Properties

Label 2900.2.a.i.1.4
Level $2900$
Weight $2$
Character 2900.1
Self dual yes
Analytic conductor $23.157$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2900,2,Mod(1,2900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2900.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1566165862\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2370465.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 9x^{3} - x^{2} + 9x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.672645\) of defining polynomial
Character \(\chi\) \(=\) 2900.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.672645 q^{3} +3.37701 q^{7} -2.54755 q^{9} +2.11471 q^{11} -1.91246 q^{13} -5.53382 q^{17} -7.99382 q^{19} +2.27153 q^{21} -3.27602 q^{23} -3.73153 q^{27} -1.00000 q^{29} -10.2833 q^{31} +1.42245 q^{33} +1.37246 q^{37} -1.28640 q^{39} -1.81453 q^{41} -1.60338 q^{43} -0.327355 q^{47} +4.40418 q^{49} -3.72230 q^{51} -4.18848 q^{53} -5.37701 q^{57} -3.30908 q^{59} +7.00306 q^{61} -8.60309 q^{63} +6.57443 q^{67} -2.20360 q^{69} +15.5005 q^{71} -5.43283 q^{73} +7.14140 q^{77} +2.72819 q^{79} +5.13265 q^{81} -14.9969 q^{83} -0.672645 q^{87} +12.6048 q^{89} -6.45838 q^{91} -6.91700 q^{93} +0.851941 q^{97} -5.38734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{7} + 3 q^{9} + 4 q^{11} - 12 q^{13} - 5 q^{17} - 4 q^{19} + 3 q^{21} - 9 q^{23} + 3 q^{27} - 5 q^{29} + 3 q^{31} - 21 q^{33} - 4 q^{37} - 18 q^{39} + 5 q^{41} - 4 q^{43} - 5 q^{47} - 3 q^{49}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.672645 0.388352 0.194176 0.980967i \(-0.437797\pi\)
0.194176 + 0.980967i \(0.437797\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.37701 1.27639 0.638194 0.769875i \(-0.279682\pi\)
0.638194 + 0.769875i \(0.279682\pi\)
\(8\) 0 0
\(9\) −2.54755 −0.849183
\(10\) 0 0
\(11\) 2.11471 0.637610 0.318805 0.947820i \(-0.396718\pi\)
0.318805 + 0.947820i \(0.396718\pi\)
\(12\) 0 0
\(13\) −1.91246 −0.530420 −0.265210 0.964191i \(-0.585441\pi\)
−0.265210 + 0.964191i \(0.585441\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.53382 −1.34215 −0.671074 0.741390i \(-0.734167\pi\)
−0.671074 + 0.741390i \(0.734167\pi\)
\(18\) 0 0
\(19\) −7.99382 −1.83391 −0.916955 0.398992i \(-0.869360\pi\)
−0.916955 + 0.398992i \(0.869360\pi\)
\(20\) 0 0
\(21\) 2.27153 0.495688
\(22\) 0 0
\(23\) −3.27602 −0.683098 −0.341549 0.939864i \(-0.610951\pi\)
−0.341549 + 0.939864i \(0.610951\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.73153 −0.718134
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −10.2833 −1.84693 −0.923466 0.383679i \(-0.874657\pi\)
−0.923466 + 0.383679i \(0.874657\pi\)
\(32\) 0 0
\(33\) 1.42245 0.247617
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.37246 0.225631 0.112815 0.993616i \(-0.464013\pi\)
0.112815 + 0.993616i \(0.464013\pi\)
\(38\) 0 0
\(39\) −1.28640 −0.205989
\(40\) 0 0
\(41\) −1.81453 −0.283382 −0.141691 0.989911i \(-0.545254\pi\)
−0.141691 + 0.989911i \(0.545254\pi\)
\(42\) 0 0
\(43\) −1.60338 −0.244513 −0.122256 0.992499i \(-0.539013\pi\)
−0.122256 + 0.992499i \(0.539013\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.327355 −0.0477496 −0.0238748 0.999715i \(-0.507600\pi\)
−0.0238748 + 0.999715i \(0.507600\pi\)
\(48\) 0 0
\(49\) 4.40418 0.629168
\(50\) 0 0
\(51\) −3.72230 −0.521226
\(52\) 0 0
\(53\) −4.18848 −0.575332 −0.287666 0.957731i \(-0.592879\pi\)
−0.287666 + 0.957731i \(0.592879\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.37701 −0.712202
\(58\) 0 0
\(59\) −3.30908 −0.430805 −0.215403 0.976525i \(-0.569106\pi\)
−0.215403 + 0.976525i \(0.569106\pi\)
\(60\) 0 0
\(61\) 7.00306 0.896650 0.448325 0.893871i \(-0.352021\pi\)
0.448325 + 0.893871i \(0.352021\pi\)
\(62\) 0 0
\(63\) −8.60309 −1.08389
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.57443 0.803195 0.401597 0.915816i \(-0.368455\pi\)
0.401597 + 0.915816i \(0.368455\pi\)
\(68\) 0 0
\(69\) −2.20360 −0.265282
\(70\) 0 0
\(71\) 15.5005 1.83957 0.919784 0.392425i \(-0.128364\pi\)
0.919784 + 0.392425i \(0.128364\pi\)
\(72\) 0 0
\(73\) −5.43283 −0.635865 −0.317933 0.948113i \(-0.602989\pi\)
−0.317933 + 0.948113i \(0.602989\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.14140 0.813838
\(78\) 0 0
\(79\) 2.72819 0.306945 0.153472 0.988153i \(-0.450954\pi\)
0.153472 + 0.988153i \(0.450954\pi\)
\(80\) 0 0
\(81\) 5.13265 0.570294
\(82\) 0 0
\(83\) −14.9969 −1.64612 −0.823061 0.567953i \(-0.807735\pi\)
−0.823061 + 0.567953i \(0.807735\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.672645 −0.0721151
\(88\) 0 0
\(89\) 12.6048 1.33610 0.668051 0.744116i \(-0.267129\pi\)
0.668051 + 0.744116i \(0.267129\pi\)
\(90\) 0 0
\(91\) −6.45838 −0.677022
\(92\) 0 0
\(93\) −6.91700 −0.717260
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.851941 0.0865015 0.0432508 0.999064i \(-0.486229\pi\)
0.0432508 + 0.999064i \(0.486229\pi\)
\(98\) 0 0
\(99\) −5.38734 −0.541448
\(100\) 0 0
\(101\) 17.4522 1.73656 0.868279 0.496075i \(-0.165226\pi\)
0.868279 + 0.496075i \(0.165226\pi\)
\(102\) 0 0
\(103\) −10.6951 −1.05382 −0.526911 0.849920i \(-0.676650\pi\)
−0.526911 + 0.849920i \(0.676650\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −20.5895 −1.99047 −0.995233 0.0975276i \(-0.968907\pi\)
−0.995233 + 0.0975276i \(0.968907\pi\)
\(108\) 0 0
\(109\) 0.972490 0.0931477 0.0465738 0.998915i \(-0.485170\pi\)
0.0465738 + 0.998915i \(0.485170\pi\)
\(110\) 0 0
\(111\) 0.923178 0.0876242
\(112\) 0 0
\(113\) 12.7192 1.19652 0.598260 0.801302i \(-0.295859\pi\)
0.598260 + 0.801302i \(0.295859\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.87207 0.450423
\(118\) 0 0
\(119\) −18.6878 −1.71310
\(120\) 0 0
\(121\) −6.52799 −0.593453
\(122\) 0 0
\(123\) −1.22053 −0.110052
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.2036 1.34910 0.674552 0.738227i \(-0.264337\pi\)
0.674552 + 0.738227i \(0.264337\pi\)
\(128\) 0 0
\(129\) −1.07850 −0.0949569
\(130\) 0 0
\(131\) 6.03755 0.527503 0.263752 0.964591i \(-0.415040\pi\)
0.263752 + 0.964591i \(0.415040\pi\)
\(132\) 0 0
\(133\) −26.9952 −2.34078
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.4901 −1.32341 −0.661704 0.749765i \(-0.730166\pi\)
−0.661704 + 0.749765i \(0.730166\pi\)
\(138\) 0 0
\(139\) 2.09639 0.177813 0.0889065 0.996040i \(-0.471663\pi\)
0.0889065 + 0.996040i \(0.471663\pi\)
\(140\) 0 0
\(141\) −0.220194 −0.0185437
\(142\) 0 0
\(143\) −4.04430 −0.338201
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.96245 0.244339
\(148\) 0 0
\(149\) 5.07653 0.415886 0.207943 0.978141i \(-0.433323\pi\)
0.207943 + 0.978141i \(0.433323\pi\)
\(150\) 0 0
\(151\) 12.6412 1.02872 0.514361 0.857574i \(-0.328029\pi\)
0.514361 + 0.857574i \(0.328029\pi\)
\(152\) 0 0
\(153\) 14.0977 1.13973
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −19.7495 −1.57618 −0.788090 0.615561i \(-0.788930\pi\)
−0.788090 + 0.615561i \(0.788930\pi\)
\(158\) 0 0
\(159\) −2.81736 −0.223431
\(160\) 0 0
\(161\) −11.0631 −0.871898
\(162\) 0 0
\(163\) 19.9484 1.56248 0.781240 0.624230i \(-0.214587\pi\)
0.781240 + 0.624230i \(0.214587\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.34529 −0.181484 −0.0907420 0.995874i \(-0.528924\pi\)
−0.0907420 + 0.995874i \(0.528924\pi\)
\(168\) 0 0
\(169\) −9.34251 −0.718655
\(170\) 0 0
\(171\) 20.3647 1.55732
\(172\) 0 0
\(173\) −14.8187 −1.12665 −0.563324 0.826236i \(-0.690478\pi\)
−0.563324 + 0.826236i \(0.690478\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.22584 −0.167304
\(178\) 0 0
\(179\) −6.12381 −0.457715 −0.228857 0.973460i \(-0.573499\pi\)
−0.228857 + 0.973460i \(0.573499\pi\)
\(180\) 0 0
\(181\) −18.4853 −1.37400 −0.686999 0.726658i \(-0.741072\pi\)
−0.686999 + 0.726658i \(0.741072\pi\)
\(182\) 0 0
\(183\) 4.71057 0.348216
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −11.7024 −0.855768
\(188\) 0 0
\(189\) −12.6014 −0.916618
\(190\) 0 0
\(191\) 12.1585 0.879757 0.439878 0.898057i \(-0.355022\pi\)
0.439878 + 0.898057i \(0.355022\pi\)
\(192\) 0 0
\(193\) −19.6332 −1.41323 −0.706614 0.707600i \(-0.749778\pi\)
−0.706614 + 0.707600i \(0.749778\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.0656 1.21588 0.607938 0.793985i \(-0.291997\pi\)
0.607938 + 0.793985i \(0.291997\pi\)
\(198\) 0 0
\(199\) −22.8668 −1.62098 −0.810491 0.585751i \(-0.800800\pi\)
−0.810491 + 0.585751i \(0.800800\pi\)
\(200\) 0 0
\(201\) 4.42226 0.311922
\(202\) 0 0
\(203\) −3.37701 −0.237019
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.34582 0.580075
\(208\) 0 0
\(209\) −16.9047 −1.16932
\(210\) 0 0
\(211\) 18.2332 1.25522 0.627611 0.778527i \(-0.284033\pi\)
0.627611 + 0.778527i \(0.284033\pi\)
\(212\) 0 0
\(213\) 10.4263 0.714400
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −34.7267 −2.35740
\(218\) 0 0
\(219\) −3.65437 −0.246939
\(220\) 0 0
\(221\) 10.5832 0.711902
\(222\) 0 0
\(223\) −3.50379 −0.234631 −0.117315 0.993095i \(-0.537429\pi\)
−0.117315 + 0.993095i \(0.537429\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.0723 0.867641 0.433820 0.900999i \(-0.357165\pi\)
0.433820 + 0.900999i \(0.357165\pi\)
\(228\) 0 0
\(229\) 15.7072 1.03796 0.518981 0.854786i \(-0.326311\pi\)
0.518981 + 0.854786i \(0.326311\pi\)
\(230\) 0 0
\(231\) 4.80363 0.316056
\(232\) 0 0
\(233\) 5.96096 0.390515 0.195258 0.980752i \(-0.437446\pi\)
0.195258 + 0.980752i \(0.437446\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.83510 0.119203
\(238\) 0 0
\(239\) −5.20661 −0.336787 −0.168394 0.985720i \(-0.553858\pi\)
−0.168394 + 0.985720i \(0.553858\pi\)
\(240\) 0 0
\(241\) −9.12261 −0.587639 −0.293819 0.955861i \(-0.594926\pi\)
−0.293819 + 0.955861i \(0.594926\pi\)
\(242\) 0 0
\(243\) 14.6470 0.939608
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 15.2878 0.972742
\(248\) 0 0
\(249\) −10.0876 −0.639274
\(250\) 0 0
\(251\) −23.8338 −1.50437 −0.752187 0.658950i \(-0.771001\pi\)
−0.752187 + 0.658950i \(0.771001\pi\)
\(252\) 0 0
\(253\) −6.92785 −0.435550
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.79497 0.548615 0.274307 0.961642i \(-0.411551\pi\)
0.274307 + 0.961642i \(0.411551\pi\)
\(258\) 0 0
\(259\) 4.63481 0.287993
\(260\) 0 0
\(261\) 2.54755 0.157689
\(262\) 0 0
\(263\) 17.0631 1.05216 0.526079 0.850436i \(-0.323662\pi\)
0.526079 + 0.850436i \(0.323662\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.47853 0.518877
\(268\) 0 0
\(269\) 18.1534 1.10683 0.553415 0.832906i \(-0.313324\pi\)
0.553415 + 0.832906i \(0.313324\pi\)
\(270\) 0 0
\(271\) −13.2003 −0.801861 −0.400930 0.916109i \(-0.631313\pi\)
−0.400930 + 0.916109i \(0.631313\pi\)
\(272\) 0 0
\(273\) −4.34420 −0.262923
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.7679 −0.947403 −0.473702 0.880685i \(-0.657083\pi\)
−0.473702 + 0.880685i \(0.657083\pi\)
\(278\) 0 0
\(279\) 26.1972 1.56838
\(280\) 0 0
\(281\) −1.11500 −0.0665154 −0.0332577 0.999447i \(-0.510588\pi\)
−0.0332577 + 0.999447i \(0.510588\pi\)
\(282\) 0 0
\(283\) −17.7462 −1.05490 −0.527450 0.849586i \(-0.676852\pi\)
−0.527450 + 0.849586i \(0.676852\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.12768 −0.361705
\(288\) 0 0
\(289\) 13.6232 0.801363
\(290\) 0 0
\(291\) 0.573054 0.0335930
\(292\) 0 0
\(293\) 1.44336 0.0843218 0.0421609 0.999111i \(-0.486576\pi\)
0.0421609 + 0.999111i \(0.486576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −7.89112 −0.457889
\(298\) 0 0
\(299\) 6.26525 0.362328
\(300\) 0 0
\(301\) −5.41461 −0.312093
\(302\) 0 0
\(303\) 11.7391 0.674396
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5.34395 −0.304995 −0.152498 0.988304i \(-0.548732\pi\)
−0.152498 + 0.988304i \(0.548732\pi\)
\(308\) 0 0
\(309\) −7.19403 −0.409254
\(310\) 0 0
\(311\) 24.6634 1.39854 0.699268 0.714860i \(-0.253509\pi\)
0.699268 + 0.714860i \(0.253509\pi\)
\(312\) 0 0
\(313\) −33.9786 −1.92058 −0.960292 0.278998i \(-0.909998\pi\)
−0.960292 + 0.278998i \(0.909998\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0876 −0.566575 −0.283287 0.959035i \(-0.591425\pi\)
−0.283287 + 0.959035i \(0.591425\pi\)
\(318\) 0 0
\(319\) −2.11471 −0.118401
\(320\) 0 0
\(321\) −13.8495 −0.773001
\(322\) 0 0
\(323\) 44.2364 2.46138
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.654141 0.0361741
\(328\) 0 0
\(329\) −1.10548 −0.0609471
\(330\) 0 0
\(331\) −16.3891 −0.900824 −0.450412 0.892821i \(-0.648723\pi\)
−0.450412 + 0.892821i \(0.648723\pi\)
\(332\) 0 0
\(333\) −3.49641 −0.191602
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −18.3782 −1.00112 −0.500562 0.865700i \(-0.666873\pi\)
−0.500562 + 0.865700i \(0.666873\pi\)
\(338\) 0 0
\(339\) 8.55549 0.464671
\(340\) 0 0
\(341\) −21.7462 −1.17762
\(342\) 0 0
\(343\) −8.76611 −0.473326
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.6029 0.783925 0.391962 0.919981i \(-0.371796\pi\)
0.391962 + 0.919981i \(0.371796\pi\)
\(348\) 0 0
\(349\) 21.4716 1.14935 0.574675 0.818382i \(-0.305129\pi\)
0.574675 + 0.818382i \(0.305129\pi\)
\(350\) 0 0
\(351\) 7.13639 0.380912
\(352\) 0 0
\(353\) −22.9674 −1.22243 −0.611214 0.791465i \(-0.709319\pi\)
−0.611214 + 0.791465i \(0.709319\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −12.5702 −0.665287
\(358\) 0 0
\(359\) 1.62824 0.0859351 0.0429675 0.999076i \(-0.486319\pi\)
0.0429675 + 0.999076i \(0.486319\pi\)
\(360\) 0 0
\(361\) 44.9012 2.36322
\(362\) 0 0
\(363\) −4.39102 −0.230469
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.19451 −0.114552 −0.0572761 0.998358i \(-0.518242\pi\)
−0.0572761 + 0.998358i \(0.518242\pi\)
\(368\) 0 0
\(369\) 4.62260 0.240643
\(370\) 0 0
\(371\) −14.1445 −0.734347
\(372\) 0 0
\(373\) 6.00186 0.310764 0.155382 0.987854i \(-0.450339\pi\)
0.155382 + 0.987854i \(0.450339\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.91246 0.0984965
\(378\) 0 0
\(379\) −0.966315 −0.0496363 −0.0248181 0.999692i \(-0.507901\pi\)
−0.0248181 + 0.999692i \(0.507901\pi\)
\(380\) 0 0
\(381\) 10.2267 0.523927
\(382\) 0 0
\(383\) −11.6799 −0.596816 −0.298408 0.954438i \(-0.596456\pi\)
−0.298408 + 0.954438i \(0.596456\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.08468 0.207636
\(388\) 0 0
\(389\) −2.55610 −0.129600 −0.0647998 0.997898i \(-0.520641\pi\)
−0.0647998 + 0.997898i \(0.520641\pi\)
\(390\) 0 0
\(391\) 18.1289 0.916819
\(392\) 0 0
\(393\) 4.06113 0.204857
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.08996 0.456212 0.228106 0.973636i \(-0.426747\pi\)
0.228106 + 0.973636i \(0.426747\pi\)
\(398\) 0 0
\(399\) −18.1582 −0.909047
\(400\) 0 0
\(401\) 4.58696 0.229062 0.114531 0.993420i \(-0.463464\pi\)
0.114531 + 0.993420i \(0.463464\pi\)
\(402\) 0 0
\(403\) 19.6663 0.979650
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.90236 0.143865
\(408\) 0 0
\(409\) −10.5214 −0.520248 −0.260124 0.965575i \(-0.583763\pi\)
−0.260124 + 0.965575i \(0.583763\pi\)
\(410\) 0 0
\(411\) −10.4193 −0.513948
\(412\) 0 0
\(413\) −11.1748 −0.549875
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.41012 0.0690540
\(418\) 0 0
\(419\) 5.75688 0.281242 0.140621 0.990064i \(-0.455090\pi\)
0.140621 + 0.990064i \(0.455090\pi\)
\(420\) 0 0
\(421\) −29.0307 −1.41487 −0.707436 0.706778i \(-0.750148\pi\)
−0.707436 + 0.706778i \(0.750148\pi\)
\(422\) 0 0
\(423\) 0.833952 0.0405482
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 23.6494 1.14447
\(428\) 0 0
\(429\) −2.72038 −0.131341
\(430\) 0 0
\(431\) −6.64217 −0.319942 −0.159971 0.987122i \(-0.551140\pi\)
−0.159971 + 0.987122i \(0.551140\pi\)
\(432\) 0 0
\(433\) 23.9576 1.15133 0.575663 0.817687i \(-0.304744\pi\)
0.575663 + 0.817687i \(0.304744\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.1879 1.25274
\(438\) 0 0
\(439\) −14.7719 −0.705022 −0.352511 0.935808i \(-0.614672\pi\)
−0.352511 + 0.935808i \(0.614672\pi\)
\(440\) 0 0
\(441\) −11.2199 −0.534279
\(442\) 0 0
\(443\) −6.01027 −0.285557 −0.142778 0.989755i \(-0.545604\pi\)
−0.142778 + 0.989755i \(0.545604\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.41471 0.161510
\(448\) 0 0
\(449\) 13.0960 0.618037 0.309018 0.951056i \(-0.400000\pi\)
0.309018 + 0.951056i \(0.400000\pi\)
\(450\) 0 0
\(451\) −3.83721 −0.180687
\(452\) 0 0
\(453\) 8.50301 0.399506
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.1969 1.41255 0.706275 0.707938i \(-0.250374\pi\)
0.706275 + 0.707938i \(0.250374\pi\)
\(458\) 0 0
\(459\) 20.6496 0.963842
\(460\) 0 0
\(461\) −8.78242 −0.409038 −0.204519 0.978863i \(-0.565563\pi\)
−0.204519 + 0.978863i \(0.565563\pi\)
\(462\) 0 0
\(463\) 33.7175 1.56699 0.783493 0.621401i \(-0.213436\pi\)
0.783493 + 0.621401i \(0.213436\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.9838 0.924739 0.462370 0.886687i \(-0.346999\pi\)
0.462370 + 0.886687i \(0.346999\pi\)
\(468\) 0 0
\(469\) 22.2019 1.02519
\(470\) 0 0
\(471\) −13.2844 −0.612112
\(472\) 0 0
\(473\) −3.39068 −0.155904
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6703 0.488562
\(478\) 0 0
\(479\) −15.2093 −0.694930 −0.347465 0.937693i \(-0.612957\pi\)
−0.347465 + 0.937693i \(0.612957\pi\)
\(480\) 0 0
\(481\) −2.62477 −0.119679
\(482\) 0 0
\(483\) −7.44157 −0.338603
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −25.9309 −1.17504 −0.587520 0.809210i \(-0.699896\pi\)
−0.587520 + 0.809210i \(0.699896\pi\)
\(488\) 0 0
\(489\) 13.4182 0.606792
\(490\) 0 0
\(491\) 43.0917 1.94470 0.972351 0.233523i \(-0.0750254\pi\)
0.972351 + 0.233523i \(0.0750254\pi\)
\(492\) 0 0
\(493\) 5.53382 0.249231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 52.3452 2.34800
\(498\) 0 0
\(499\) 15.1581 0.678568 0.339284 0.940684i \(-0.389815\pi\)
0.339284 + 0.940684i \(0.389815\pi\)
\(500\) 0 0
\(501\) −1.57755 −0.0704796
\(502\) 0 0
\(503\) −17.7730 −0.792461 −0.396230 0.918151i \(-0.629682\pi\)
−0.396230 + 0.918151i \(0.629682\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.28420 −0.279091
\(508\) 0 0
\(509\) 13.7177 0.608029 0.304014 0.952667i \(-0.401673\pi\)
0.304014 + 0.952667i \(0.401673\pi\)
\(510\) 0 0
\(511\) −18.3467 −0.811611
\(512\) 0 0
\(513\) 29.8292 1.31699
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.692262 −0.0304456
\(518\) 0 0
\(519\) −9.96775 −0.437536
\(520\) 0 0
\(521\) −28.4327 −1.24566 −0.622830 0.782357i \(-0.714017\pi\)
−0.622830 + 0.782357i \(0.714017\pi\)
\(522\) 0 0
\(523\) 16.0837 0.703289 0.351645 0.936134i \(-0.385623\pi\)
0.351645 + 0.936134i \(0.385623\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 56.9059 2.47886
\(528\) 0 0
\(529\) −12.2677 −0.533378
\(530\) 0 0
\(531\) 8.43004 0.365833
\(532\) 0 0
\(533\) 3.47021 0.150311
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.11915 −0.177754
\(538\) 0 0
\(539\) 9.31357 0.401164
\(540\) 0 0
\(541\) −26.5985 −1.14356 −0.571779 0.820408i \(-0.693747\pi\)
−0.571779 + 0.820408i \(0.693747\pi\)
\(542\) 0 0
\(543\) −12.4340 −0.533595
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −10.6965 −0.457350 −0.228675 0.973503i \(-0.573439\pi\)
−0.228675 + 0.973503i \(0.573439\pi\)
\(548\) 0 0
\(549\) −17.8406 −0.761420
\(550\) 0 0
\(551\) 7.99382 0.340548
\(552\) 0 0
\(553\) 9.21310 0.391781
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −40.1771 −1.70236 −0.851179 0.524876i \(-0.824112\pi\)
−0.851179 + 0.524876i \(0.824112\pi\)
\(558\) 0 0
\(559\) 3.06639 0.129694
\(560\) 0 0
\(561\) −7.87159 −0.332339
\(562\) 0 0
\(563\) 22.8080 0.961243 0.480622 0.876928i \(-0.340411\pi\)
0.480622 + 0.876928i \(0.340411\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 17.3330 0.727917
\(568\) 0 0
\(569\) −0.554721 −0.0232551 −0.0116275 0.999932i \(-0.503701\pi\)
−0.0116275 + 0.999932i \(0.503701\pi\)
\(570\) 0 0
\(571\) −10.8977 −0.456055 −0.228028 0.973655i \(-0.573228\pi\)
−0.228028 + 0.973655i \(0.573228\pi\)
\(572\) 0 0
\(573\) 8.17834 0.341655
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −36.1882 −1.50653 −0.753267 0.657715i \(-0.771523\pi\)
−0.753267 + 0.657715i \(0.771523\pi\)
\(578\) 0 0
\(579\) −13.2062 −0.548829
\(580\) 0 0
\(581\) −50.6446 −2.10109
\(582\) 0 0
\(583\) −8.85743 −0.366837
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.6509 0.439609 0.219805 0.975544i \(-0.429458\pi\)
0.219805 + 0.975544i \(0.429458\pi\)
\(588\) 0 0
\(589\) 82.2028 3.38711
\(590\) 0 0
\(591\) 11.4791 0.472187
\(592\) 0 0
\(593\) 43.0193 1.76659 0.883296 0.468815i \(-0.155319\pi\)
0.883296 + 0.468815i \(0.155319\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15.3812 −0.629511
\(598\) 0 0
\(599\) −4.72552 −0.193080 −0.0965398 0.995329i \(-0.530777\pi\)
−0.0965398 + 0.995329i \(0.530777\pi\)
\(600\) 0 0
\(601\) −24.7076 −1.00784 −0.503921 0.863750i \(-0.668110\pi\)
−0.503921 + 0.863750i \(0.668110\pi\)
\(602\) 0 0
\(603\) −16.7487 −0.682059
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −15.0370 −0.610331 −0.305166 0.952299i \(-0.598712\pi\)
−0.305166 + 0.952299i \(0.598712\pi\)
\(608\) 0 0
\(609\) −2.27153 −0.0920469
\(610\) 0 0
\(611\) 0.626052 0.0253273
\(612\) 0 0
\(613\) −22.1098 −0.893007 −0.446504 0.894782i \(-0.647331\pi\)
−0.446504 + 0.894782i \(0.647331\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −32.9264 −1.32557 −0.662783 0.748811i \(-0.730625\pi\)
−0.662783 + 0.748811i \(0.730625\pi\)
\(618\) 0 0
\(619\) −2.81002 −0.112944 −0.0564721 0.998404i \(-0.517985\pi\)
−0.0564721 + 0.998404i \(0.517985\pi\)
\(620\) 0 0
\(621\) 12.2246 0.490555
\(622\) 0 0
\(623\) 42.5663 1.70538
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −11.3708 −0.454107
\(628\) 0 0
\(629\) −7.59495 −0.302830
\(630\) 0 0
\(631\) 5.73420 0.228275 0.114137 0.993465i \(-0.463590\pi\)
0.114137 + 0.993465i \(0.463590\pi\)
\(632\) 0 0
\(633\) 12.2644 0.487468
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.42279 −0.333723
\(638\) 0 0
\(639\) −39.4882 −1.56213
\(640\) 0 0
\(641\) −12.3873 −0.489270 −0.244635 0.969615i \(-0.578668\pi\)
−0.244635 + 0.969615i \(0.578668\pi\)
\(642\) 0 0
\(643\) 46.2926 1.82560 0.912801 0.408404i \(-0.133915\pi\)
0.912801 + 0.408404i \(0.133915\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −47.7387 −1.87680 −0.938400 0.345551i \(-0.887692\pi\)
−0.938400 + 0.345551i \(0.887692\pi\)
\(648\) 0 0
\(649\) −6.99776 −0.274686
\(650\) 0 0
\(651\) −23.3588 −0.915502
\(652\) 0 0
\(653\) −0.227460 −0.00890118 −0.00445059 0.999990i \(-0.501417\pi\)
−0.00445059 + 0.999990i \(0.501417\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.8404 0.539966
\(658\) 0 0
\(659\) −19.8569 −0.773513 −0.386757 0.922182i \(-0.626405\pi\)
−0.386757 + 0.922182i \(0.626405\pi\)
\(660\) 0 0
\(661\) −25.7959 −1.00334 −0.501671 0.865058i \(-0.667281\pi\)
−0.501671 + 0.865058i \(0.667281\pi\)
\(662\) 0 0
\(663\) 7.11873 0.276468
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.27602 0.126848
\(668\) 0 0
\(669\) −2.35680 −0.0911193
\(670\) 0 0
\(671\) 14.8095 0.571713
\(672\) 0 0
\(673\) 39.4615 1.52113 0.760564 0.649263i \(-0.224923\pi\)
0.760564 + 0.649263i \(0.224923\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.31980 0.0507241 0.0253621 0.999678i \(-0.491926\pi\)
0.0253621 + 0.999678i \(0.491926\pi\)
\(678\) 0 0
\(679\) 2.87701 0.110410
\(680\) 0 0
\(681\) 8.79304 0.336950
\(682\) 0 0
\(683\) 6.48925 0.248304 0.124152 0.992263i \(-0.460379\pi\)
0.124152 + 0.992263i \(0.460379\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.5654 0.403095
\(688\) 0 0
\(689\) 8.01028 0.305167
\(690\) 0 0
\(691\) −18.6676 −0.710150 −0.355075 0.934838i \(-0.615545\pi\)
−0.355075 + 0.934838i \(0.615545\pi\)
\(692\) 0 0
\(693\) −18.1931 −0.691098
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.0413 0.380340
\(698\) 0 0
\(699\) 4.00961 0.151657
\(700\) 0 0
\(701\) 7.90767 0.298669 0.149334 0.988787i \(-0.452287\pi\)
0.149334 + 0.988787i \(0.452287\pi\)
\(702\) 0 0
\(703\) −10.9712 −0.413787
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 58.9362 2.21652
\(708\) 0 0
\(709\) 24.1817 0.908163 0.454082 0.890960i \(-0.349967\pi\)
0.454082 + 0.890960i \(0.349967\pi\)
\(710\) 0 0
\(711\) −6.95019 −0.260652
\(712\) 0 0
\(713\) 33.6883 1.26164
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3.50220 −0.130792
\(718\) 0 0
\(719\) 43.1372 1.60875 0.804374 0.594123i \(-0.202501\pi\)
0.804374 + 0.594123i \(0.202501\pi\)
\(720\) 0 0
\(721\) −36.1175 −1.34509
\(722\) 0 0
\(723\) −6.13628 −0.228211
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −40.6603 −1.50801 −0.754004 0.656870i \(-0.771880\pi\)
−0.754004 + 0.656870i \(0.771880\pi\)
\(728\) 0 0
\(729\) −5.54568 −0.205396
\(730\) 0 0
\(731\) 8.87280 0.328172
\(732\) 0 0
\(733\) 24.1828 0.893211 0.446606 0.894731i \(-0.352633\pi\)
0.446606 + 0.894731i \(0.352633\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.9030 0.512125
\(738\) 0 0
\(739\) 30.4007 1.11831 0.559153 0.829064i \(-0.311126\pi\)
0.559153 + 0.829064i \(0.311126\pi\)
\(740\) 0 0
\(741\) 10.2833 0.377766
\(742\) 0 0
\(743\) −24.6273 −0.903488 −0.451744 0.892148i \(-0.649198\pi\)
−0.451744 + 0.892148i \(0.649198\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 38.2053 1.39786
\(748\) 0 0
\(749\) −69.5310 −2.54061
\(750\) 0 0
\(751\) −4.60339 −0.167980 −0.0839901 0.996467i \(-0.526766\pi\)
−0.0839901 + 0.996467i \(0.526766\pi\)
\(752\) 0 0
\(753\) −16.0317 −0.584226
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −36.2417 −1.31723 −0.658613 0.752482i \(-0.728856\pi\)
−0.658613 + 0.752482i \(0.728856\pi\)
\(758\) 0 0
\(759\) −4.65998 −0.169147
\(760\) 0 0
\(761\) 31.3704 1.13718 0.568588 0.822623i \(-0.307490\pi\)
0.568588 + 0.822623i \(0.307490\pi\)
\(762\) 0 0
\(763\) 3.28411 0.118893
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.32847 0.228508
\(768\) 0 0
\(769\) −1.33146 −0.0480135 −0.0240068 0.999712i \(-0.507642\pi\)
−0.0240068 + 0.999712i \(0.507642\pi\)
\(770\) 0 0
\(771\) 5.91589 0.213056
\(772\) 0 0
\(773\) 32.9499 1.18513 0.592563 0.805524i \(-0.298116\pi\)
0.592563 + 0.805524i \(0.298116\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.11758 0.111843
\(778\) 0 0
\(779\) 14.5050 0.519696
\(780\) 0 0
\(781\) 32.7791 1.17293
\(782\) 0 0
\(783\) 3.73153 0.133354
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.27094 −0.330473 −0.165237 0.986254i \(-0.552839\pi\)
−0.165237 + 0.986254i \(0.552839\pi\)
\(788\) 0 0
\(789\) 11.4774 0.408607
\(790\) 0 0
\(791\) 42.9528 1.52722
\(792\) 0 0
\(793\) −13.3930 −0.475601
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.1758 1.21057 0.605285 0.796009i \(-0.293059\pi\)
0.605285 + 0.796009i \(0.293059\pi\)
\(798\) 0 0
\(799\) 1.81152 0.0640871
\(800\) 0 0
\(801\) −32.1112 −1.13459
\(802\) 0 0
\(803\) −11.4889 −0.405434
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.2108 0.429839
\(808\) 0 0
\(809\) 20.0891 0.706294 0.353147 0.935568i \(-0.385111\pi\)
0.353147 + 0.935568i \(0.385111\pi\)
\(810\) 0 0
\(811\) −8.35300 −0.293314 −0.146657 0.989187i \(-0.546851\pi\)
−0.146657 + 0.989187i \(0.546851\pi\)
\(812\) 0 0
\(813\) −8.87911 −0.311404
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.8171 0.448414
\(818\) 0 0
\(819\) 16.4530 0.574915
\(820\) 0 0
\(821\) −5.83477 −0.203635 −0.101817 0.994803i \(-0.532466\pi\)
−0.101817 + 0.994803i \(0.532466\pi\)
\(822\) 0 0
\(823\) −0.662009 −0.0230762 −0.0115381 0.999933i \(-0.503673\pi\)
−0.0115381 + 0.999933i \(0.503673\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.7516 1.48662 0.743310 0.668947i \(-0.233255\pi\)
0.743310 + 0.668947i \(0.233255\pi\)
\(828\) 0 0
\(829\) 24.2593 0.842562 0.421281 0.906930i \(-0.361581\pi\)
0.421281 + 0.906930i \(0.361581\pi\)
\(830\) 0 0
\(831\) −10.6062 −0.367926
\(832\) 0 0
\(833\) −24.3719 −0.844437
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.3724 1.32634
\(838\) 0 0
\(839\) −16.5618 −0.571777 −0.285889 0.958263i \(-0.592289\pi\)
−0.285889 + 0.958263i \(0.592289\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −0.750000 −0.0258314
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −22.0451 −0.757477
\(848\) 0 0
\(849\) −11.9369 −0.409672
\(850\) 0 0
\(851\) −4.49621 −0.154128
\(852\) 0 0
\(853\) −2.34257 −0.0802081 −0.0401041 0.999196i \(-0.512769\pi\)
−0.0401041 + 0.999196i \(0.512769\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −55.3020 −1.88908 −0.944540 0.328397i \(-0.893492\pi\)
−0.944540 + 0.328397i \(0.893492\pi\)
\(858\) 0 0
\(859\) 44.9751 1.53453 0.767266 0.641329i \(-0.221617\pi\)
0.767266 + 0.641329i \(0.221617\pi\)
\(860\) 0 0
\(861\) −4.12175 −0.140469
\(862\) 0 0
\(863\) −48.3195 −1.64481 −0.822407 0.568900i \(-0.807369\pi\)
−0.822407 + 0.568900i \(0.807369\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 9.16356 0.311211
\(868\) 0 0
\(869\) 5.76933 0.195711
\(870\) 0 0
\(871\) −12.5733 −0.426030
\(872\) 0 0
\(873\) −2.17036 −0.0734556
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −56.1140 −1.89483 −0.947417 0.320001i \(-0.896317\pi\)
−0.947417 + 0.320001i \(0.896317\pi\)
\(878\) 0 0
\(879\) 0.970867 0.0327465
\(880\) 0 0
\(881\) 58.1133 1.95789 0.978944 0.204129i \(-0.0654361\pi\)
0.978944 + 0.204129i \(0.0654361\pi\)
\(882\) 0 0
\(883\) 21.9911 0.740061 0.370030 0.929020i \(-0.379347\pi\)
0.370030 + 0.929020i \(0.379347\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.1035 0.439973 0.219986 0.975503i \(-0.429399\pi\)
0.219986 + 0.975503i \(0.429399\pi\)
\(888\) 0 0
\(889\) 51.3428 1.72198
\(890\) 0 0
\(891\) 10.8541 0.363626
\(892\) 0 0
\(893\) 2.61682 0.0875685
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.21429 0.140711
\(898\) 0 0
\(899\) 10.2833 0.342967
\(900\) 0 0
\(901\) 23.1783 0.772180
\(902\) 0 0
\(903\) −3.64211 −0.121202
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 51.7491 1.71830 0.859150 0.511724i \(-0.170993\pi\)
0.859150 + 0.511724i \(0.170993\pi\)
\(908\) 0 0
\(909\) −44.4603 −1.47466
\(910\) 0 0
\(911\) −28.9974 −0.960726 −0.480363 0.877070i \(-0.659495\pi\)
−0.480363 + 0.877070i \(0.659495\pi\)
\(912\) 0 0
\(913\) −31.7141 −1.04958
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.3889 0.673299
\(918\) 0 0
\(919\) 25.0943 0.827784 0.413892 0.910326i \(-0.364169\pi\)
0.413892 + 0.910326i \(0.364169\pi\)
\(920\) 0 0
\(921\) −3.59458 −0.118445
\(922\) 0 0
\(923\) −29.6440 −0.975743
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 27.2464 0.894888
\(928\) 0 0
\(929\) 50.3675 1.65250 0.826251 0.563301i \(-0.190469\pi\)
0.826251 + 0.563301i \(0.190469\pi\)
\(930\) 0 0
\(931\) −35.2062 −1.15384
\(932\) 0 0
\(933\) 16.5897 0.543124
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −39.2746 −1.28304 −0.641522 0.767104i \(-0.721697\pi\)
−0.641522 + 0.767104i \(0.721697\pi\)
\(938\) 0 0
\(939\) −22.8555 −0.745862
\(940\) 0 0
\(941\) 4.60332 0.150064 0.0750320 0.997181i \(-0.476094\pi\)
0.0750320 + 0.997181i \(0.476094\pi\)
\(942\) 0 0
\(943\) 5.94443 0.193577
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.40704 0.0457226 0.0228613 0.999739i \(-0.492722\pi\)
0.0228613 + 0.999739i \(0.492722\pi\)
\(948\) 0 0
\(949\) 10.3901 0.337275
\(950\) 0 0
\(951\) −6.78536 −0.220030
\(952\) 0 0
\(953\) 45.4121 1.47104 0.735521 0.677502i \(-0.236938\pi\)
0.735521 + 0.677502i \(0.236938\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.42245 −0.0459813
\(958\) 0 0
\(959\) −52.3102 −1.68918
\(960\) 0 0
\(961\) 74.7460 2.41116
\(962\) 0 0
\(963\) 52.4528 1.69027
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.6658 0.407305 0.203652 0.979043i \(-0.434719\pi\)
0.203652 + 0.979043i \(0.434719\pi\)
\(968\) 0 0
\(969\) 29.7554 0.955881
\(970\) 0 0
\(971\) −24.5447 −0.787676 −0.393838 0.919180i \(-0.628853\pi\)
−0.393838 + 0.919180i \(0.628853\pi\)
\(972\) 0 0
\(973\) 7.07951 0.226959
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.3008 −0.809444 −0.404722 0.914440i \(-0.632632\pi\)
−0.404722 + 0.914440i \(0.632632\pi\)
\(978\) 0 0
\(979\) 26.6554 0.851912
\(980\) 0 0
\(981\) −2.47747 −0.0790994
\(982\) 0 0
\(983\) 25.1822 0.803188 0.401594 0.915818i \(-0.368456\pi\)
0.401594 + 0.915818i \(0.368456\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.743596 −0.0236689
\(988\) 0 0
\(989\) 5.25269 0.167026
\(990\) 0 0
\(991\) 13.0936 0.415933 0.207967 0.978136i \(-0.433315\pi\)
0.207967 + 0.978136i \(0.433315\pi\)
\(992\) 0 0
\(993\) −11.0240 −0.349837
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −31.0809 −0.984341 −0.492171 0.870499i \(-0.663796\pi\)
−0.492171 + 0.870499i \(0.663796\pi\)
\(998\) 0 0
\(999\) −5.12138 −0.162033
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.a.i.1.4 5
5.2 odd 4 2900.2.c.i.349.4 10
5.3 odd 4 2900.2.c.i.349.7 10
5.4 even 2 2900.2.a.k.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2900.2.a.i.1.4 5 1.1 even 1 trivial
2900.2.a.k.1.2 yes 5 5.4 even 2
2900.2.c.i.349.4 10 5.2 odd 4
2900.2.c.i.349.7 10 5.3 odd 4