0.104152i
\(306\) 0 0
\(307\) −17.1791 17.1791i −0.980465 0.980465i 0.0193480 0.999813i \(-0.493841\pi\)
−0.999813 + 0.0193480i \(0.993841\pi\)
\(308\) −0.664140 + 0.153391i −0.0378429 + 0.00874026i
\(309\) 0 0
\(310\) 7.61753 2.50178i 0.432647 0.142092i
\(311\) 16.6032i 0.941479i 0.882272 + 0.470740i \(0.156013\pi\)
−0.882272 + 0.470740i \(0.843987\pi\)
\(312\) 0 0
\(313\) −10.8345 −0.612404 −0.306202 0.951967i \(-0.599058\pi\)
−0.306202 + 0.951967i \(0.599058\pi\)
\(314\) 0.0144257 0.0503169i 0.000814090 0.00283954i
\(315\) 0 0
\(316\) 18.1824 + 11.3594i 1.02284 + 0.639017i
\(317\) −15.3464 15.3464i −0.861942 0.861942i 0.129621 0.991564i \(-0.458624\pi\)
−0.991564 + 0.129621i \(0.958624\pi\)
\(318\) 0 0
\(319\) 4.45404i 0.249378i
\(320\) −5.17211 + 17.1245i −0.289129 + 0.957290i
\(321\) 0 0
\(322\) 0.569091 + 1.02656i 0.0317142 + 0.0572080i
\(323\) −0.860623 + 0.860623i −0.0478863 + 0.0478863i
\(324\) 0 0
\(325\) 9.67358 4.17768i 0.536594 0.231736i
\(326\) 32.8997 + 9.43226i 1.82215 + 0.522405i
\(327\) 0 0
\(328\) 1.59158 30.4466i 0.0878801 1.68113i
\(329\) 1.76157 0.0971183
\(330\) 0 0
\(331\) −6.23806 6.23806i −0.342875 0.342875i 0.514572 0.857447i \(-0.327951\pi\)
−0.857447 + 0.514572i \(0.827951\pi\)
\(332\) 2.23037 + 9.65687i 0.122407 + 0.529990i
\(333\) 0 0
\(334\) −24.0708 + 13.3440i −1.31709 + 0.730154i
\(335\) 9.60613 6.52315i 0.524839 0.356398i
\(336\) 0 0
\(337\) 8.87003i 0.483181i −0.970378 0.241591i \(-0.922331\pi\)
0.970378 0.241591i \(-0.0776691\pi\)
\(338\) 5.86856 + 10.5861i 0.319207 + 0.575805i
\(339\) 0 0
\(340\) −9.53108 8.83083i −0.516895 0.478919i
\(341\) 2.31638 + 2.31638i 0.125439 + 0.125439i
\(342\) 0 0
\(343\) 3.67461i 0.198410i
\(344\) 12.0801 + 13.4127i 0.651315 + 0.723165i
\(345\) 0 0
\(346\) −21.8068 6.25196i −1.17234 0.336107i
\(347\) −11.3990 11.3990i −0.611932 0.611932i 0.331517 0.943449i \(-0.392440\pi\)
−0.943449 + 0.331517i \(0.892440\pi\)
\(348\) 0 0
\(349\) −11.5358 11.5358i −0.617496 0.617496i 0.327393 0.944888i \(-0.393830\pi\)
−0.944888 + 0.327393i \(0.893830\pi\)
\(350\) 0.238953 + 1.84986i 0.0127726 + 0.0988790i
\(351\) 0 0
\(352\) −7.19743 + 1.27075i −0.383624 + 0.0677310i
\(353\) −20.5642 −1.09452 −0.547260 0.836963i \(-0.684329\pi\)
−0.547260 + 0.836963i \(0.684329\pi\)
\(354\) 0 0
\(355\) 17.2530 + 3.29777i 0.915695 + 0.175027i
\(356\) 14.0285 22.4547i 0.743508 1.19010i
\(357\) 0 0
\(358\) −8.66339 2.48377i −0.457875 0.131271i
\(359\) 18.8141i 0.992972i 0.868045 + 0.496486i \(0.165377\pi\)
−0.868045 + 0.496486i \(0.834623\pi\)
\(360\) 0 0
\(361\) 18.8245i 0.990764i
\(362\) 5.56542 19.4122i 0.292512 1.02028i
\(363\) 0 0
\(364\) 1.08329 0.250198i 0.0567798 0.0131139i
\(365\) −5.21914 + 27.3051i −0.273182 + 1.42921i
\(366\) 0 0
\(367\) −12.1654 −0.635031 −0.317515 0.948253i \(-0.602849\pi\)
−0.317515 + 0.948253i \(0.602849\pi\)
\(368\) 5.51917 + 11.3109i 0.287707 + 0.589621i
\(369\) 0 0
\(370\) −3.09826 + 6.12859i −0.161071 + 0.318610i
\(371\) −0.779099 0.779099i −0.0404488 0.0404488i
\(372\) 0 0
\(373\) 14.7424 + 14.7424i 0.763330 + 0.763330i 0.976923 0.213592i \(-0.0685164\pi\)
−0.213592 + 0.976923i \(0.568516\pi\)
\(374\) 1.46304 5.10309i 0.0756522 0.263875i
\(375\) 0 0
\(376\) 18.8627 + 0.986038i 0.972772 + 0.0508510i
\(377\) 7.26505i 0.374169i
\(378\) 0 0
\(379\) 1.59803 + 1.59803i 0.0820853 + 0.0820853i 0.746957 0.664872i \(-0.231514\pi\)
−0.664872 + 0.746957i \(0.731514\pi\)
\(380\) 1.87208 0.0713941i 0.0960356 0.00366244i
\(381\) 0 0
\(382\) −29.5049 + 16.3565i −1.50960 + 0.836873i
\(383\) 24.9035i 1.27251i −0.771479 0.636255i \(-0.780483\pi\)
0.771479 0.636255i \(-0.219517\pi\)
\(384\) 0 0
\(385\) −0.630458 + 0.428120i −0.0321311 + 0.0218190i
\(386\) 9.50252 + 17.1412i 0.483665 + 0.872464i
\(387\) 0 0
\(388\) −18.8373 11.7685i −0.956319 0.597457i
\(389\) −11.9793 11.9793i −0.607375 0.607375i 0.334884 0.942259i \(-0.391303\pi\)
−0.942259 + 0.334884i \(0.891303\pi\)
\(390\) 0 0
\(391\) −9.14150 −0.462306
\(392\) 1.02329 19.5755i 0.0516842 0.988710i
\(393\) 0 0
\(394\) 6.60422 23.0355i 0.332716 1.16051i
\(395\) 23.5435 + 4.50014i 1.18460 + 0.226427i
\(396\) 0 0
\(397\) −16.0845 + 16.0845i −0.807258 + 0.807258i −0.984218 0.176960i \(-0.943374\pi\)
0.176960 + 0.984218i \(0.443374\pi\)
\(398\) −14.1419 + 7.83978i −0.708868 + 0.392973i
\(399\) 0 0
\(400\) 1.52324 + 19.9419i 0.0761618 + 0.997095i
\(401\) 3.56411i 0.177983i 0.996032 + 0.0889915i \(0.0283644\pi\)
−0.996032 + 0.0889915i \(0.971636\pi\)
\(402\) 0 0
\(403\) −3.77828 3.77828i −0.188210 0.188210i
\(404\) 1.72269 0.397875i 0.0857069 0.0197950i
\(405\) 0 0
\(406\) −1.23622 0.354420i −0.0613524 0.0175896i
\(407\) −2.80575 −0.139076
\(408\) 0 0
\(409\) 0.455458i 0.0225209i −0.999937 0.0112605i \(-0.996416\pi\)
0.999937 0.0112605i \(-0.00358439\pi\)
\(410\) −10.6360 32.3849i −0.525275 1.59938i
\(411\) 0 0
\(412\) 12.6819 + 7.92296i 0.624792 + 0.390336i
\(413\) −2.57656 2.57656i −0.126784 0.126784i
\(414\) 0 0
\(415\) 6.22503 + 9.16712i 0.305575 + 0.449996i
\(416\) 11.7398 2.07273i 0.575593 0.101624i
\(417\) 0 0
\(418\) 0.371119 + 0.669447i 0.0181520 + 0.0327437i
\(419\) −7.20612 7.20612i −0.352042 0.352042i 0.508827 0.860869i \(-0.330079\pi\)
−0.860869 + 0.508827i \(0.830079\pi\)
\(420\) 0 0
\(421\) −13.9138 + 13.9138i −0.678119 + 0.678119i −0.959574 0.281455i \(-0.909183\pi\)
0.281455 + 0.959574i \(0.409183\pi\)
\(422\) 3.55969 12.4162i 0.173283 0.604411i
\(423\) 0 0
\(424\) −7.90645 8.77865i −0.383971 0.426329i
\(425\) −13.5028 5.35766i −0.654984 0.259885i
\(426\) 0 0
\(427\) −0.270083 + 0.270083i −0.0130702 + 0.0130702i
\(428\) 29.7438 6.86968i 1.43772 0.332059i
\(429\) 0 0
\(430\) 18.0106 + 9.10515i 0.868550 + 0.439089i
\(431\) −20.2896 −0.977314 −0.488657 0.872476i \(-0.662513\pi\)
−0.488657 + 0.872476i \(0.662513\pi\)
\(432\) 0 0
\(433\) 13.2049i 0.634587i 0.948327 + 0.317294i \(0.102774\pi\)
−0.948327 + 0.317294i \(0.897226\pi\)
\(434\) 0.827232 0.458590i 0.0397084 0.0220130i
\(435\) 0 0
\(436\) −0.719140 + 0.166094i −0.0344406 + 0.00795445i
\(437\) 0.932017 0.932017i 0.0445844 0.0445844i
\(438\) 0 0
\(439\) 4.81740 0.229922 0.114961 0.993370i \(-0.463326\pi\)
0.114961 + 0.993370i \(0.463326\pi\)
\(440\) −6.99054 + 4.23138i −0.333261 + 0.201723i
\(441\) 0 0
\(442\) −2.38639 + 8.32373i −0.113509 + 0.395920i
\(443\) −9.16428 9.16428i −0.435408 0.435408i 0.455055 0.890463i \(-0.349620\pi\)
−0.890463 + 0.455055i \(0.849620\pi\)
\(444\) 0 0
\(445\) 5.55752 29.0754i 0.263452 1.37831i
\(446\) −0.767461 + 0.425455i −0.0363403 + 0.0201459i
\(447\) 0 0
\(448\) −0.220024 + 2.09876i −0.0103952 + 0.0991572i
\(449\) 3.67981i 0.173661i −0.996223 0.0868305i \(-0.972326\pi\)
0.996223 0.0868305i \(-0.0276739\pi\)
\(450\) 0 0
\(451\) 9.84780 9.84780i 0.463715 0.463715i
\(452\) −4.12105 + 6.59636i −0.193838 + 0.310267i
\(453\) 0 0
\(454\) 5.54379 19.3367i 0.260183 0.907517i
\(455\) 1.02835 0.698312i 0.0482098 0.0327374i
\(456\) 0 0
\(457\) 18.1968 0.851212 0.425606 0.904908i \(-0.360061\pi\)
0.425606 + 0.904908i \(0.360061\pi\)
\(458\) 8.25854 28.8058i 0.385896 1.34601i
\(459\) 0 0
\(460\) 10.3217 + 9.56340i 0.481254 + 0.445896i
\(461\) 20.4826 20.4826i 0.953971 0.953971i −0.0450155 0.998986i \(-0.514334\pi\)
0.998986 + 0.0450155i \(0.0143337\pi\)
\(462\) 0 0
\(463\) −22.5416 −1.04760 −0.523799 0.851842i \(-0.675486\pi\)
−0.523799 + 0.851842i \(0.675486\pi\)
\(464\) −13.0389 4.48708i −0.605318 0.208308i
\(465\) 0 0
\(466\) −1.42562 2.57163i −0.0660408 0.119128i
\(467\) 26.2704 26.2704i 1.21565 1.21565i 0.246507 0.969141i \(-0.420717\pi\)
0.969141 0.246507i \(-0.0792830\pi\)
\(468\) 0 0
\(469\) 0.968587 0.968587i 0.0447252 0.0447252i
\(470\) 20.0636 6.58939i 0.925466 0.303946i
\(471\) 0 0
\(472\) −26.1474 29.0319i −1.20353 1.33630i
\(473\) 8.24552i 0.379130i
\(474\) 0 0
\(475\) 1.92291 0.830438i 0.0882292 0.0381031i
\(476\) −1.29994 0.812135i −0.0595828 0.0372241i
\(477\) 0 0
\(478\) 16.4276 9.10690i 0.751379 0.416540i
\(479\) −0.723719 −0.0330676 −0.0165338 0.999863i \(-0.505263\pi\)
−0.0165338 + 0.999863i \(0.505263\pi\)
\(480\) 0 0
\(481\) 4.57651 0.208671
\(482\) −4.75036 + 2.63344i −0.216373 + 0.119950i
\(483\) 0 0
\(484\) 15.8266 + 9.88762i 0.719392 + 0.449437i
\(485\) −24.3914 4.66222i −1.10756 0.211701i
\(486\) 0 0
\(487\) 15.0222i 0.680719i 0.940295 + 0.340360i \(0.110549\pi\)
−0.940295 + 0.340360i \(0.889451\pi\)
\(488\) −3.04321 + 2.74085i −0.137760 + 0.124072i
\(489\) 0 0
\(490\) −6.83836 20.8217i −0.308926 0.940629i
\(491\) 3.04102 3.04102i 0.137239 0.137239i −0.635150 0.772389i \(-0.719062\pi\)
0.772389 + 0.635150i \(0.219062\pi\)
\(492\) 0 0
\(493\) 7.08230 7.08230i 0.318971 0.318971i
\(494\) −0.605338 1.09194i −0.0272355 0.0491289i
\(495\) 0 0
\(496\) 9.11464 4.44751i 0.409260 0.199699i
\(497\) 2.07214 0.0929481
\(498\) 0 0
\(499\) 11.3545 11.3545i 0.508298 0.508298i −0.405706 0.914004i \(-0.632974\pi\)
0.914004 + 0.405706i \(0.132974\pi\)
\(500\) 9.64124 + 20.1754i 0.431170 + 0.902271i
\(501\) 0 0
\(502\) −5.87716 + 20.4995i −0.262310 + 0.914938i
\(503\) 24.8256 1.10692 0.553459 0.832876i \(-0.313308\pi\)
0.553459 + 0.832876i \(0.313308\pi\)
\(504\) 0 0
\(505\) 1.63532 1.11048i 0.0727708 0.0494159i
\(506\) −1.58441 + 5.52643i −0.0704357 + 0.245680i
\(507\) 0 0
\(508\) 19.1990 30.7309i 0.851820 1.36347i
\(509\) −22.3544 + 22.3544i −0.990841 + 0.990841i −0.999958 0.00911778i \(-0.997098\pi\)
0.00911778 + 0.999958i \(0.497098\pi\)
\(510\) 0 0
\(511\) 3.27942i 0.145073i
\(512\) −3.53079 + 22.3502i −0.156040 + 0.987751i
\(513\) 0 0
\(514\) 14.3773 7.97029i 0.634154 0.351554i
\(515\) 16.4211 + 3.13876i 0.723601 + 0.138310i
\(516\) 0 0
\(517\) 6.10106 + 6.10106i 0.268324 + 0.268324i
\(518\) −0.223262 + 0.778736i −0.00980955 + 0.0342157i
\(519\) 0 0
\(520\) 11.4024 6.90186i 0.500027 0.302667i
\(521\) 30.7334 1.34646 0.673228 0.739435i \(-0.264907\pi\)
0.673228 + 0.739435i \(0.264907\pi\)
\(522\) 0 0
\(523\) −12.6215 + 12.6215i −0.551898 + 0.551898i −0.926988 0.375090i \(-0.877612\pi\)
0.375090 + 0.926988i \(0.377612\pi\)
\(524\) −38.7504 + 8.94984i −1.69282 + 0.390976i
\(525\) 0 0
\(526\) −36.2924 + 20.1193i −1.58242 + 0.877244i
\(527\) 7.36649i 0.320889i
\(528\) 0 0
\(529\) −13.1002 −0.569572
\(530\) −11.7880 5.95934i −0.512038 0.258857i
\(531\) 0 0
\(532\) 0.215336 0.0497343i 0.00933599 0.00215626i
\(533\) −16.0629 + 16.0629i −0.695761 + 0.695761i
\(534\) 0 0
\(535\) 28.2353 19.1735i 1.22072 0.828944i
\(536\) 10.9137 9.82940i 0.471402 0.424566i
\(537\) 0 0
\(538\) −4.91547 + 17.1451i −0.211921 + 0.739180i
\(539\) 6.33159 6.33159i 0.272721 0.272721i
\(540\) 0 0
\(541\) 18.0279 + 18.0279i 0.775081 + 0.775081i 0.978990 0.203909i \(-0.0653645\pi\)
−0.203909 + 0.978990i \(0.565365\pi\)
\(542\) −21.4474 38.6880i −0.921244 1.66179i
\(543\) 0 0
\(544\) −13.4651 9.42393i −0.577312 0.404048i
\(545\) −0.682668 + 0.463574i −0.0292423 + 0.0198573i
\(546\) 0 0
\(547\) −26.0749 26.0749i −1.11488 1.11488i −0.992480 0.122403i \(-0.960940\pi\)
−0.122403 0.992480i \(-0.539060\pi\)
\(548\) 17.5393 + 10.9576i 0.749241 + 0.468086i
\(549\) 0 0
\(550\) −5.57925 + 7.23445i −0.237900 + 0.308478i
\(551\) 1.44414i 0.0615226i
\(552\) 0 0
\(553\) 2.82764 0.120244
\(554\) −7.77823 2.23000i −0.330465 0.0947435i
\(555\) 0 0
\(556\) 32.5485 7.51745i 1.38036 0.318811i
\(557\) −23.2849 23.2849i −0.986612 0.986612i 0.0132999 0.999912i \(-0.495766\pi\)
−0.999912 + 0.0132999i \(0.995766\pi\)
\(558\) 0 0
\(559\) 13.4494i 0.568849i
\(560\) 0.618161 + 2.27693i 0.0261221 + 0.0962177i
\(561\) 0 0
\(562\) 23.7620 13.1729i 1.00234 0.555664i
\(563\) 2.08207 2.08207i 0.0877489 0.0877489i −0.661870 0.749619i \(-0.730237\pi\)
0.749619 + 0.661870i \(0.230237\pi\)
\(564\) 0 0
\(565\) −1.63259 + 8.54127i −0.0686837 + 0.359334i
\(566\) −5.55648 + 19.3810i −0.233556 + 0.814644i
\(567\) 0 0
\(568\) 22.1883 + 1.15988i 0.931001 + 0.0486675i
\(569\) −22.4930 −0.942957 −0.471478 0.881878i \(-0.656279\pi\)
−0.471478 + 0.881878i \(0.656279\pi\)
\(570\) 0 0
\(571\) −17.5867 17.5867i −0.735979 0.735979i 0.235818 0.971797i \(-0.424223\pi\)
−0.971797 + 0.235818i \(0.924223\pi\)
\(572\) 4.61844 + 2.88535i 0.193107 + 0.120643i
\(573\) 0 0
\(574\) −1.94964 3.51687i −0.0813763 0.146791i
\(575\) 14.6230 + 5.80211i 0.609821 + 0.241965i
\(576\) 0 0
\(577\) 24.8497i 1.03450i −0.855833 0.517252i \(-0.826955\pi\)
0.855833 0.517252i \(-0.173045\pi\)
\(578\) −10.5861 + 5.86856i −0.440322 + 0.244100i
\(579\) 0 0
\(580\) −15.4058 + 0.587521i −0.639693 + 0.0243955i
\(581\) 0.924321 + 0.924321i 0.0383473 + 0.0383473i
\(582\) 0 0
\(583\) 5.39671i 0.223509i
\(584\) −1.83566 + 35.1158i −0.0759600 + 1.45310i
\(585\) 0 0
\(586\) 2.65325 9.25454i 0.109605 0.382301i
\(587\) 22.8896 + 22.8896i 0.944753 + 0.944753i 0.998552 0.0537988i \(-0.0171330\pi\)
−0.0537988 + 0.998552i \(0.517133\pi\)
\(588\) 0 0
\(589\) −0.751046 0.751046i −0.0309463 0.0309463i
\(590\) −38.9841 19.7081i −1.60495 0.811371i
\(591\) 0 0
\(592\) −2.82657 + 8.21368i −0.116171 + 0.337580i
\(593\) −13.3090 −0.546536 −0.273268 0.961938i \(-0.588105\pi\)
−0.273268 + 0.961938i \(0.588105\pi\)
\(594\) 0 0
\(595\) −1.68323 0.321735i −0.0690056 0.0131899i
\(596\) −15.7649 + 3.64109i −0.645756 + 0.149145i
\(597\) 0 0
\(598\) 2.58436 9.01424i 0.105682 0.368620i
\(599\) 7.33982i 0.299897i 0.988694 + 0.149948i \(0.0479108\pi\)
−0.988694 + 0.149948i \(0.952089\pi\)
\(600\) 0 0
\(601\) 27.4748i 1.12072i 0.828250 + 0.560359i \(0.189337\pi\)
−0.828250 + 0.560359i \(0.810663\pi\)
\(602\) 2.28854 + 0.656119i 0.0932740 + 0.0267414i
\(603\) 0 0
\(604\) −15.8925 + 25.4384i −0.646658 + 1.03507i
\(605\) 20.4931 + 3.91708i 0.833162 + 0.159252i
\(606\) 0 0
\(607\) 27.4473 1.11405 0.557026 0.830495i \(-0.311942\pi\)
0.557026 + 0.830495i \(0.311942\pi\)
\(608\) 2.33364 0.412017i 0.0946416 0.0167095i
\(609\) 0 0
\(610\) −2.06587 + 4.08643i −0.0836445 + 0.165455i
\(611\) −9.95153 9.95153i −0.402596 0.402596i
\(612\) 0 0
\(613\) 17.6219 + 17.6219i 0.711742 + 0.711742i 0.966899 0.255158i \(-0.0821274\pi\)
−0.255158 + 0.966899i \(0.582127\pi\)
\(614\) −33.0277 9.46896i −1.33289 0.382136i
\(615\) 0 0
\(616\) −0.716277 + 0.645111i −0.0288596 + 0.0259923i
\(617\) 41.8102i 1.68322i 0.540088 + 0.841608i \(0.318391\pi\)
−0.540088 + 0.841608i \(0.681609\pi\)
\(618\) 0 0
\(619\) 1.39925 + 1.39925i 0.0562406 + 0.0562406i 0.734668 0.678427i \(-0.237338\pi\)
−0.678427 + 0.734668i \(0.737338\pi\)
\(620\) 7.70646 8.31756i 0.309499 0.334041i
\(621\) 0 0
\(622\) 11.3844 + 20.5359i 0.456475 + 0.823416i
\(623\) 3.49204i 0.139906i
\(624\) 0 0
\(625\) 18.1990 + 17.1405i 0.727960 + 0.685620i
\(626\) −13.4009 + 7.42901i −0.535607 + 0.296923i
\(627\) 0 0
\(628\) −0.0166585 0.0721267i −0.000664747 0.00287817i
\(629\) −4.46139 4.46139i −0.177887 0.177887i
\(630\) 0 0
\(631\) 33.0559 1.31593 0.657967 0.753047i \(-0.271417\pi\)
0.657967 + 0.753047i \(0.271417\pi\)
\(632\) 30.2782 + 1.58277i 1.20440 + 0.0629594i
\(633\) 0 0
\(634\) −29.5043 8.45880i −1.17176 0.335942i
\(635\) 7.60589 39.7919i 0.301830 1.57909i
\(636\) 0 0
\(637\) −10.3275 + 10.3275i −0.409192 + 0.409192i
\(638\) −3.05404 5.50906i −0.120911 0.218106i
\(639\) 0 0
\(640\) 5.34471 + 24.7272i 0.211268 + 0.977428i
\(641\) 8.31451i 0.328404i −0.986427 0.164202i \(-0.947495\pi\)
0.986427 0.164202i \(-0.0525048\pi\)
\(642\) 0 0
\(643\) 17.1504 + 17.1504i 0.676344 + 0.676344i 0.959171 0.282827i \(-0.0912722\pi\)
−0.282827 + 0.959171i \(0.591272\pi\)
\(644\) 1.40778 + 0.879506i 0.0554744 + 0.0346574i
\(645\) 0 0
\(646\) −0.474366 + 1.65459i −0.0186637 + 0.0650989i
\(647\) 5.95293 0.234034 0.117017 0.993130i \(-0.462667\pi\)
0.117017 + 0.993130i \(0.462667\pi\)
\(648\) 0 0
\(649\) 17.8475i 0.700575i
\(650\) 9.10040 11.8002i 0.356947 0.462843i
\(651\) 0 0
\(652\) 47.1601 10.8922i 1.84693 0.426571i
\(653\) 24.1739 + 24.1739i 0.945997 + 0.945997i 0.998615 0.0526174i \(-0.0167564\pi\)
−0.0526174 + 0.998615i \(0.516756\pi\)
\(654\) 0 0
\(655\) −36.7851 + 24.9793i −1.43731 + 0.976024i
\(656\) −18.9080 38.7497i −0.738234 1.51292i
\(657\) 0 0
\(658\) 2.17883 1.20787i 0.0849395 0.0470877i
\(659\) 25.0108 + 25.0108i 0.974284 + 0.974284i 0.999678 0.0253938i \(-0.00808397\pi\)
−0.0253938 + 0.999678i \(0.508084\pi\)
\(660\) 0 0
\(661\) −28.8800 + 28.8800i −1.12330 + 1.12330i −0.132061 + 0.991242i \(0.542159\pi\)
−0.991242 + 0.132061i \(0.957841\pi\)
\(662\) −11.9930 3.43835i −0.466120 0.133635i
\(663\) 0 0
\(664\) 9.38018 + 10.4150i 0.364022 + 0.404179i
\(665\) 0.204415 0.138810i 0.00792687 0.00538283i
\(666\) 0 0
\(667\) −7.66982 + 7.66982i −0.296977 + 0.296977i
\(668\) −20.6227 + 33.0097i −0.797915 + 1.27718i
\(669\) 0 0
\(670\) 7.40873 14.6550i 0.286224 0.566172i
\(671\) −1.87083 −0.0722224
\(672\) 0 0
\(673\) 26.0623i 1.00463i 0.864685 + 0.502315i \(0.167518\pi\)
−0.864685 + 0.502315i \(0.832482\pi\)
\(674\) −6.08199 10.9711i −0.234270 0.422589i
\(675\) 0 0
\(676\) 14.5173 + 9.06961i 0.558357 + 0.348831i
\(677\) −9.70043 + 9.70043i −0.372818 + 0.372818i −0.868503 0.495685i \(-0.834917\pi\)
0.495685 + 0.868503i \(0.334917\pi\)
\(678\) 0 0
\(679\) −2.92948 −0.112423
\(680\) −17.8438 4.38731i −0.684279 0.168246i
\(681\) 0 0
\(682\) 4.45335 + 1.27677i 0.170528 + 0.0488899i
\(683\) 8.36855 + 8.36855i 0.320214 + 0.320214i 0.848849 0.528635i \(-0.177296\pi\)
−0.528635 + 0.848849i \(0.677296\pi\)
\(684\) 0 0
\(685\) 22.7107 + 4.34096i 0.867731 + 0.165860i
\(686\) −2.51960 4.54501i −0.0961988 0.173529i
\(687\) 0 0
\(688\) 24.1383 + 8.30670i 0.920264 + 0.316690i
\(689\) 8.80266i 0.335355i
\(690\) 0 0
\(691\) 16.7998 16.7998i 0.639095 0.639095i −0.311237 0.950332i \(-0.600743\pi\)
0.950332 + 0.311237i \(0.100743\pi\)
\(692\) −31.2590 + 7.21963i −1.18829 + 0.274449i
\(693\) 0 0
\(694\) −21.9152 6.28303i −0.831889 0.238501i
\(695\) 30.8978 20.9815i 1.17202 0.795873i
\(696\) 0 0
\(697\) 31.3177 1.18624
\(698\) −22.1781 6.35840i −0.839452 0.240669i
\(699\) 0 0
\(700\) 1.56396 + 2.12419i 0.0591122 + 0.0802867i
\(701\) 26.5344 26.5344i 1.00219 1.00219i 0.00219271 0.999998i \(-0.499302\pi\)
0.999998 0.00219271i \(-0.000697963\pi\)
\(702\) 0 0
\(703\) 0.909716 0.0343106
\(704\) −8.03095 + 6.50688i −0.302678 + 0.245237i
\(705\) 0 0
\(706\) −25.4352 + 14.1004i −0.957265 + 0.530676i
\(707\) 0.164890 0.164890i 0.00620131 0.00620131i
\(708\) 0 0
\(709\) −32.4351 + 32.4351i −1.21813 + 1.21813i −0.249840 + 0.968287i \(0.580378\pi\)
−0.968287 + 0.249840i \(0.919622\pi\)
\(710\) 23.6009 7.75112i 0.885727 0.290894i
\(711\) 0 0
\(712\) 1.95467 37.3925i 0.0732545 1.40135i
\(713\) 7.97758i 0.298763i
\(714\) 0 0
\(715\) 5.98017 + 1.14306i 0.223646 + 0.0427480i
\(716\) −12.4186 + 2.86821i −0.464103 + 0.107190i
\(717\) 0 0
\(718\) 12.9005 + 23.2706i 0.481441 + 0.868452i
\(719\) 8.81868 0.328881 0.164441 0.986387i \(-0.447418\pi\)
0.164441 + 0.986387i \(0.447418\pi\)
\(720\) 0 0
\(721\) 1.97222 0.0734495
\(722\) 12.9076 + 23.2834i 0.480370 + 0.866520i
\(723\) 0 0
\(724\) −6.42683 27.8264i −0.238851 1.03416i
\(725\) −15.8242 + 6.83390i −0.587695 + 0.253805i
\(726\) 0 0
\(727\) 10.5815i 0.392448i 0.980559 + 0.196224i \(0.0628679\pi\)
−0.980559 + 0.196224i \(0.937132\pi\)
\(728\) 1.16833 1.05225i 0.0433012 0.0389990i
\(729\) 0 0
\(730\) 12.2671 + 37.3514i 0.454027 + 1.38244i
\(731\) −13.1111 + 13.1111i −0.484931 + 0.484931i
\(732\) 0 0
\(733\) −0.891694 + 0.891694i −0.0329355 + 0.0329355i −0.723383 0.690447i \(-0.757414\pi\)
0.690447 + 0.723383i \(0.257414\pi\)
\(734\) −15.0471 + 8.34159i −0.555397 + 0.307894i
\(735\) 0 0
\(736\) 14.5821 + 10.2057i 0.537505 + 0.376187i
\(737\) 6.70927 0.247139
\(738\) 0 0
\(739\) −22.1859 + 22.1859i −0.816120 + 0.816120i −0.985543 0.169423i \(-0.945810\pi\)
0.169423 + 0.985543i \(0.445810\pi\)
\(740\) 0.370100 + 9.70467i 0.0136052 + 0.356751i
\(741\) 0 0
\(742\) −1.49786 0.429431i −0.0549880 0.0157649i
\(743\) −7.89487 −0.289635 −0.144817 0.989458i \(-0.546259\pi\)
−0.144817 + 0.989458i \(0.546259\pi\)
\(744\) 0 0
\(745\) −14.9654 + 10.1624i −0.548289 + 0.372322i
\(746\) 28.3429 + 8.12583i 1.03771 + 0.297508i
\(747\) 0 0
\(748\) −1.68949 7.31504i −0.0617740 0.267464i
\(749\) 2.84697 2.84697i 0.104026 0.104026i
\(750\) 0 0
\(751\) 4.43117i 0.161696i −0.996726 0.0808478i \(-0.974237\pi\)
0.996726 0.0808478i \(-0.0257628\pi\)
\(752\) 24.0068 11.7142i 0.875439 0.427173i
\(753\) 0 0
\(754\) 4.98149 + 8.98591i 0.181415 + 0.327248i
\(755\) −6.29598 + 32.9388i −0.229134 + 1.19877i
\(756\) 0 0
\(757\) 22.8329 + 22.8329i 0.829876 + 0.829876i 0.987499 0.157623i \(-0.0503832\pi\)
−0.157623 + 0.987499i \(0.550383\pi\)
\(758\) 3.07229 + 0.880817i 0.111591 + 0.0319927i
\(759\) 0 0
\(760\) 2.26656 1.37195i 0.0822168 0.0497659i
\(761\) 18.3941 0.666784 0.333392 0.942788i \(-0.391807\pi\)
0.333392 + 0.942788i \(0.391807\pi\)
\(762\) 0 0
\(763\) −0.0688335 + 0.0688335i −0.00249194 + 0.00249194i
\(764\) −25.2783 + 40.4617i −0.914537 + 1.46385i
\(765\) 0 0
\(766\) −17.0758 30.8024i −0.616975 1.11294i
\(767\) 29.1113i 1.05115i
\(768\) 0 0
\(769\) 12.2959 0.443402 0.221701 0.975115i \(-0.428839\pi\)
0.221701 + 0.975115i \(0.428839\pi\)
\(770\) −0.486241 + 0.961820i −0.0175229 + 0.0346616i
\(771\) 0 0
\(772\) 23.5067 + 14.6857i 0.846026 + 0.528551i
\(773\) −16.8697 + 16.8697i −0.606762 + 0.606762i −0.942098 0.335337i \(-0.891150\pi\)
0.335337 + 0.942098i \(0.391150\pi\)
\(774\) 0 0
\(775\) 4.67551 11.7836i 0.167949 0.423280i
\(776\) −31.3687 1.63978i −1.12607 0.0588647i
\(777\) 0 0
\(778\) −23.0308 6.60287i −0.825694 0.236724i
\(779\) −3.19298 + 3.19298i −0.114400 + 0.114400i
\(780\) 0 0
\(781\) 7.17670 + 7.17670i 0.256803 + 0.256803i
\(782\) −11.3068 + 6.26814i −0.404332 + 0.224148i
\(783\) 0 0
\(784\) −12.1568 24.9139i −0.434171 0.889783i
\(785\) −0.0464945 0.0684688i −0.00165946 0.00244376i
\(786\) 0 0
\(787\) −32.0462 32.0462i −1.14232 1.14232i −0.988024 0.154299i \(-0.950688\pi\)
−0.154299 0.988024i \(-0.549312\pi\)
\(788\) −7.62641 33.0203i −0.271680 1.17630i
\(789\) 0 0
\(790\) 32.2058 10.5772i 1.14583 0.376319i
\(791\) 1.02583i 0.0364744i
\(792\) 0 0
\(793\) 3.05153 0.108363
\(794\) −8.86560 + 30.9232i −0.314628 + 1.09742i
\(795\) 0 0
\(796\) −12.1161 + 19.3936i −0.429442 + 0.687387i
\(797\) 16.6812 + 16.6812i 0.590879 + 0.590879i 0.937869 0.346990i \(-0.112796\pi\)
−0.346990 + 0.937869i \(0.612796\pi\)
\(798\) 0 0
\(799\) 19.4024i 0.686408i
\(800\) 15.5578 + 23.6211i 0.550051 + 0.835131i
\(801\) 0 0
\(802\) 2.44383 + 4.40833i 0.0862948 + 0.155664i
\(803\) −11.3580 + 11.3580i −0.400816 + 0.400816i
\(804\) 0 0
\(805\) 1.82286 + 0.348425i 0.0642475 + 0.0122804i
\(806\) −7.26393 2.08255i −0.255861 0.0733547i
\(807\) 0 0
\(808\) 1.85792 1.67333i 0.0653616 0.0588676i
\(809\) −26.5382 −0.933032 −0.466516 0.884513i \(-0.654491\pi\)
−0.466516 + 0.884513i \(0.654491\pi\)
\(810\) 0 0
\(811\) 19.0246 + 19.0246i 0.668044 + 0.668044i 0.957263 0.289219i \(-0.0933955\pi\)
−0.289219 + 0.957263i \(0.593396\pi\)
\(812\) −1.77206 + 0.409277i −0.0621870 + 0.0143628i
\(813\) 0 0
\(814\) −3.47035 + 1.92385i −0.121636 + 0.0674308i
\(815\) 44.7684 30.4005i 1.56817 1.06488i
\(816\) 0 0
\(817\) 2.67347i 0.0935328i
\(818\) −0.312298 0.563341i −0.0109192 0.0196968i
\(819\) 0 0
\(820\) −35.3610 32.7630i −1.23486 1.14413i
\(821\) 8.92298 + 8.92298i 0.311414 + 0.311414i 0.845457 0.534043i \(-0.179328\pi\)
−0.534043 + 0.845457i \(0.679328\pi\)
\(822\) 0 0
\(823\) 28.4770i 0.992646i −0.868138 0.496323i \(-0.834683\pi\)
0.868138 0.496323i \(-0.165317\pi\)
\(824\) 21.1185 + 1.10395i 0.735696 + 0.0384581i
\(825\) 0 0
\(826\) −4.95356 1.42017i −0.172356 0.0494141i
\(827\) −14.8892 14.8892i −0.517748 0.517748i 0.399141 0.916889i \(-0.369308\pi\)
−0.916889 + 0.399141i \(0.869308\pi\)
\(828\) 0 0
\(829\) 11.4041 + 11.4041i 0.396082 + 0.396082i 0.876849 0.480767i \(-0.159642\pi\)
−0.480767 + 0.876849i \(0.659642\pi\)
\(830\) 13.9853 + 7.07014i 0.485435 + 0.245408i
\(831\) 0 0
\(832\) 13.0994 10.6135i 0.454140 0.367956i
\(833\) 20.1355 0.697654
\(834\) 0 0
\(835\) −8.16987 + 42.7425i −0.282730 + 1.47916i
\(836\) 0.918052 + 0.573549i 0.0317515 + 0.0198366i
\(837\) 0 0
\(838\) −13.8541 3.97193i −0.478582 0.137208i
\(839\) 16.2531i 0.561118i −0.959837 0.280559i \(-0.909480\pi\)
0.959837 0.280559i \(-0.0905199\pi\)
\(840\) 0 0
\(841\) 17.1157i 0.590198i
\(842\) −7.66916 + 26.7500i −0.264297 + 0.921867i
\(843\) 0 0
\(844\) −4.11066 17.7980i −0.141495 0.612633i
\(845\) 18.7976 + 3.59301i 0.646659 + 0.123603i
\(846\) 0 0
\(847\) 2.46128 0.0845705
\(848\) −15.7986 5.43675i −0.542525 0.186699i
\(849\) 0 0
\(850\) −20.3749 + 2.63190i −0.698852 + 0.0902734i
\(851\) 4.83149 + 4.83149i 0.165621 + 0.165621i
\(852\) 0 0
\(853\) −23.0418 23.0418i −0.788935 0.788935i 0.192385 0.981320i \(-0.438378\pi\)
−0.981320 + 0.192385i \(0.938378\pi\)
\(854\) −0.148867 + 0.519247i −0.00509412 + 0.0177683i
\(855\) 0 0
\(856\) 32.0788 28.8916i 1.09643 0.987495i
\(857\) 30.7846i 1.05158i 0.850614 + 0.525791i \(0.176231\pi\)
−0.850614 + 0.525791i \(0.823769\pi\)
\(858\) 0 0
\(859\) −18.4753 18.4753i −0.630370 0.630370i 0.317791 0.948161i \(-0.397059\pi\)
−0.948161 + 0.317791i \(0.897059\pi\)
\(860\) 28.5200 1.08765i 0.972524 0.0370885i
\(861\) 0 0
\(862\) −25.0955 + 13.9121i −0.854757 + 0.473849i
\(863\) 25.8775i 0.880879i 0.897782 + 0.440440i \(0.145177\pi\)
−0.897782 + 0.440440i \(0.854823\pi\)
\(864\) 0 0
\(865\) −29.6737 + 20.1503i −1.00894 + 0.685129i
\(866\) 9.05433 + 16.3327i 0.307679 + 0.555009i
\(867\) 0 0
\(868\) 0.708732 1.13443i 0.0240559 0.0385051i
\(869\) 9.79333 + 9.79333i 0.332216 + 0.332216i
\(870\) 0 0
\(871\) −10.9436 −0.370809
\(872\) −0.775595 + 0.698535i −0.0262649 + 0.0236554i
\(873\) 0 0
\(874\) 0.513718 1.79185i 0.0173768 0.0606101i
\(875\) 2.48833 + 1.58300i 0.0841209 + 0.0535152i
\(876\) 0 0
\(877\) −21.3569 + 21.3569i −0.721171 + 0.721171i −0.968844 0.247673i \(-0.920334\pi\)
0.247673 + 0.968844i \(0.420334\pi\)
\(878\) 5.95850 3.30319i 0.201090 0.111477i
\(879\) 0 0
\(880\) −5.74502 + 10.0269i −0.193664 + 0.338008i
\(881\) 38.6737i 1.30295i −0.758670 0.651475i \(-0.774151\pi\)
0.758670 0.651475i \(-0.225849\pi\)
\(882\) 0 0
\(883\) −31.7478 31.7478i −1.06840 1.06840i −0.997482 0.0709157i \(-0.977408\pi\)
−0.0709157 0.997482i \(-0.522592\pi\)
\(884\) 2.75576 + 11.9317i 0.0926861 + 0.401305i
\(885\) 0 0
\(886\) −17.6188 5.05126i −0.591914 0.169700i
\(887\) −16.1784 −0.543217 −0.271609 0.962408i \(-0.587556\pi\)
−0.271609 + 0.962408i \(0.587556\pi\)
\(888\) 0 0
\(889\) 4.77912i 0.160287i
\(890\) −13.0625 39.7731i −0.437855 1.33320i
\(891\) 0 0
\(892\) −0.657523 + 1.05246i −0.0220155 + 0.0352391i
\(893\) −1.97816 1.97816i −0.0661967 0.0661967i
\(894\) 0 0
\(895\) −11.7887 + 8.00528i −0.394054 + 0.267587i
\(896\) 1.16694 + 2.74676i 0.0389846 + 0.0917628i
\(897\) 0 0
\(898\) −2.52317 4.55144i −0.0841993 0.151884i
\(899\) 6.18056 + 6.18056i 0.206133 + 0.206133i
\(900\) 0 0
\(901\) 8.58123 8.58123i 0.285882 0.285882i
\(902\) 5.42800 18.9329i 0.180733 0.630395i
\(903\) 0 0
\(904\) −0.574210 + 10.9845i −0.0190979 + 0.365340i
\(905\) −17.9375 26.4152i −0.596264 0.878070i
\(906\) 0 0
\(907\) 28.4899 28.4899i 0.945992 0.945992i −0.0526227 0.998614i \(-0.516758\pi\)
0.998614 + 0.0526227i \(0.0167581\pi\)
\(908\) −6.40185 27.7182i −0.212453 0.919862i
\(909\) 0 0
\(910\) 0.793115 1.56884i 0.0262915 0.0520065i
\(911\) −2.49312 −0.0826008 −0.0413004 0.999147i \(-0.513150\pi\)
−0.0413004 + 0.999147i \(0.513150\pi\)
\(912\) 0 0
\(913\) 6.40264i 0.211897i
\(914\) 22.5071 12.4772i 0.744469 0.412709i
\(915\) 0 0
\(916\) −9.53679 41.2917i −0.315104 1.36432i
\(917\) −3.70905 + 3.70905i −0.122484 + 0.122484i
\(918\) 0 0
\(919\) 22.3205 0.736287 0.368143 0.929769i \(-0.379994\pi\)
0.368143 + 0.929769i \(0.379994\pi\)
\(920\) 19.3241 + 4.75126i 0.637095 + 0.156644i
\(921\) 0 0
\(922\) 11.2898 39.3788i 0.371810 1.29687i
\(923\) −11.7060 11.7060i −0.385308 0.385308i
\(924\) 0 0
\(925\) 4.30491 + 9.96819i 0.141545 + 0.327752i
\(926\) −27.8810 + 15.4563i −0.916228 + 0.507927i
\(927\) 0 0
\(928\) −19.2042 + 3.39060i −0.630408 + 0.111302i
\(929\) 6.44533i 0.211464i 0.994395 + 0.105732i \(0.0337186\pi\)
−0.994395 + 0.105732i \(0.966281\pi\)
\(930\) 0 0
\(931\) −2.05291 + 2.05291i −0.0672813 + 0.0672813i
\(932\) −3.52662 2.20324i −0.115518 0.0721696i
\(933\) 0 0
\(934\) 14.4800 50.5061i 0.473799 1.65261i
\(935\) −4.71544 6.94405i −0.154211 0.227095i
\(936\) 0 0
\(937\) 56.5439 1.84721 0.923605 0.383346i \(-0.125228\pi\)
0.923605 + 0.383346i \(0.125228\pi\)
\(938\) 0.533875 1.86216i 0.0174316 0.0608015i
\(939\) 0 0
\(940\) 20.2979 21.9074i 0.662043 0.714541i
\(941\) 1.57877 1.57877i 0.0514663 0.0514663i −0.680905 0.732372i \(-0.738413\pi\)
0.732372 + 0.680905i \(0.238413\pi\)
\(942\) 0 0
\(943\) −33.9157 −1.10445
\(944\) −52.2475 17.9799i −1.70051 0.585195i
\(945\) 0 0
\(946\) 5.65378 + 10.1986i 0.183820 + 0.331586i
\(947\) 12.1004 12.1004i 0.393210 0.393210i −0.482620 0.875830i \(-0.660315\pi\)
0.875830 + 0.482620i \(0.160315\pi\)
\(948\) 0 0
\(949\) 18.5263 18.5263i 0.601388 0.601388i
\(950\) 1.80898 2.34564i 0.0586909 0.0761027i
\(951\) 0 0
\(952\) −2.16472 0.113160i −0.0701591 0.00366752i
\(953\) 25.9757i 0.841435i −0.907192 0.420718i \(-0.861778\pi\)
0.907192 0.420718i \(-0.138222\pi\)
\(954\) 0 0
\(955\) −10.0143 + 52.3918i −0.324054 + 1.69536i
\(956\) 14.0743 22.5281i 0.455196 0.728610i
\(957\) 0 0
\(958\) −0.895146 + 0.496239i −0.0289208 + 0.0160328i
\(959\) 2.72762 0.0880795
\(960\) 0 0
\(961\) 24.5714 0.792627
\(962\) 5.66054 3.13801i 0.182503 0.101174i
\(963\) 0 0
\(964\) −4.06988 + 6.51445i −0.131082 + 0.209816i
\(965\) 30.4376 + 5.81790i 0.979822 + 0.187285i
\(966\) 0 0
\(967\) 61.3307i 1.97226i 0.165969 + 0.986131i \(0.446925\pi\)
−0.165969 + 0.986131i \(0.553075\pi\)
\(968\) 26.3552 + 1.37770i 0.847088 + 0.0442810i
\(969\) 0 0
\(970\) −33.3658 + 10.9581i −1.07131 + 0.351845i
\(971\) −30.0810 + 30.0810i −0.965346 + 0.965346i −0.999419 0.0340737i \(-0.989152\pi\)
0.0340737 + 0.999419i \(0.489152\pi\)
\(972\) 0 0
\(973\) 3.11543 3.11543i 0.0998760 0.0998760i
\(974\) 10.3004 + 18.5804i 0.330046 + 0.595356i
\(975\) 0 0
\(976\) −1.88470 + 5.47674i −0.0603279 + 0.175306i
\(977\) 33.3131 1.06578 0.532891 0.846184i \(-0.321106\pi\)
0.532891 + 0.846184i \(0.321106\pi\)
\(978\) 0 0
\(979\) 12.0944 12.0944i 0.386540 0.386540i
\(980\) −22.7352 21.0648i −0.726248 0.672890i
\(981\) 0 0
\(982\) 1.67618 5.84650i 0.0534889 0.186569i
\(983\) 54.1424 1.72687 0.863437 0.504456i \(-0.168307\pi\)
0.863437 + 0.504456i \(0.168307\pi\)
\(984\) 0 0
\(985\) −21.2856 31.3456i −0.678215 0.998754i
\(986\) 3.90369 13.6161i 0.124319 0.433624i
\(987\) 0 0
\(988\) −1.49745 0.935524i −0.0476402 0.0297630i
\(989\) 14.1987 14.1987i 0.451493 0.451493i
\(990\) 0 0
\(991\) 39.3653i 1.25048i −0.780433 0.625240i \(-0.785001\pi\)
0.780433 0.625240i \(-0.214999\pi\)
\(992\) 8.22405 11.7507i 0.261114 0.373085i
\(993\) 0 0
\(994\) 2.56296 1.42082i 0.0812922 0.0450657i
\(995\) −4.79989 + 25.1117i −0.152167 + 0.796094i
\(996\) 0 0
\(997\) −28.9457 28.9457i −0.916720 0.916720i 0.0800697 0.996789i \(-0.474486\pi\)
−0.996789 + 0.0800697i \(0.974486\pi\)
\(998\) 6.25849 21.8296i 0.198109 0.691004i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.u.a.179.41 yes 96
3.2 odd 2 inner 720.2.u.a.179.8 yes 96
4.3 odd 2 2880.2.u.a.2159.28 96
5.4 even 2 inner 720.2.u.a.179.7 96
12.11 even 2 2880.2.u.a.2159.21 96
15.14 odd 2 inner 720.2.u.a.179.42 yes 96
16.5 even 4 2880.2.u.a.719.45 96
16.11 odd 4 inner 720.2.u.a.539.42 yes 96
20.19 odd 2 2880.2.u.a.2159.4 96
48.5 odd 4 2880.2.u.a.719.4 96
48.11 even 4 inner 720.2.u.a.539.7 yes 96
60.59 even 2 2880.2.u.a.2159.45 96
80.59 odd 4 inner 720.2.u.a.539.8 yes 96
80.69 even 4 2880.2.u.a.719.21 96
240.59 even 4 inner 720.2.u.a.539.41 yes 96
240.149 odd 4 2880.2.u.a.719.28 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
720.2.u.a.179.7 96 5.4 even 2 inner
720.2.u.a.179.8 yes 96 3.2 odd 2 inner
720.2.u.a.179.41 yes 96 1.1 even 1 trivial
720.2.u.a.179.42 yes 96 15.14 odd 2 inner
720.2.u.a.539.7 yes 96 48.11 even 4 inner
720.2.u.a.539.8 yes 96 80.59 odd 4 inner
720.2.u.a.539.41 yes 96 240.59 even 4 inner
720.2.u.a.539.42 yes 96 16.11 odd 4 inner
2880.2.u.a.719.4 96 48.5 odd 4
2880.2.u.a.719.21 96 80.69 even 4
2880.2.u.a.719.28 96 240.149 odd 4
2880.2.u.a.719.45 96 16.5 even 4
2880.2.u.a.2159.4 96 20.19 odd 2
2880.2.u.a.2159.21 96 12.11 even 2
2880.2.u.a.2159.28 96 4.3 odd 2
2880.2.u.a.2159.45 96 60.59 even 2