Properties

Label 2912.1.ci.a.207.3
Level $2912$
Weight $1$
Character 2912.207
Analytic conductor $1.453$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,1,Mod(207,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.207");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2912.ci (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.13763268972544.1

Embedding invariants

Embedding label 207.3
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 2912.207
Dual form 2912.1.ci.a.1871.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 1.32683i) q^{3} +(-0.939693 - 1.62760i) q^{5} +(0.766044 - 0.642788i) q^{7} +(-0.673648 - 1.16679i) q^{9} -1.00000 q^{13} -2.87939 q^{15} +(-0.173648 + 0.300767i) q^{17} +(-0.266044 - 1.50881i) q^{21} +(-1.26604 + 2.19285i) q^{25} -0.532089 q^{27} +(0.500000 - 0.866025i) q^{31} +(-1.76604 - 0.642788i) q^{35} +(0.766044 + 1.32683i) q^{37} +(-0.766044 + 1.32683i) q^{39} +1.87939 q^{43} +(-1.26604 + 2.19285i) q^{45} +(-0.173648 - 0.300767i) q^{47} +(0.173648 - 0.984808i) q^{49} +(0.266044 + 0.460802i) q^{51} +(-1.26604 - 0.460802i) q^{63} +(0.939693 + 1.62760i) q^{65} +0.347296 q^{71} +(1.93969 + 3.35965i) q^{75} +(0.266044 - 0.460802i) q^{81} +0.652704 q^{85} +(-0.766044 + 0.642788i) q^{91} +(-0.766044 - 1.32683i) q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{9} - 6 q^{13} - 6 q^{15} + 3 q^{21} - 3 q^{25} + 6 q^{27} + 3 q^{31} - 6 q^{35} - 3 q^{45} - 3 q^{51} - 3 q^{63} + 6 q^{75} - 3 q^{81} + 6 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(4\) 0 0
\(5\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(6\) 0 0
\(7\) 0.766044 0.642788i 0.766044 0.642788i
\(8\) 0 0
\(9\) −0.673648 1.16679i −0.673648 1.16679i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −1.00000 −1.00000
\(14\) 0 0
\(15\) −2.87939 −2.87939
\(16\) 0 0
\(17\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(18\) 0 0
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) −0.266044 1.50881i −0.266044 1.50881i
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(26\) 0 0
\(27\) −0.532089 −0.532089
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.76604 0.642788i −1.76604 0.642788i
\(36\) 0 0
\(37\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(38\) 0 0
\(39\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(44\) 0 0
\(45\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(46\) 0 0
\(47\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(48\) 0 0
\(49\) 0.173648 0.984808i 0.173648 0.984808i
\(50\) 0 0
\(51\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(52\) 0 0
\(53\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(62\) 0 0
\(63\) −1.26604 0.460802i −1.26604 0.460802i
\(64\) 0 0
\(65\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(72\) 0 0
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 1.93969 + 3.35965i 1.93969 + 3.35965i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) 0.266044 0.460802i 0.266044 0.460802i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0.652704 0.652704
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 0 0
\(91\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(92\) 0 0
\(93\) −0.766044 1.32683i −0.766044 1.32683i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(106\) 0 0
\(107\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(110\) 0 0
\(111\) 2.34730 2.34730
\(112\) 0 0
\(113\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(118\) 0 0
\(119\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.87939 2.87939
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 1.43969 2.49362i 1.43969 2.49362i
\(130\) 0 0
\(131\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(140\) 0 0
\(141\) −0.532089 −0.532089
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.17365 0.984808i −1.17365 0.984808i
\(148\) 0 0
\(149\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 0 0
\(153\) 0.467911 0.467911
\(154\) 0 0
\(155\) −1.87939 −1.87939
\(156\) 0 0
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0.439693 + 2.49362i 0.439693 + 2.49362i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.43969 2.49362i 1.43969 2.49362i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.407604 + 0.342020i −0.407604 + 0.342020i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 2.87939 2.87939
\(196\) 0 0
\(197\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(212\) 0 0
\(213\) 0.266044 0.460802i 0.266044 0.460802i
\(214\) 0 0
\(215\) −1.76604 3.05888i −1.76604 3.05888i
\(216\) 0 0
\(217\) −0.173648 0.984808i −0.173648 0.984808i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.173648 0.300767i 0.173648 0.300767i
\(222\) 0 0
\(223\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(224\) 0 0
\(225\) 3.41147 3.41147
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(234\) 0 0
\(235\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) 0 0
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 0 0
\(243\) −0.673648 1.16679i −0.673648 1.16679i
\(244\) 0 0
\(245\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.500000 0.866025i 0.500000 0.866025i
\(256\) 0 0
\(257\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(258\) 0 0
\(259\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(272\) 0 0
\(273\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) −1.34730 −1.34730
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.43969 1.20805i 1.43969 1.20805i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0.439693 + 2.49362i 0.439693 + 2.49362i
\(316\) 0 0
\(317\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.53209 −1.53209
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.26604 2.19285i 1.26604 2.19285i
\(326\) 0 0
\(327\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(328\) 0 0
\(329\) −0.326352 0.118782i −0.326352 0.118782i
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 1.03209 1.78763i 1.03209 1.78763i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) 0 0
\(339\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.500000 0.866025i −0.500000 0.866025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(348\) 0 0
\(349\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(350\) 0 0
\(351\) 0.532089 0.532089
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) −0.326352 0.565258i −0.326352 0.565258i
\(356\) 0 0
\(357\) 0.500000 + 0.181985i 0.500000 + 0.181985i
\(358\) 0 0
\(359\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) −1.53209 −1.53209
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 2.20574 3.82045i 2.20574 3.82045i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.26604 2.19285i −1.26604 2.19285i
\(388\) 0 0
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −2.87939 −2.87939
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(404\) 0 0
\(405\) −1.00000 −1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(418\) 0 0
\(419\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(420\) 0 0
\(421\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(422\) 0 0
\(423\) −0.233956 + 0.405223i −0.233956 + 0.405223i
\(424\) 0 0
\(425\) −0.439693 0.761570i −0.439693 0.761570i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(432\) 0 0
\(433\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(442\) 0 0
\(443\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.53209 −1.53209
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(454\) 0 0
\(455\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0 0
\(459\) 0.0923963 0.160035i 0.0923963 0.160035i
\(460\) 0 0
\(461\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(462\) 0 0
\(463\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(466\) 0 0
\(467\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(480\) 0 0
\(481\) −0.766044 1.32683i −0.766044 1.32683i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.266044 0.223238i 0.266044 0.223238i
\(498\) 0 0
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0 0
\(501\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.766044 1.32683i 0.766044 1.32683i
\(508\) 0 0
\(509\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(522\) 0 0
\(523\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 3.64543 + 1.32683i 3.64543 + 1.32683i
\(526\) 0 0
\(527\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(528\) 0 0
\(529\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(536\) 0 0
\(537\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.53209 3.53209
\(546\) 0 0
\(547\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.20574 3.82045i −2.20574 3.82045i
\(556\) 0 0
\(557\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(558\) 0 0
\(559\) −1.87939 −1.87939
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(564\) 0 0
\(565\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(566\) 0 0
\(567\) −0.0923963 0.524005i −0.0923963 0.524005i
\(568\) 0 0
\(569\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(570\) 0 0
\(571\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.26604 2.19285i 1.26604 2.19285i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.43969 2.49362i 1.43969 2.49362i
\(592\) 0 0
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0.500000 0.419550i 0.500000 0.419550i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(612\) 0 0
\(613\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.43969 2.49362i −1.43969 2.49362i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.532089 −0.532089
\(630\) 0 0
\(631\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(632\) 0 0
\(633\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(638\) 0 0
\(639\) −0.233956 0.405223i −0.233956 0.405223i
\(640\) 0 0
\(641\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −5.41147 −5.41147
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −1.43969 0.524005i −1.43969 0.524005i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) −1.76604 + 3.05888i −1.76604 + 3.05888i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) −0.266044 0.460802i −0.266044 0.460802i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.17365 2.03282i 1.17365 2.03282i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(674\) 0 0
\(675\) 0.673648 1.16679i 0.673648 1.16679i
\(676\) 0 0
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.34730 2.34730
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −2.34730 −2.34730
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.17365 2.03282i 1.17365 2.03282i
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.53209 −1.53209
\(730\) 0 0
\(731\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(732\) 0 0
\(733\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(734\) 0 0
\(735\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(744\) 0 0
\(745\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.939693 0.342020i −0.939693 0.342020i
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 0.766044 1.32683i 0.766044 1.32683i
\(754\) 0 0
\(755\) 0.652704 0.652704
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(764\) 0 0
\(765\) −0.439693 0.761570i −0.439693 0.761570i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 2.87939 2.87939
\(772\) 0 0
\(773\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(774\) 0 0
\(775\) 1.26604 + 2.19285i 1.26604 + 2.19285i
\(776\) 0 0
\(777\) 1.79813 1.50881i 1.79813 1.50881i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0.120615 0.120615
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 2.87939 2.87939
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.26604 + 0.460802i 1.26604 + 0.460802i
\(820\) 0 0
\(821\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(834\) 0 0
\(835\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(836\) 0 0
\(837\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(838\) 0 0
\(839\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.939693 1.62760i −0.939693 1.62760i
\(846\) 0 0
\(847\) −0.939693 0.342020i −0.939693 0.342020i
\(848\) 0 0
\(849\) −1.53209 2.65366i −1.53209 2.65366i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.34730 1.34730
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.20574 1.85083i 2.20574 1.85083i
\(876\) 0 0
\(877\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(878\) 0 0
\(879\) −1.17365 + 2.03282i −1.17365 + 2.03282i
\(880\) 0 0
\(881\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(882\) 0 0
\(883\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 3.53209 3.53209
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −0.500000 2.83564i −0.500000 2.83564i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.76604 0.642788i −1.76604 0.642788i
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.347296 −0.347296
\(924\) 0 0
\(925\) −3.87939 −3.87939
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) −0.532089 −0.532089
\(940\) 0 0
\(941\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(946\) 0 0
\(947\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.53209 −1.53209
\(952\) 0 0
\(953\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(972\) 0 0
\(973\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(974\) 0 0
\(975\) −1.93969 3.35965i −1.93969 3.35965i
\(976\) 0 0
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.53209 2.53209
\(982\) 0 0
\(983\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(984\) 0 0
\(985\) −1.76604 3.05888i −1.76604 3.05888i
\(986\) 0 0
\(987\) −0.407604 + 0.342020i −0.407604 + 0.342020i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) −0.407604 0.705990i −0.407604 0.705990i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.1.ci.a.207.3 6
4.3 odd 2 728.1.bs.b.571.1 yes 6
7.2 even 3 inner 2912.1.ci.a.1871.3 6
8.3 odd 2 2912.1.ci.b.207.3 6
8.5 even 2 728.1.bs.a.571.1 yes 6
13.12 even 2 2912.1.ci.b.207.3 6
28.23 odd 6 728.1.bs.b.51.1 yes 6
52.51 odd 2 728.1.bs.a.571.1 yes 6
56.37 even 6 728.1.bs.a.51.1 6
56.51 odd 6 2912.1.ci.b.1871.3 6
91.51 even 6 2912.1.ci.b.1871.3 6
104.51 odd 2 CM 2912.1.ci.a.207.3 6
104.77 even 2 728.1.bs.b.571.1 yes 6
364.51 odd 6 728.1.bs.a.51.1 6
728.51 odd 6 inner 2912.1.ci.a.1871.3 6
728.597 even 6 728.1.bs.b.51.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.bs.a.51.1 6 56.37 even 6
728.1.bs.a.51.1 6 364.51 odd 6
728.1.bs.a.571.1 yes 6 8.5 even 2
728.1.bs.a.571.1 yes 6 52.51 odd 2
728.1.bs.b.51.1 yes 6 28.23 odd 6
728.1.bs.b.51.1 yes 6 728.597 even 6
728.1.bs.b.571.1 yes 6 4.3 odd 2
728.1.bs.b.571.1 yes 6 104.77 even 2
2912.1.ci.a.207.3 6 1.1 even 1 trivial
2912.1.ci.a.207.3 6 104.51 odd 2 CM
2912.1.ci.a.1871.3 6 7.2 even 3 inner
2912.1.ci.a.1871.3 6 728.51 odd 6 inner
2912.1.ci.b.207.3 6 8.3 odd 2
2912.1.ci.b.207.3 6 13.12 even 2
2912.1.ci.b.1871.3 6 56.51 odd 6
2912.1.ci.b.1871.3 6 91.51 even 6