Properties

Label 2900.2.c.i.349.4
Level $2900$
Weight $2$
Character 2900.349
Analytic conductor $23.157$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2900,2,Mod(349,2900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2900.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 18x^{8} + 99x^{6} + 163x^{4} + 75x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.4
Root \(-0.672645i\) of defining polynomial
Character \(\chi\) \(=\) 2900.349
Dual form 2900.2.c.i.349.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.672645i q^{3} +3.37701i q^{7} +2.54755 q^{9} +2.11471 q^{11} +1.91246i q^{13} -5.53382i q^{17} +7.99382 q^{19} +2.27153 q^{21} +3.27602i q^{23} -3.73153i q^{27} +1.00000 q^{29} -10.2833 q^{31} -1.42245i q^{33} +1.37246i q^{37} +1.28640 q^{39} -1.81453 q^{41} +1.60338i q^{43} -0.327355i q^{47} -4.40418 q^{49} -3.72230 q^{51} +4.18848i q^{53} -5.37701i q^{57} +3.30908 q^{59} +7.00306 q^{61} +8.60309i q^{63} +6.57443i q^{67} +2.20360 q^{69} +15.5005 q^{71} +5.43283i q^{73} +7.14140i q^{77} -2.72819 q^{79} +5.13265 q^{81} +14.9969i q^{83} -0.672645i q^{87} -12.6048 q^{89} -6.45838 q^{91} +6.91700i q^{93} +0.851941i q^{97} +5.38734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{9} + 8 q^{11} + 8 q^{19} + 6 q^{21} + 10 q^{29} + 6 q^{31} + 36 q^{39} + 10 q^{41} + 6 q^{49} + 18 q^{51} + 46 q^{59} + 10 q^{61} + 60 q^{69} + 46 q^{71} - 8 q^{79} + 18 q^{81} + 12 q^{89} + 54 q^{91}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.672645i − 0.388352i −0.980967 0.194176i \(-0.937797\pi\)
0.980967 0.194176i \(-0.0622033\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.37701i 1.27639i 0.769875 + 0.638194i \(0.220318\pi\)
−0.769875 + 0.638194i \(0.779682\pi\)
\(8\) 0 0
\(9\) 2.54755 0.849183
\(10\) 0 0
\(11\) 2.11471 0.637610 0.318805 0.947820i \(-0.396718\pi\)
0.318805 + 0.947820i \(0.396718\pi\)
\(12\) 0 0
\(13\) 1.91246i 0.530420i 0.964191 + 0.265210i \(0.0854412\pi\)
−0.964191 + 0.265210i \(0.914559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.53382i − 1.34215i −0.741390 0.671074i \(-0.765833\pi\)
0.741390 0.671074i \(-0.234167\pi\)
\(18\) 0 0
\(19\) 7.99382 1.83391 0.916955 0.398992i \(-0.130640\pi\)
0.916955 + 0.398992i \(0.130640\pi\)
\(20\) 0 0
\(21\) 2.27153 0.495688
\(22\) 0 0
\(23\) 3.27602i 0.683098i 0.939864 + 0.341549i \(0.110951\pi\)
−0.939864 + 0.341549i \(0.889049\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 3.73153i − 0.718134i
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −10.2833 −1.84693 −0.923466 0.383679i \(-0.874657\pi\)
−0.923466 + 0.383679i \(0.874657\pi\)
\(32\) 0 0
\(33\) − 1.42245i − 0.247617i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.37246i 0.225631i 0.993616 + 0.112815i \(0.0359869\pi\)
−0.993616 + 0.112815i \(0.964013\pi\)
\(38\) 0 0
\(39\) 1.28640 0.205989
\(40\) 0 0
\(41\) −1.81453 −0.283382 −0.141691 0.989911i \(-0.545254\pi\)
−0.141691 + 0.989911i \(0.545254\pi\)
\(42\) 0 0
\(43\) 1.60338i 0.244513i 0.992499 + 0.122256i \(0.0390130\pi\)
−0.992499 + 0.122256i \(0.960987\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 0.327355i − 0.0477496i −0.999715 0.0238748i \(-0.992400\pi\)
0.999715 0.0238748i \(-0.00760031\pi\)
\(48\) 0 0
\(49\) −4.40418 −0.629168
\(50\) 0 0
\(51\) −3.72230 −0.521226
\(52\) 0 0
\(53\) 4.18848i 0.575332i 0.957731 + 0.287666i \(0.0928792\pi\)
−0.957731 + 0.287666i \(0.907121\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 5.37701i − 0.712202i
\(58\) 0 0
\(59\) 3.30908 0.430805 0.215403 0.976525i \(-0.430894\pi\)
0.215403 + 0.976525i \(0.430894\pi\)
\(60\) 0 0
\(61\) 7.00306 0.896650 0.448325 0.893871i \(-0.352021\pi\)
0.448325 + 0.893871i \(0.352021\pi\)
\(62\) 0 0
\(63\) 8.60309i 1.08389i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.57443i 0.803195i 0.915816 + 0.401597i \(0.131545\pi\)
−0.915816 + 0.401597i \(0.868455\pi\)
\(68\) 0 0
\(69\) 2.20360 0.265282
\(70\) 0 0
\(71\) 15.5005 1.83957 0.919784 0.392425i \(-0.128364\pi\)
0.919784 + 0.392425i \(0.128364\pi\)
\(72\) 0 0
\(73\) 5.43283i 0.635865i 0.948113 + 0.317933i \(0.102989\pi\)
−0.948113 + 0.317933i \(0.897011\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.14140i 0.813838i
\(78\) 0 0
\(79\) −2.72819 −0.306945 −0.153472 0.988153i \(-0.549046\pi\)
−0.153472 + 0.988153i \(0.549046\pi\)
\(80\) 0 0
\(81\) 5.13265 0.570294
\(82\) 0 0
\(83\) 14.9969i 1.64612i 0.567953 + 0.823061i \(0.307735\pi\)
−0.567953 + 0.823061i \(0.692265\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 0.672645i − 0.0721151i
\(88\) 0 0
\(89\) −12.6048 −1.33610 −0.668051 0.744116i \(-0.732871\pi\)
−0.668051 + 0.744116i \(0.732871\pi\)
\(90\) 0 0
\(91\) −6.45838 −0.677022
\(92\) 0 0
\(93\) 6.91700i 0.717260i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.851941i 0.0865015i 0.999064 + 0.0432508i \(0.0137714\pi\)
−0.999064 + 0.0432508i \(0.986229\pi\)
\(98\) 0 0
\(99\) 5.38734 0.541448
\(100\) 0 0
\(101\) 17.4522 1.73656 0.868279 0.496075i \(-0.165226\pi\)
0.868279 + 0.496075i \(0.165226\pi\)
\(102\) 0 0
\(103\) 10.6951i 1.05382i 0.849920 + 0.526911i \(0.176650\pi\)
−0.849920 + 0.526911i \(0.823350\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 20.5895i − 1.99047i −0.0975276 0.995233i \(-0.531093\pi\)
0.0975276 0.995233i \(-0.468907\pi\)
\(108\) 0 0
\(109\) −0.972490 −0.0931477 −0.0465738 0.998915i \(-0.514830\pi\)
−0.0465738 + 0.998915i \(0.514830\pi\)
\(110\) 0 0
\(111\) 0.923178 0.0876242
\(112\) 0 0
\(113\) − 12.7192i − 1.19652i −0.801302 0.598260i \(-0.795859\pi\)
0.801302 0.598260i \(-0.204141\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.87207i 0.450423i
\(118\) 0 0
\(119\) 18.6878 1.71310
\(120\) 0 0
\(121\) −6.52799 −0.593453
\(122\) 0 0
\(123\) 1.22053i 0.110052i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.2036i 1.34910i 0.738227 + 0.674552i \(0.235663\pi\)
−0.738227 + 0.674552i \(0.764337\pi\)
\(128\) 0 0
\(129\) 1.07850 0.0949569
\(130\) 0 0
\(131\) 6.03755 0.527503 0.263752 0.964591i \(-0.415040\pi\)
0.263752 + 0.964591i \(0.415040\pi\)
\(132\) 0 0
\(133\) 26.9952i 2.34078i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15.4901i − 1.32341i −0.749765 0.661704i \(-0.769834\pi\)
0.749765 0.661704i \(-0.230166\pi\)
\(138\) 0 0
\(139\) −2.09639 −0.177813 −0.0889065 0.996040i \(-0.528337\pi\)
−0.0889065 + 0.996040i \(0.528337\pi\)
\(140\) 0 0
\(141\) −0.220194 −0.0185437
\(142\) 0 0
\(143\) 4.04430i 0.338201i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.96245i 0.244339i
\(148\) 0 0
\(149\) −5.07653 −0.415886 −0.207943 0.978141i \(-0.566677\pi\)
−0.207943 + 0.978141i \(0.566677\pi\)
\(150\) 0 0
\(151\) 12.6412 1.02872 0.514361 0.857574i \(-0.328029\pi\)
0.514361 + 0.857574i \(0.328029\pi\)
\(152\) 0 0
\(153\) − 14.0977i − 1.13973i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 19.7495i − 1.57618i −0.615561 0.788090i \(-0.711070\pi\)
0.615561 0.788090i \(-0.288930\pi\)
\(158\) 0 0
\(159\) 2.81736 0.223431
\(160\) 0 0
\(161\) −11.0631 −0.871898
\(162\) 0 0
\(163\) − 19.9484i − 1.56248i −0.624230 0.781240i \(-0.714587\pi\)
0.624230 0.781240i \(-0.285413\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2.34529i − 0.181484i −0.995874 0.0907420i \(-0.971076\pi\)
0.995874 0.0907420i \(-0.0289239\pi\)
\(168\) 0 0
\(169\) 9.34251 0.718655
\(170\) 0 0
\(171\) 20.3647 1.55732
\(172\) 0 0
\(173\) 14.8187i 1.12665i 0.826236 + 0.563324i \(0.190478\pi\)
−0.826236 + 0.563324i \(0.809522\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2.22584i − 0.167304i
\(178\) 0 0
\(179\) 6.12381 0.457715 0.228857 0.973460i \(-0.426501\pi\)
0.228857 + 0.973460i \(0.426501\pi\)
\(180\) 0 0
\(181\) −18.4853 −1.37400 −0.686999 0.726658i \(-0.741072\pi\)
−0.686999 + 0.726658i \(0.741072\pi\)
\(182\) 0 0
\(183\) − 4.71057i − 0.348216i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 11.7024i − 0.855768i
\(188\) 0 0
\(189\) 12.6014 0.916618
\(190\) 0 0
\(191\) 12.1585 0.879757 0.439878 0.898057i \(-0.355022\pi\)
0.439878 + 0.898057i \(0.355022\pi\)
\(192\) 0 0
\(193\) 19.6332i 1.41323i 0.707600 + 0.706614i \(0.249778\pi\)
−0.707600 + 0.706614i \(0.750222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.0656i 1.21588i 0.793985 + 0.607938i \(0.208003\pi\)
−0.793985 + 0.607938i \(0.791997\pi\)
\(198\) 0 0
\(199\) 22.8668 1.62098 0.810491 0.585751i \(-0.199200\pi\)
0.810491 + 0.585751i \(0.199200\pi\)
\(200\) 0 0
\(201\) 4.42226 0.311922
\(202\) 0 0
\(203\) 3.37701i 0.237019i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.34582i 0.580075i
\(208\) 0 0
\(209\) 16.9047 1.16932
\(210\) 0 0
\(211\) 18.2332 1.25522 0.627611 0.778527i \(-0.284033\pi\)
0.627611 + 0.778527i \(0.284033\pi\)
\(212\) 0 0
\(213\) − 10.4263i − 0.714400i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 34.7267i − 2.35740i
\(218\) 0 0
\(219\) 3.65437 0.246939
\(220\) 0 0
\(221\) 10.5832 0.711902
\(222\) 0 0
\(223\) 3.50379i 0.234631i 0.993095 + 0.117315i \(0.0374288\pi\)
−0.993095 + 0.117315i \(0.962571\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.0723i 0.867641i 0.900999 + 0.433820i \(0.142835\pi\)
−0.900999 + 0.433820i \(0.857165\pi\)
\(228\) 0 0
\(229\) −15.7072 −1.03796 −0.518981 0.854786i \(-0.673689\pi\)
−0.518981 + 0.854786i \(0.673689\pi\)
\(230\) 0 0
\(231\) 4.80363 0.316056
\(232\) 0 0
\(233\) − 5.96096i − 0.390515i −0.980752 0.195258i \(-0.937446\pi\)
0.980752 0.195258i \(-0.0625543\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.83510i 0.119203i
\(238\) 0 0
\(239\) 5.20661 0.336787 0.168394 0.985720i \(-0.446142\pi\)
0.168394 + 0.985720i \(0.446142\pi\)
\(240\) 0 0
\(241\) −9.12261 −0.587639 −0.293819 0.955861i \(-0.594926\pi\)
−0.293819 + 0.955861i \(0.594926\pi\)
\(242\) 0 0
\(243\) − 14.6470i − 0.939608i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 15.2878i 0.972742i
\(248\) 0 0
\(249\) 10.0876 0.639274
\(250\) 0 0
\(251\) −23.8338 −1.50437 −0.752187 0.658950i \(-0.771001\pi\)
−0.752187 + 0.658950i \(0.771001\pi\)
\(252\) 0 0
\(253\) 6.92785i 0.435550i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.79497i 0.548615i 0.961642 + 0.274307i \(0.0884486\pi\)
−0.961642 + 0.274307i \(0.911551\pi\)
\(258\) 0 0
\(259\) −4.63481 −0.287993
\(260\) 0 0
\(261\) 2.54755 0.157689
\(262\) 0 0
\(263\) − 17.0631i − 1.05216i −0.850436 0.526079i \(-0.823662\pi\)
0.850436 0.526079i \(-0.176338\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.47853i 0.518877i
\(268\) 0 0
\(269\) −18.1534 −1.10683 −0.553415 0.832906i \(-0.686676\pi\)
−0.553415 + 0.832906i \(0.686676\pi\)
\(270\) 0 0
\(271\) −13.2003 −0.801861 −0.400930 0.916109i \(-0.631313\pi\)
−0.400930 + 0.916109i \(0.631313\pi\)
\(272\) 0 0
\(273\) 4.34420i 0.262923i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 15.7679i − 0.947403i −0.880685 0.473702i \(-0.842917\pi\)
0.880685 0.473702i \(-0.157083\pi\)
\(278\) 0 0
\(279\) −26.1972 −1.56838
\(280\) 0 0
\(281\) −1.11500 −0.0665154 −0.0332577 0.999447i \(-0.510588\pi\)
−0.0332577 + 0.999447i \(0.510588\pi\)
\(282\) 0 0
\(283\) 17.7462i 1.05490i 0.849586 + 0.527450i \(0.176852\pi\)
−0.849586 + 0.527450i \(0.823148\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 6.12768i − 0.361705i
\(288\) 0 0
\(289\) −13.6232 −0.801363
\(290\) 0 0
\(291\) 0.573054 0.0335930
\(292\) 0 0
\(293\) − 1.44336i − 0.0843218i −0.999111 0.0421609i \(-0.986576\pi\)
0.999111 0.0421609i \(-0.0134242\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 7.89112i − 0.457889i
\(298\) 0 0
\(299\) −6.26525 −0.362328
\(300\) 0 0
\(301\) −5.41461 −0.312093
\(302\) 0 0
\(303\) − 11.7391i − 0.674396i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 5.34395i − 0.304995i −0.988304 0.152498i \(-0.951268\pi\)
0.988304 0.152498i \(-0.0487316\pi\)
\(308\) 0 0
\(309\) 7.19403 0.409254
\(310\) 0 0
\(311\) 24.6634 1.39854 0.699268 0.714860i \(-0.253509\pi\)
0.699268 + 0.714860i \(0.253509\pi\)
\(312\) 0 0
\(313\) 33.9786i 1.92058i 0.278998 + 0.960292i \(0.409998\pi\)
−0.278998 + 0.960292i \(0.590002\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 10.0876i − 0.566575i −0.959035 0.283287i \(-0.908575\pi\)
0.959035 0.283287i \(-0.0914251\pi\)
\(318\) 0 0
\(319\) 2.11471 0.118401
\(320\) 0 0
\(321\) −13.8495 −0.773001
\(322\) 0 0
\(323\) − 44.2364i − 2.46138i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.654141i 0.0361741i
\(328\) 0 0
\(329\) 1.10548 0.0609471
\(330\) 0 0
\(331\) −16.3891 −0.900824 −0.450412 0.892821i \(-0.648723\pi\)
−0.450412 + 0.892821i \(0.648723\pi\)
\(332\) 0 0
\(333\) 3.49641i 0.191602i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 18.3782i − 1.00112i −0.865700 0.500562i \(-0.833127\pi\)
0.865700 0.500562i \(-0.166873\pi\)
\(338\) 0 0
\(339\) −8.55549 −0.464671
\(340\) 0 0
\(341\) −21.7462 −1.17762
\(342\) 0 0
\(343\) 8.76611i 0.473326i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.6029i 0.783925i 0.919981 + 0.391962i \(0.128204\pi\)
−0.919981 + 0.391962i \(0.871796\pi\)
\(348\) 0 0
\(349\) −21.4716 −1.14935 −0.574675 0.818382i \(-0.694871\pi\)
−0.574675 + 0.818382i \(0.694871\pi\)
\(350\) 0 0
\(351\) 7.13639 0.380912
\(352\) 0 0
\(353\) 22.9674i 1.22243i 0.791465 + 0.611214i \(0.209319\pi\)
−0.791465 + 0.611214i \(0.790681\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 12.5702i − 0.665287i
\(358\) 0 0
\(359\) −1.62824 −0.0859351 −0.0429675 0.999076i \(-0.513681\pi\)
−0.0429675 + 0.999076i \(0.513681\pi\)
\(360\) 0 0
\(361\) 44.9012 2.36322
\(362\) 0 0
\(363\) 4.39102i 0.230469i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2.19451i − 0.114552i −0.998358 0.0572761i \(-0.981758\pi\)
0.998358 0.0572761i \(-0.0182415\pi\)
\(368\) 0 0
\(369\) −4.62260 −0.240643
\(370\) 0 0
\(371\) −14.1445 −0.734347
\(372\) 0 0
\(373\) − 6.00186i − 0.310764i −0.987854 0.155382i \(-0.950339\pi\)
0.987854 0.155382i \(-0.0496609\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.91246i 0.0984965i
\(378\) 0 0
\(379\) 0.966315 0.0496363 0.0248181 0.999692i \(-0.492099\pi\)
0.0248181 + 0.999692i \(0.492099\pi\)
\(380\) 0 0
\(381\) 10.2267 0.523927
\(382\) 0 0
\(383\) 11.6799i 0.596816i 0.954438 + 0.298408i \(0.0964555\pi\)
−0.954438 + 0.298408i \(0.903544\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.08468i 0.207636i
\(388\) 0 0
\(389\) 2.55610 0.129600 0.0647998 0.997898i \(-0.479359\pi\)
0.0647998 + 0.997898i \(0.479359\pi\)
\(390\) 0 0
\(391\) 18.1289 0.916819
\(392\) 0 0
\(393\) − 4.06113i − 0.204857i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.08996i 0.456212i 0.973636 + 0.228106i \(0.0732533\pi\)
−0.973636 + 0.228106i \(0.926747\pi\)
\(398\) 0 0
\(399\) 18.1582 0.909047
\(400\) 0 0
\(401\) 4.58696 0.229062 0.114531 0.993420i \(-0.463464\pi\)
0.114531 + 0.993420i \(0.463464\pi\)
\(402\) 0 0
\(403\) − 19.6663i − 0.979650i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.90236i 0.143865i
\(408\) 0 0
\(409\) 10.5214 0.520248 0.260124 0.965575i \(-0.416237\pi\)
0.260124 + 0.965575i \(0.416237\pi\)
\(410\) 0 0
\(411\) −10.4193 −0.513948
\(412\) 0 0
\(413\) 11.1748i 0.549875i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.41012i 0.0690540i
\(418\) 0 0
\(419\) −5.75688 −0.281242 −0.140621 0.990064i \(-0.544910\pi\)
−0.140621 + 0.990064i \(0.544910\pi\)
\(420\) 0 0
\(421\) −29.0307 −1.41487 −0.707436 0.706778i \(-0.750148\pi\)
−0.707436 + 0.706778i \(0.750148\pi\)
\(422\) 0 0
\(423\) − 0.833952i − 0.0405482i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 23.6494i 1.14447i
\(428\) 0 0
\(429\) 2.72038 0.131341
\(430\) 0 0
\(431\) −6.64217 −0.319942 −0.159971 0.987122i \(-0.551140\pi\)
−0.159971 + 0.987122i \(0.551140\pi\)
\(432\) 0 0
\(433\) − 23.9576i − 1.15133i −0.817687 0.575663i \(-0.804744\pi\)
0.817687 0.575663i \(-0.195256\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.1879i 1.25274i
\(438\) 0 0
\(439\) 14.7719 0.705022 0.352511 0.935808i \(-0.385328\pi\)
0.352511 + 0.935808i \(0.385328\pi\)
\(440\) 0 0
\(441\) −11.2199 −0.534279
\(442\) 0 0
\(443\) 6.01027i 0.285557i 0.989755 + 0.142778i \(0.0456036\pi\)
−0.989755 + 0.142778i \(0.954396\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.41471i 0.161510i
\(448\) 0 0
\(449\) −13.0960 −0.618037 −0.309018 0.951056i \(-0.600000\pi\)
−0.309018 + 0.951056i \(0.600000\pi\)
\(450\) 0 0
\(451\) −3.83721 −0.180687
\(452\) 0 0
\(453\) − 8.50301i − 0.399506i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.1969i 1.41255i 0.707938 + 0.706275i \(0.249626\pi\)
−0.707938 + 0.706275i \(0.750374\pi\)
\(458\) 0 0
\(459\) −20.6496 −0.963842
\(460\) 0 0
\(461\) −8.78242 −0.409038 −0.204519 0.978863i \(-0.565563\pi\)
−0.204519 + 0.978863i \(0.565563\pi\)
\(462\) 0 0
\(463\) − 33.7175i − 1.56699i −0.621401 0.783493i \(-0.713436\pi\)
0.621401 0.783493i \(-0.286564\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.9838i 0.924739i 0.886687 + 0.462370i \(0.153001\pi\)
−0.886687 + 0.462370i \(0.846999\pi\)
\(468\) 0 0
\(469\) −22.2019 −1.02519
\(470\) 0 0
\(471\) −13.2844 −0.612112
\(472\) 0 0
\(473\) 3.39068i 0.155904i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6703i 0.488562i
\(478\) 0 0
\(479\) 15.2093 0.694930 0.347465 0.937693i \(-0.387043\pi\)
0.347465 + 0.937693i \(0.387043\pi\)
\(480\) 0 0
\(481\) −2.62477 −0.119679
\(482\) 0 0
\(483\) 7.44157i 0.338603i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 25.9309i − 1.17504i −0.809210 0.587520i \(-0.800104\pi\)
0.809210 0.587520i \(-0.199896\pi\)
\(488\) 0 0
\(489\) −13.4182 −0.606792
\(490\) 0 0
\(491\) 43.0917 1.94470 0.972351 0.233523i \(-0.0750254\pi\)
0.972351 + 0.233523i \(0.0750254\pi\)
\(492\) 0 0
\(493\) − 5.53382i − 0.249231i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 52.3452i 2.34800i
\(498\) 0 0
\(499\) −15.1581 −0.678568 −0.339284 0.940684i \(-0.610185\pi\)
−0.339284 + 0.940684i \(0.610185\pi\)
\(500\) 0 0
\(501\) −1.57755 −0.0704796
\(502\) 0 0
\(503\) 17.7730i 0.792461i 0.918151 + 0.396230i \(0.129682\pi\)
−0.918151 + 0.396230i \(0.870318\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6.28420i − 0.279091i
\(508\) 0 0
\(509\) −13.7177 −0.608029 −0.304014 0.952667i \(-0.598327\pi\)
−0.304014 + 0.952667i \(0.598327\pi\)
\(510\) 0 0
\(511\) −18.3467 −0.811611
\(512\) 0 0
\(513\) − 29.8292i − 1.31699i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 0.692262i − 0.0304456i
\(518\) 0 0
\(519\) 9.96775 0.437536
\(520\) 0 0
\(521\) −28.4327 −1.24566 −0.622830 0.782357i \(-0.714017\pi\)
−0.622830 + 0.782357i \(0.714017\pi\)
\(522\) 0 0
\(523\) − 16.0837i − 0.703289i −0.936134 0.351645i \(-0.885623\pi\)
0.936134 0.351645i \(-0.114377\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 56.9059i 2.47886i
\(528\) 0 0
\(529\) 12.2677 0.533378
\(530\) 0 0
\(531\) 8.43004 0.365833
\(532\) 0 0
\(533\) − 3.47021i − 0.150311i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 4.11915i − 0.177754i
\(538\) 0 0
\(539\) −9.31357 −0.401164
\(540\) 0 0
\(541\) −26.5985 −1.14356 −0.571779 0.820408i \(-0.693747\pi\)
−0.571779 + 0.820408i \(0.693747\pi\)
\(542\) 0 0
\(543\) 12.4340i 0.533595i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 10.6965i − 0.457350i −0.973503 0.228675i \(-0.926561\pi\)
0.973503 0.228675i \(-0.0734392\pi\)
\(548\) 0 0
\(549\) 17.8406 0.761420
\(550\) 0 0
\(551\) 7.99382 0.340548
\(552\) 0 0
\(553\) − 9.21310i − 0.391781i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 40.1771i − 1.70236i −0.524876 0.851179i \(-0.675888\pi\)
0.524876 0.851179i \(-0.324112\pi\)
\(558\) 0 0
\(559\) −3.06639 −0.129694
\(560\) 0 0
\(561\) −7.87159 −0.332339
\(562\) 0 0
\(563\) − 22.8080i − 0.961243i −0.876928 0.480622i \(-0.840411\pi\)
0.876928 0.480622i \(-0.159589\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 17.3330i 0.727917i
\(568\) 0 0
\(569\) 0.554721 0.0232551 0.0116275 0.999932i \(-0.496299\pi\)
0.0116275 + 0.999932i \(0.496299\pi\)
\(570\) 0 0
\(571\) −10.8977 −0.456055 −0.228028 0.973655i \(-0.573228\pi\)
−0.228028 + 0.973655i \(0.573228\pi\)
\(572\) 0 0
\(573\) − 8.17834i − 0.341655i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 36.1882i − 1.50653i −0.657715 0.753267i \(-0.728477\pi\)
0.657715 0.753267i \(-0.271523\pi\)
\(578\) 0 0
\(579\) 13.2062 0.548829
\(580\) 0 0
\(581\) −50.6446 −2.10109
\(582\) 0 0
\(583\) 8.85743i 0.366837i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.6509i 0.439609i 0.975544 + 0.219805i \(0.0705420\pi\)
−0.975544 + 0.219805i \(0.929458\pi\)
\(588\) 0 0
\(589\) −82.2028 −3.38711
\(590\) 0 0
\(591\) 11.4791 0.472187
\(592\) 0 0
\(593\) − 43.0193i − 1.76659i −0.468815 0.883296i \(-0.655319\pi\)
0.468815 0.883296i \(-0.344681\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 15.3812i − 0.629511i
\(598\) 0 0
\(599\) 4.72552 0.193080 0.0965398 0.995329i \(-0.469223\pi\)
0.0965398 + 0.995329i \(0.469223\pi\)
\(600\) 0 0
\(601\) −24.7076 −1.00784 −0.503921 0.863750i \(-0.668110\pi\)
−0.503921 + 0.863750i \(0.668110\pi\)
\(602\) 0 0
\(603\) 16.7487i 0.682059i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 15.0370i − 0.610331i −0.952299 0.305166i \(-0.901288\pi\)
0.952299 0.305166i \(-0.0987119\pi\)
\(608\) 0 0
\(609\) 2.27153 0.0920469
\(610\) 0 0
\(611\) 0.626052 0.0253273
\(612\) 0 0
\(613\) 22.1098i 0.893007i 0.894782 + 0.446504i \(0.147331\pi\)
−0.894782 + 0.446504i \(0.852669\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 32.9264i − 1.32557i −0.748811 0.662783i \(-0.769375\pi\)
0.748811 0.662783i \(-0.230625\pi\)
\(618\) 0 0
\(619\) 2.81002 0.112944 0.0564721 0.998404i \(-0.482015\pi\)
0.0564721 + 0.998404i \(0.482015\pi\)
\(620\) 0 0
\(621\) 12.2246 0.490555
\(622\) 0 0
\(623\) − 42.5663i − 1.70538i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 11.3708i − 0.454107i
\(628\) 0 0
\(629\) 7.59495 0.302830
\(630\) 0 0
\(631\) 5.73420 0.228275 0.114137 0.993465i \(-0.463590\pi\)
0.114137 + 0.993465i \(0.463590\pi\)
\(632\) 0 0
\(633\) − 12.2644i − 0.487468i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 8.42279i − 0.333723i
\(638\) 0 0
\(639\) 39.4882 1.56213
\(640\) 0 0
\(641\) −12.3873 −0.489270 −0.244635 0.969615i \(-0.578668\pi\)
−0.244635 + 0.969615i \(0.578668\pi\)
\(642\) 0 0
\(643\) − 46.2926i − 1.82560i −0.408404 0.912801i \(-0.633915\pi\)
0.408404 0.912801i \(-0.366085\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 47.7387i − 1.87680i −0.345551 0.938400i \(-0.612308\pi\)
0.345551 0.938400i \(-0.387692\pi\)
\(648\) 0 0
\(649\) 6.99776 0.274686
\(650\) 0 0
\(651\) −23.3588 −0.915502
\(652\) 0 0
\(653\) 0.227460i 0.00890118i 0.999990 + 0.00445059i \(0.00141667\pi\)
−0.999990 + 0.00445059i \(0.998583\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.8404i 0.539966i
\(658\) 0 0
\(659\) 19.8569 0.773513 0.386757 0.922182i \(-0.373595\pi\)
0.386757 + 0.922182i \(0.373595\pi\)
\(660\) 0 0
\(661\) −25.7959 −1.00334 −0.501671 0.865058i \(-0.667281\pi\)
−0.501671 + 0.865058i \(0.667281\pi\)
\(662\) 0 0
\(663\) − 7.11873i − 0.276468i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.27602i 0.126848i
\(668\) 0 0
\(669\) 2.35680 0.0911193
\(670\) 0 0
\(671\) 14.8095 0.571713
\(672\) 0 0
\(673\) − 39.4615i − 1.52113i −0.649263 0.760564i \(-0.724923\pi\)
0.649263 0.760564i \(-0.275077\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.31980i 0.0507241i 0.999678 + 0.0253621i \(0.00807386\pi\)
−0.999678 + 0.0253621i \(0.991926\pi\)
\(678\) 0 0
\(679\) −2.87701 −0.110410
\(680\) 0 0
\(681\) 8.79304 0.336950
\(682\) 0 0
\(683\) − 6.48925i − 0.248304i −0.992263 0.124152i \(-0.960379\pi\)
0.992263 0.124152i \(-0.0396211\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.5654i 0.403095i
\(688\) 0 0
\(689\) −8.01028 −0.305167
\(690\) 0 0
\(691\) −18.6676 −0.710150 −0.355075 0.934838i \(-0.615545\pi\)
−0.355075 + 0.934838i \(0.615545\pi\)
\(692\) 0 0
\(693\) 18.1931i 0.691098i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.0413i 0.380340i
\(698\) 0 0
\(699\) −4.00961 −0.151657
\(700\) 0 0
\(701\) 7.90767 0.298669 0.149334 0.988787i \(-0.452287\pi\)
0.149334 + 0.988787i \(0.452287\pi\)
\(702\) 0 0
\(703\) 10.9712i 0.413787i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 58.9362i 2.21652i
\(708\) 0 0
\(709\) −24.1817 −0.908163 −0.454082 0.890960i \(-0.650033\pi\)
−0.454082 + 0.890960i \(0.650033\pi\)
\(710\) 0 0
\(711\) −6.95019 −0.260652
\(712\) 0 0
\(713\) − 33.6883i − 1.26164i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.50220i − 0.130792i
\(718\) 0 0
\(719\) −43.1372 −1.60875 −0.804374 0.594123i \(-0.797499\pi\)
−0.804374 + 0.594123i \(0.797499\pi\)
\(720\) 0 0
\(721\) −36.1175 −1.34509
\(722\) 0 0
\(723\) 6.13628i 0.228211i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 40.6603i − 1.50801i −0.656870 0.754004i \(-0.728120\pi\)
0.656870 0.754004i \(-0.271880\pi\)
\(728\) 0 0
\(729\) 5.54568 0.205396
\(730\) 0 0
\(731\) 8.87280 0.328172
\(732\) 0 0
\(733\) − 24.1828i − 0.893211i −0.894731 0.446606i \(-0.852633\pi\)
0.894731 0.446606i \(-0.147367\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.9030i 0.512125i
\(738\) 0 0
\(739\) −30.4007 −1.11831 −0.559153 0.829064i \(-0.688874\pi\)
−0.559153 + 0.829064i \(0.688874\pi\)
\(740\) 0 0
\(741\) 10.2833 0.377766
\(742\) 0 0
\(743\) 24.6273i 0.903488i 0.892148 + 0.451744i \(0.149198\pi\)
−0.892148 + 0.451744i \(0.850802\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 38.2053i 1.39786i
\(748\) 0 0
\(749\) 69.5310 2.54061
\(750\) 0 0
\(751\) −4.60339 −0.167980 −0.0839901 0.996467i \(-0.526766\pi\)
−0.0839901 + 0.996467i \(0.526766\pi\)
\(752\) 0 0
\(753\) 16.0317i 0.584226i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 36.2417i − 1.31723i −0.752482 0.658613i \(-0.771144\pi\)
0.752482 0.658613i \(-0.228856\pi\)
\(758\) 0 0
\(759\) 4.65998 0.169147
\(760\) 0 0
\(761\) 31.3704 1.13718 0.568588 0.822623i \(-0.307490\pi\)
0.568588 + 0.822623i \(0.307490\pi\)
\(762\) 0 0
\(763\) − 3.28411i − 0.118893i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.32847i 0.228508i
\(768\) 0 0
\(769\) 1.33146 0.0480135 0.0240068 0.999712i \(-0.492358\pi\)
0.0240068 + 0.999712i \(0.492358\pi\)
\(770\) 0 0
\(771\) 5.91589 0.213056
\(772\) 0 0
\(773\) − 32.9499i − 1.18513i −0.805524 0.592563i \(-0.798116\pi\)
0.805524 0.592563i \(-0.201884\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.11758i 0.111843i
\(778\) 0 0
\(779\) −14.5050 −0.519696
\(780\) 0 0
\(781\) 32.7791 1.17293
\(782\) 0 0
\(783\) − 3.73153i − 0.133354i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 9.27094i − 0.330473i −0.986254 0.165237i \(-0.947161\pi\)
0.986254 0.165237i \(-0.0528388\pi\)
\(788\) 0 0
\(789\) −11.4774 −0.408607
\(790\) 0 0
\(791\) 42.9528 1.52722
\(792\) 0 0
\(793\) 13.3930i 0.475601i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.1758i 1.21057i 0.796009 + 0.605285i \(0.206941\pi\)
−0.796009 + 0.605285i \(0.793059\pi\)
\(798\) 0 0
\(799\) −1.81152 −0.0640871
\(800\) 0 0
\(801\) −32.1112 −1.13459
\(802\) 0 0
\(803\) 11.4889i 0.405434i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.2108i 0.429839i
\(808\) 0 0
\(809\) −20.0891 −0.706294 −0.353147 0.935568i \(-0.614889\pi\)
−0.353147 + 0.935568i \(0.614889\pi\)
\(810\) 0 0
\(811\) −8.35300 −0.293314 −0.146657 0.989187i \(-0.546851\pi\)
−0.146657 + 0.989187i \(0.546851\pi\)
\(812\) 0 0
\(813\) 8.87911i 0.311404i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.8171i 0.448414i
\(818\) 0 0
\(819\) −16.4530 −0.574915
\(820\) 0 0
\(821\) −5.83477 −0.203635 −0.101817 0.994803i \(-0.532466\pi\)
−0.101817 + 0.994803i \(0.532466\pi\)
\(822\) 0 0
\(823\) 0.662009i 0.0230762i 0.999933 + 0.0115381i \(0.00367277\pi\)
−0.999933 + 0.0115381i \(0.996327\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.7516i 1.48662i 0.668947 + 0.743310i \(0.266745\pi\)
−0.668947 + 0.743310i \(0.733255\pi\)
\(828\) 0 0
\(829\) −24.2593 −0.842562 −0.421281 0.906930i \(-0.638419\pi\)
−0.421281 + 0.906930i \(0.638419\pi\)
\(830\) 0 0
\(831\) −10.6062 −0.367926
\(832\) 0 0
\(833\) 24.3719i 0.844437i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.3724i 1.32634i
\(838\) 0 0
\(839\) 16.5618 0.571777 0.285889 0.958263i \(-0.407711\pi\)
0.285889 + 0.958263i \(0.407711\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0.750000i 0.0258314i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 22.0451i − 0.757477i
\(848\) 0 0
\(849\) 11.9369 0.409672
\(850\) 0 0
\(851\) −4.49621 −0.154128
\(852\) 0 0
\(853\) 2.34257i 0.0802081i 0.999196 + 0.0401041i \(0.0127689\pi\)
−0.999196 + 0.0401041i \(0.987231\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 55.3020i − 1.88908i −0.328397 0.944540i \(-0.606508\pi\)
0.328397 0.944540i \(-0.393492\pi\)
\(858\) 0 0
\(859\) −44.9751 −1.53453 −0.767266 0.641329i \(-0.778383\pi\)
−0.767266 + 0.641329i \(0.778383\pi\)
\(860\) 0 0
\(861\) −4.12175 −0.140469
\(862\) 0 0
\(863\) 48.3195i 1.64481i 0.568900 + 0.822407i \(0.307369\pi\)
−0.568900 + 0.822407i \(0.692631\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 9.16356i 0.311211i
\(868\) 0 0
\(869\) −5.76933 −0.195711
\(870\) 0 0
\(871\) −12.5733 −0.426030
\(872\) 0 0
\(873\) 2.17036i 0.0734556i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 56.1140i − 1.89483i −0.320001 0.947417i \(-0.603683\pi\)
0.320001 0.947417i \(-0.396317\pi\)
\(878\) 0 0
\(879\) −0.970867 −0.0327465
\(880\) 0 0
\(881\) 58.1133 1.95789 0.978944 0.204129i \(-0.0654361\pi\)
0.978944 + 0.204129i \(0.0654361\pi\)
\(882\) 0 0
\(883\) − 21.9911i − 0.740061i −0.929020 0.370030i \(-0.879347\pi\)
0.929020 0.370030i \(-0.120653\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.1035i 0.439973i 0.975503 + 0.219986i \(0.0706013\pi\)
−0.975503 + 0.219986i \(0.929399\pi\)
\(888\) 0 0
\(889\) −51.3428 −1.72198
\(890\) 0 0
\(891\) 10.8541 0.363626
\(892\) 0 0
\(893\) − 2.61682i − 0.0875685i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4.21429i 0.140711i
\(898\) 0 0
\(899\) −10.2833 −0.342967
\(900\) 0 0
\(901\) 23.1783 0.772180
\(902\) 0 0
\(903\) 3.64211i 0.121202i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 51.7491i 1.71830i 0.511724 + 0.859150i \(0.329007\pi\)
−0.511724 + 0.859150i \(0.670993\pi\)
\(908\) 0 0
\(909\) 44.4603 1.47466
\(910\) 0 0
\(911\) −28.9974 −0.960726 −0.480363 0.877070i \(-0.659495\pi\)
−0.480363 + 0.877070i \(0.659495\pi\)
\(912\) 0 0
\(913\) 31.7141i 1.04958i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.3889i 0.673299i
\(918\) 0 0
\(919\) −25.0943 −0.827784 −0.413892 0.910326i \(-0.635831\pi\)
−0.413892 + 0.910326i \(0.635831\pi\)
\(920\) 0 0
\(921\) −3.59458 −0.118445
\(922\) 0 0
\(923\) 29.6440i 0.975743i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 27.2464i 0.894888i
\(928\) 0 0
\(929\) −50.3675 −1.65250 −0.826251 0.563301i \(-0.809531\pi\)
−0.826251 + 0.563301i \(0.809531\pi\)
\(930\) 0 0
\(931\) −35.2062 −1.15384
\(932\) 0 0
\(933\) − 16.5897i − 0.543124i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 39.2746i − 1.28304i −0.767104 0.641522i \(-0.778303\pi\)
0.767104 0.641522i \(-0.221697\pi\)
\(938\) 0 0
\(939\) 22.8555 0.745862
\(940\) 0 0
\(941\) 4.60332 0.150064 0.0750320 0.997181i \(-0.476094\pi\)
0.0750320 + 0.997181i \(0.476094\pi\)
\(942\) 0 0
\(943\) − 5.94443i − 0.193577i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.40704i 0.0457226i 0.999739 + 0.0228613i \(0.00727762\pi\)
−0.999739 + 0.0228613i \(0.992722\pi\)
\(948\) 0 0
\(949\) −10.3901 −0.337275
\(950\) 0 0
\(951\) −6.78536 −0.220030
\(952\) 0 0
\(953\) − 45.4121i − 1.47104i −0.677502 0.735521i \(-0.736938\pi\)
0.677502 0.735521i \(-0.263062\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1.42245i − 0.0459813i
\(958\) 0 0
\(959\) 52.3102 1.68918
\(960\) 0 0
\(961\) 74.7460 2.41116
\(962\) 0 0
\(963\) − 52.4528i − 1.69027i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.6658i 0.407305i 0.979043 + 0.203652i \(0.0652813\pi\)
−0.979043 + 0.203652i \(0.934719\pi\)
\(968\) 0 0
\(969\) −29.7554 −0.955881
\(970\) 0 0
\(971\) −24.5447 −0.787676 −0.393838 0.919180i \(-0.628853\pi\)
−0.393838 + 0.919180i \(0.628853\pi\)
\(972\) 0 0
\(973\) − 7.07951i − 0.226959i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 25.3008i − 0.809444i −0.914440 0.404722i \(-0.867368\pi\)
0.914440 0.404722i \(-0.132632\pi\)
\(978\) 0 0
\(979\) −26.6554 −0.851912
\(980\) 0 0
\(981\) −2.47747 −0.0790994
\(982\) 0 0
\(983\) − 25.1822i − 0.803188i −0.915818 0.401594i \(-0.868456\pi\)
0.915818 0.401594i \(-0.131544\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 0.743596i − 0.0236689i
\(988\) 0 0
\(989\) −5.25269 −0.167026
\(990\) 0 0
\(991\) 13.0936 0.415933 0.207967 0.978136i \(-0.433315\pi\)
0.207967 + 0.978136i \(0.433315\pi\)
\(992\) 0 0
\(993\) 11.0240i 0.349837i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 31.0809i − 0.984341i −0.870499 0.492171i \(-0.836204\pi\)
0.870499 0.492171i \(-0.163796\pi\)
\(998\) 0 0
\(999\) 5.12138 0.162033
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.c.i.349.4 10
5.2 odd 4 2900.2.a.k.1.2 yes 5
5.3 odd 4 2900.2.a.i.1.4 5
5.4 even 2 inner 2900.2.c.i.349.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2900.2.a.i.1.4 5 5.3 odd 4
2900.2.a.k.1.2 yes 5 5.2 odd 4
2900.2.c.i.349.4 10 1.1 even 1 trivial
2900.2.c.i.349.7 10 5.4 even 2 inner