Properties

Label 728.1.bs.b.51.1
Level 728728
Weight 11
Character 728.51
Analytic conductor 0.3630.363
Analytic rank 00
Dimension 66
Projective image D9D_{9}
CM discriminant -104
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(51,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.51");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 728.bs (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3633193291970.363319329197
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.13763268972544.1

Embedding invariants

Embedding label 51.1
Root 0.9396930.342020i0.939693 - 0.342020i of defining polynomial
Character χ\chi == 728.51
Dual form 728.1.bs.b.571.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.7660441.32683i)q3+(0.5000000.866025i)q4+(0.939693+1.62760i)q51.53209q6+(0.7660440.642788i)q71.00000q8+(0.673648+1.16679i)q9+(0.939693+1.62760i)q10+(0.766044+1.32683i)q121.00000q13+(0.939693+0.342020i)q14+2.87939q15+(0.500000+0.866025i)q16+(0.1736480.300767i)q17+(0.673648+1.16679i)q18+1.87939q20+(0.266044+1.50881i)q21+(0.766044+1.32683i)q24+(1.266042.19285i)q25+(0.500000+0.866025i)q26+0.532089q27+(0.173648+0.984808i)q28+(1.439692.49362i)q30+(0.5000000.866025i)q31+(0.500000+0.866025i)q320.347296q34+(1.766040.642788i)q35+1.34730q36+(0.7660441.32683i)q37+(0.766044+1.32683i)q39+(0.9396931.62760i)q40+(1.17365+0.984808i)q421.87939q43+(1.266042.19285i)q45+(0.1736480.300767i)q47+1.53209q48+(0.173648+0.984808i)q492.53209q50+(0.266044+0.460802i)q51+(0.500000+0.866025i)q52+(0.2660440.460802i)q54+(0.766044+0.642788i)q56+(1.439692.49362i)q601.00000q62+(1.266040.460802i)q63+1.00000q64+(0.9396931.62760i)q65+(0.173648+0.300767i)q68+(0.3263521.85083i)q700.347296q71+(0.6736481.16679i)q72+(0.7660441.32683i)q74+(1.93969+3.35965i)q75+1.53209q78+(0.9396931.62760i)q80+(0.266044+0.460802i)q81+(1.439690.524005i)q84+0.652704q85+(0.939693+1.62760i)q862.53209q90+(0.766044+0.642788i)q91+(0.766044+1.32683i)q93+(0.1736480.300767i)q94+(0.7660441.32683i)q96+(0.939693+0.342020i)q98+O(q100)q+(0.500000 - 0.866025i) q^{2} +(-0.766044 - 1.32683i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.939693 + 1.62760i) q^{5} -1.53209 q^{6} +(-0.766044 - 0.642788i) q^{7} -1.00000 q^{8} +(-0.673648 + 1.16679i) q^{9} +(0.939693 + 1.62760i) q^{10} +(-0.766044 + 1.32683i) q^{12} -1.00000 q^{13} +(-0.939693 + 0.342020i) q^{14} +2.87939 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.173648 - 0.300767i) q^{17} +(0.673648 + 1.16679i) q^{18} +1.87939 q^{20} +(-0.266044 + 1.50881i) q^{21} +(0.766044 + 1.32683i) q^{24} +(-1.26604 - 2.19285i) q^{25} +(-0.500000 + 0.866025i) q^{26} +0.532089 q^{27} +(-0.173648 + 0.984808i) q^{28} +(1.43969 - 2.49362i) q^{30} +(-0.500000 - 0.866025i) q^{31} +(0.500000 + 0.866025i) q^{32} -0.347296 q^{34} +(1.76604 - 0.642788i) q^{35} +1.34730 q^{36} +(0.766044 - 1.32683i) q^{37} +(0.766044 + 1.32683i) q^{39} +(0.939693 - 1.62760i) q^{40} +(1.17365 + 0.984808i) q^{42} -1.87939 q^{43} +(-1.26604 - 2.19285i) q^{45} +(0.173648 - 0.300767i) q^{47} +1.53209 q^{48} +(0.173648 + 0.984808i) q^{49} -2.53209 q^{50} +(-0.266044 + 0.460802i) q^{51} +(0.500000 + 0.866025i) q^{52} +(0.266044 - 0.460802i) q^{54} +(0.766044 + 0.642788i) q^{56} +(-1.43969 - 2.49362i) q^{60} -1.00000 q^{62} +(1.26604 - 0.460802i) q^{63} +1.00000 q^{64} +(0.939693 - 1.62760i) q^{65} +(-0.173648 + 0.300767i) q^{68} +(0.326352 - 1.85083i) q^{70} -0.347296 q^{71} +(0.673648 - 1.16679i) q^{72} +(-0.766044 - 1.32683i) q^{74} +(-1.93969 + 3.35965i) q^{75} +1.53209 q^{78} +(-0.939693 - 1.62760i) q^{80} +(0.266044 + 0.460802i) q^{81} +(1.43969 - 0.524005i) q^{84} +0.652704 q^{85} +(-0.939693 + 1.62760i) q^{86} -2.53209 q^{90} +(0.766044 + 0.642788i) q^{91} +(-0.766044 + 1.32683i) q^{93} +(-0.173648 - 0.300767i) q^{94} +(0.766044 - 1.32683i) q^{96} +(0.939693 + 0.342020i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q23q46q83q96q13+6q153q16+3q18+3q213q253q266q27+3q303q31+3q32+6q35+6q36+6q423q45+6q90+O(q100) 6 q + 3 q^{2} - 3 q^{4} - 6 q^{8} - 3 q^{9} - 6 q^{13} + 6 q^{15} - 3 q^{16} + 3 q^{18} + 3 q^{21} - 3 q^{25} - 3 q^{26} - 6 q^{27} + 3 q^{30} - 3 q^{31} + 3 q^{32} + 6 q^{35} + 6 q^{36} + 6 q^{42} - 3 q^{45}+ \cdots - 6 q^{90}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 1-1 1-1 e(13)e\left(\frac{1}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 0.866025i 0.500000 0.866025i
33 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
44 −0.500000 0.866025i −0.500000 0.866025i
55 −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
66 −1.53209 −1.53209
77 −0.766044 0.642788i −0.766044 0.642788i
88 −1.00000 −1.00000
99 −0.673648 + 1.16679i −0.673648 + 1.16679i
1010 0.939693 + 1.62760i 0.939693 + 1.62760i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 −0.766044 + 1.32683i −0.766044 + 1.32683i
1313 −1.00000 −1.00000
1414 −0.939693 + 0.342020i −0.939693 + 0.342020i
1515 2.87939 2.87939
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1818 0.673648 + 1.16679i 0.673648 + 1.16679i
1919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 1.87939 1.87939
2121 −0.266044 + 1.50881i −0.266044 + 1.50881i
2222 0 0
2323 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0.766044 + 1.32683i 0.766044 + 1.32683i
2525 −1.26604 2.19285i −1.26604 2.19285i
2626 −0.500000 + 0.866025i −0.500000 + 0.866025i
2727 0.532089 0.532089
2828 −0.173648 + 0.984808i −0.173648 + 0.984808i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 1.43969 2.49362i 1.43969 2.49362i
3131 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
3232 0.500000 + 0.866025i 0.500000 + 0.866025i
3333 0 0
3434 −0.347296 −0.347296
3535 1.76604 0.642788i 1.76604 0.642788i
3636 1.34730 1.34730
3737 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
3838 0 0
3939 0.766044 + 1.32683i 0.766044 + 1.32683i
4040 0.939693 1.62760i 0.939693 1.62760i
4141 0 0 1.00000 00
−1.00000 π\pi
4242 1.17365 + 0.984808i 1.17365 + 0.984808i
4343 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4444 0 0
4545 −1.26604 2.19285i −1.26604 2.19285i
4646 0 0
4747 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
4848 1.53209 1.53209
4949 0.173648 + 0.984808i 0.173648 + 0.984808i
5050 −2.53209 −2.53209
5151 −0.266044 + 0.460802i −0.266044 + 0.460802i
5252 0.500000 + 0.866025i 0.500000 + 0.866025i
5353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
5454 0.266044 0.460802i 0.266044 0.460802i
5555 0 0
5656 0.766044 + 0.642788i 0.766044 + 0.642788i
5757 0 0
5858 0 0
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 −1.43969 2.49362i −1.43969 2.49362i
6161 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 −1.00000 −1.00000
6363 1.26604 0.460802i 1.26604 0.460802i
6464 1.00000 1.00000
6565 0.939693 1.62760i 0.939693 1.62760i
6666 0 0
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 −0.173648 + 0.300767i −0.173648 + 0.300767i
6969 0 0
7070 0.326352 1.85083i 0.326352 1.85083i
7171 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
7272 0.673648 1.16679i 0.673648 1.16679i
7373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 −0.766044 1.32683i −0.766044 1.32683i
7575 −1.93969 + 3.35965i −1.93969 + 3.35965i
7676 0 0
7777 0 0
7878 1.53209 1.53209
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 −0.939693 1.62760i −0.939693 1.62760i
8181 0.266044 + 0.460802i 0.266044 + 0.460802i
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 1.43969 0.524005i 1.43969 0.524005i
8585 0.652704 0.652704
8686 −0.939693 + 1.62760i −0.939693 + 1.62760i
8787 0 0
8888 0 0
8989 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 −2.53209 −2.53209
9191 0.766044 + 0.642788i 0.766044 + 0.642788i
9292 0 0
9393 −0.766044 + 1.32683i −0.766044 + 1.32683i
9494 −0.173648 0.300767i −0.173648 0.300767i
9595 0 0
9696 0.766044 1.32683i 0.766044 1.32683i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.939693 + 0.342020i 0.939693 + 0.342020i
9999 0 0
100100 −1.26604 + 2.19285i −1.26604 + 2.19285i
101101 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0.266044 + 0.460802i 0.266044 + 0.460802i
103103 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
104104 1.00000 1.00000
105105 −2.20574 1.85083i −2.20574 1.85083i
106106 0 0
107107 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
108108 −0.266044 0.460802i −0.266044 0.460802i
109109 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
110110 0 0
111111 −2.34730 −2.34730
112112 0.939693 0.342020i 0.939693 0.342020i
113113 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 0 0
115115 0 0
116116 0 0
117117 0.673648 1.16679i 0.673648 1.16679i
118118 0 0
119119 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
120120 −2.87939 −2.87939
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0 0
123123 0 0
124124 −0.500000 + 0.866025i −0.500000 + 0.866025i
125125 2.87939 2.87939
126126 0.233956 1.32683i 0.233956 1.32683i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.500000 0.866025i 0.500000 0.866025i
129129 1.43969 + 2.49362i 1.43969 + 2.49362i
130130 −0.939693 1.62760i −0.939693 1.62760i
131131 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
132132 0 0
133133 0 0
134134 0 0
135135 −0.500000 + 0.866025i −0.500000 + 0.866025i
136136 0.173648 + 0.300767i 0.173648 + 0.300767i
137137 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
140140 −1.43969 1.20805i −1.43969 1.20805i
141141 −0.532089 −0.532089
142142 −0.173648 + 0.300767i −0.173648 + 0.300767i
143143 0 0
144144 −0.673648 1.16679i −0.673648 1.16679i
145145 0 0
146146 0 0
147147 1.17365 0.984808i 1.17365 0.984808i
148148 −1.53209 −1.53209
149149 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
150150 1.93969 + 3.35965i 1.93969 + 3.35965i
151151 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
152152 0 0
153153 0.467911 0.467911
154154 0 0
155155 1.87939 1.87939
156156 0.766044 1.32683i 0.766044 1.32683i
157157 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 0 0
159159 0 0
160160 −1.87939 −1.87939
161161 0 0
162162 0.532089 0.532089
163163 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0.266044 1.50881i 0.266044 1.50881i
169169 1.00000 1.00000
170170 0.326352 0.565258i 0.326352 0.565258i
171171 0 0
172172 0.939693 + 1.62760i 0.939693 + 1.62760i
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 0 0
175175 −0.439693 + 2.49362i −0.439693 + 2.49362i
176176 0 0
177177 0 0
178178 0 0
179179 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
180180 −1.26604 + 2.19285i −1.26604 + 2.19285i
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0.939693 0.342020i 0.939693 0.342020i
183183 0 0
184184 0 0
185185 1.43969 + 2.49362i 1.43969 + 2.49362i
186186 0.766044 + 1.32683i 0.766044 + 1.32683i
187187 0 0
188188 −0.347296 −0.347296
189189 −0.407604 0.342020i −0.407604 0.342020i
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 −0.766044 1.32683i −0.766044 1.32683i
193193 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 −2.87939 −2.87939
196196 0.766044 0.642788i 0.766044 0.642788i
197197 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 1.26604 + 2.19285i 1.26604 + 2.19285i
201201 0 0
202202 0 0
203203 0 0
204204 0.532089 0.532089
205205 0 0
206206 0 0
207207 0 0
208208 0.500000 0.866025i 0.500000 0.866025i
209209 0 0
210210 −2.70574 + 0.984808i −2.70574 + 0.984808i
211211 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
212212 0 0
213213 0.266044 + 0.460802i 0.266044 + 0.460802i
214214 −0.500000 0.866025i −0.500000 0.866025i
215215 1.76604 3.05888i 1.76604 3.05888i
216216 −0.532089 −0.532089
217217 −0.173648 + 0.984808i −0.173648 + 0.984808i
218218 −1.87939 −1.87939
219219 0 0
220220 0 0
221221 0.173648 + 0.300767i 0.173648 + 0.300767i
222222 −1.17365 + 2.03282i −1.17365 + 2.03282i
223223 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
224224 0.173648 0.984808i 0.173648 0.984808i
225225 3.41147 3.41147
226226 −0.500000 + 0.866025i −0.500000 + 0.866025i
227227 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 0 0
229229 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
234234 −0.673648 1.16679i −0.673648 1.16679i
235235 0.326352 + 0.565258i 0.326352 + 0.565258i
236236 0 0
237237 0 0
238238 0.266044 + 0.223238i 0.266044 + 0.223238i
239239 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
240240 −1.43969 + 2.49362i −1.43969 + 2.49362i
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0.500000 + 0.866025i 0.500000 + 0.866025i
243243 0.673648 1.16679i 0.673648 1.16679i
244244 0 0
245245 −1.76604 0.642788i −1.76604 0.642788i
246246 0 0
247247 0 0
248248 0.500000 + 0.866025i 0.500000 + 0.866025i
249249 0 0
250250 1.43969 2.49362i 1.43969 2.49362i
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 −1.03209 0.866025i −1.03209 0.866025i
253253 0 0
254254 0 0
255255 −0.500000 0.866025i −0.500000 0.866025i
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 0.642788i 0.222222π-0.222222\pi
258258 2.87939 2.87939
259259 −1.43969 + 0.524005i −1.43969 + 0.524005i
260260 −1.87939 −1.87939
261261 0 0
262262 −0.939693 1.62760i −0.939693 1.62760i
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
270270 0.500000 + 0.866025i 0.500000 + 0.866025i
271271 −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
272272 0.347296 0.347296
273273 0.266044 1.50881i 0.266044 1.50881i
274274 0 0
275275 0 0
276276 0 0
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 0.173648 0.300767i 0.173648 0.300767i
279279 1.34730 1.34730
280280 −1.76604 + 0.642788i −1.76604 + 0.642788i
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −0.266044 + 0.460802i −0.266044 + 0.460802i
283283 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
284284 0.173648 + 0.300767i 0.173648 + 0.300767i
285285 0 0
286286 0 0
287287 0 0
288288 −1.34730 −1.34730
289289 0.439693 0.761570i 0.439693 0.761570i
290290 0 0
291291 0 0
292292 0 0
293293 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
294294 −0.266044 1.50881i −0.266044 1.50881i
295295 0 0
296296 −0.766044 + 1.32683i −0.766044 + 1.32683i
297297 0 0
298298 0.500000 + 0.866025i 0.500000 + 0.866025i
299299 0 0
300300 3.87939 3.87939
301301 1.43969 + 1.20805i 1.43969 + 1.20805i
302302 0.347296 0.347296
303303 0 0
304304 0 0
305305 0 0
306306 0.233956 0.405223i 0.233956 0.405223i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0.939693 1.62760i 0.939693 1.62760i
311311 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 −0.766044 1.32683i −0.766044 1.32683i
313313 −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
314314 0 0
315315 −0.439693 + 2.49362i −0.439693 + 2.49362i
316316 0 0
317317 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
318318 0 0
319319 0 0
320320 −0.939693 + 1.62760i −0.939693 + 1.62760i
321321 −1.53209 −1.53209
322322 0 0
323323 0 0
324324 0.266044 0.460802i 0.266044 0.460802i
325325 1.26604 + 2.19285i 1.26604 + 2.19285i
326326 0 0
327327 −1.43969 + 2.49362i −1.43969 + 2.49362i
328328 0 0
329329 −0.326352 + 0.118782i −0.326352 + 0.118782i
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 1.03209 + 1.78763i 1.03209 + 1.78763i
334334 0.500000 0.866025i 0.500000 0.866025i
335335 0 0
336336 −1.17365 0.984808i −1.17365 0.984808i
337337 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
338338 0.500000 0.866025i 0.500000 0.866025i
339339 0.766044 + 1.32683i 0.766044 + 1.32683i
340340 −0.326352 0.565258i −0.326352 0.565258i
341341 0 0
342342 0 0
343343 0.500000 0.866025i 0.500000 0.866025i
344344 1.87939 1.87939
345345 0 0
346346 0 0
347347 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
348348 0 0
349349 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
350350 1.93969 + 1.62760i 1.93969 + 1.62760i
351351 −0.532089 −0.532089
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0.326352 0.565258i 0.326352 0.565258i
356356 0 0
357357 0.500000 0.181985i 0.500000 0.181985i
358358 1.87939 1.87939
359359 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
360360 1.26604 + 2.19285i 1.26604 + 2.19285i
361361 −0.500000 0.866025i −0.500000 0.866025i
362362 0 0
363363 1.53209 1.53209
364364 0.173648 0.984808i 0.173648 0.984808i
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0 0
369369 0 0
370370 2.87939 2.87939
371371 0 0
372372 1.53209 1.53209
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 −2.20574 3.82045i −2.20574 3.82045i
376376 −0.173648 + 0.300767i −0.173648 + 0.300767i
377377 0 0
378378 −0.500000 + 0.181985i −0.500000 + 0.181985i
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
384384 −1.53209 −1.53209
385385 0 0
386386 0 0
387387 1.26604 2.19285i 1.26604 2.19285i
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 −1.43969 + 2.49362i −1.43969 + 2.49362i
391391 0 0
392392 −0.173648 0.984808i −0.173648 0.984808i
393393 −2.87939 −2.87939
394394 0.939693 1.62760i 0.939693 1.62760i
395395 0 0
396396 0 0
397397 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 2.53209 2.53209
401401 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 0.500000 + 0.866025i 0.500000 + 0.866025i
404404 0 0
405405 −1.00000 −1.00000
406406 0 0
407407 0 0
408408 0.266044 0.460802i 0.266044 0.460802i
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −0.500000 0.866025i −0.500000 0.866025i
417417 −0.266044 0.460802i −0.266044 0.460802i
418418 0 0
419419 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
420420 −0.500000 + 2.83564i −0.500000 + 2.83564i
421421 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
422422 0.173648 0.300767i 0.173648 0.300767i
423423 0.233956 + 0.405223i 0.233956 + 0.405223i
424424 0 0
425425 −0.439693 + 0.761570i −0.439693 + 0.761570i
426426 0.532089 0.532089
427427 0 0
428428 −1.00000 −1.00000
429429 0 0
430430 −1.76604 3.05888i −1.76604 3.05888i
431431 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
432432 −0.266044 + 0.460802i −0.266044 + 0.460802i
433433 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
434434 0.766044 + 0.642788i 0.766044 + 0.642788i
435435 0 0
436436 −0.939693 + 1.62760i −0.939693 + 1.62760i
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −1.26604 0.460802i −1.26604 0.460802i
442442 0.347296 0.347296
443443 −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
444444 1.17365 + 2.03282i 1.17365 + 2.03282i
445445 0 0
446446 −0.766044 + 1.32683i −0.766044 + 1.32683i
447447 1.53209 1.53209
448448 −0.766044 0.642788i −0.766044 0.642788i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 1.70574 2.95442i 1.70574 2.95442i
451451 0 0
452452 0.500000 + 0.866025i 0.500000 + 0.866025i
453453 0.266044 0.460802i 0.266044 0.460802i
454454 0 0
455455 −1.76604 + 0.642788i −1.76604 + 0.642788i
456456 0 0
457457 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 −0.766044 1.32683i −0.766044 1.32683i
459459 −0.0923963 0.160035i −0.0923963 0.160035i
460460 0 0
461461 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 −1.43969 2.49362i −1.43969 2.49362i
466466 0.766044 + 1.32683i 0.766044 + 1.32683i
467467 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 −1.34730 −1.34730
469469 0 0
470470 0.652704 0.652704
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0.326352 0.118782i 0.326352 0.118782i
477477 0 0
478478 −0.766044 + 1.32683i −0.766044 + 1.32683i
479479 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
480480 1.43969 + 2.49362i 1.43969 + 2.49362i
481481 −0.766044 + 1.32683i −0.766044 + 1.32683i
482482 0 0
483483 0 0
484484 1.00000 1.00000
485485 0 0
486486 −0.673648 1.16679i −0.673648 1.16679i
487487 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
488488 0 0
489489 0 0
490490 −1.43969 + 1.20805i −1.43969 + 1.20805i
491491 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.00000 1.00000
497497 0.266044 + 0.223238i 0.266044 + 0.223238i
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 −1.43969 2.49362i −1.43969 2.49362i
501501 −0.766044 1.32683i −0.766044 1.32683i
502502 −0.500000 + 0.866025i −0.500000 + 0.866025i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 −1.26604 + 0.460802i −1.26604 + 0.460802i
505505 0 0
506506 0 0
507507 −0.766044 1.32683i −0.766044 1.32683i
508508 0 0
509509 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
510510 −1.00000 −1.00000
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 −0.939693 1.62760i −0.939693 1.62760i
515515 0 0
516516 1.43969 2.49362i 1.43969 2.49362i
517517 0 0
518518 −0.266044 + 1.50881i −0.266044 + 1.50881i
519519 0 0
520520 −0.939693 + 1.62760i −0.939693 + 1.62760i
521521 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
522522 0 0
523523 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
524524 −1.87939 −1.87939
525525 3.64543 1.32683i 3.64543 1.32683i
526526 0 0
527527 −0.173648 + 0.300767i −0.173648 + 0.300767i
528528 0 0
529529 −0.500000 0.866025i −0.500000 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.939693 + 1.62760i 0.939693 + 1.62760i
536536 0 0
537537 1.43969 2.49362i 1.43969 2.49362i
538538 0 0
539539 0 0
540540 1.00000 1.00000
541541 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
542542 0.939693 + 1.62760i 0.939693 + 1.62760i
543543 0 0
544544 0.173648 0.300767i 0.173648 0.300767i
545545 3.53209 3.53209
546546 −1.17365 0.984808i −1.17365 0.984808i
547547 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 2.20574 3.82045i 2.20574 3.82045i
556556 −0.173648 0.300767i −0.173648 0.300767i
557557 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
558558 0.673648 1.16679i 0.673648 1.16679i
559559 1.87939 1.87939
560560 −0.326352 + 1.85083i −0.326352 + 1.85083i
561561 0 0
562562 0 0
563563 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
564564 0.266044 + 0.460802i 0.266044 + 0.460802i
565565 0.939693 1.62760i 0.939693 1.62760i
566566 −2.00000 −2.00000
567567 0.0923963 0.524005i 0.0923963 0.524005i
568568 0.347296 0.347296
569569 −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
570570 0 0
571571 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −0.673648 + 1.16679i −0.673648 + 1.16679i
577577 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 −0.439693 0.761570i −0.439693 0.761570i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 1.26604 + 2.19285i 1.26604 + 2.19285i
586586 −0.766044 + 1.32683i −0.766044 + 1.32683i
587587 0 0 1.00000 00
−1.00000 π\pi
588588 −1.43969 0.524005i −1.43969 0.524005i
589589 0 0
590590 0 0
591591 −1.43969 2.49362i −1.43969 2.49362i
592592 0.766044 + 1.32683i 0.766044 + 1.32683i
593593 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 −0.500000 0.419550i −0.500000 0.419550i
596596 1.00000 1.00000
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 1.93969 3.35965i 1.93969 3.35965i
601601 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
602602 1.76604 0.642788i 1.76604 0.642788i
603603 0 0
604604 0.173648 0.300767i 0.173648 0.300767i
605605 −0.939693 1.62760i −0.939693 1.62760i
606606 0 0
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0 0
609609 0 0
610610 0 0
611611 −0.173648 + 0.300767i −0.173648 + 0.300767i
612612 −0.233956 0.405223i −0.233956 0.405223i
613613 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 −0.939693 1.62760i −0.939693 1.62760i
621621 0 0
622622 0 0
623623 0 0
624624 −1.53209 −1.53209
625625 −1.43969 + 2.49362i −1.43969 + 2.49362i
626626 0.173648 + 0.300767i 0.173648 + 0.300767i
627627 0 0
628628 0 0
629629 −0.532089 −0.532089
630630 1.93969 + 1.62760i 1.93969 + 1.62760i
631631 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
632632 0 0
633633 −0.266044 0.460802i −0.266044 0.460802i
634634 0.500000 + 0.866025i 0.500000 + 0.866025i
635635 0 0
636636 0 0
637637 −0.173648 0.984808i −0.173648 0.984808i
638638 0 0
639639 0.233956 0.405223i 0.233956 0.405223i
640640 0.939693 + 1.62760i 0.939693 + 1.62760i
641641 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 −0.766044 + 1.32683i −0.766044 + 1.32683i
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 −5.41147 −5.41147
646646 0 0
647647 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
648648 −0.266044 0.460802i −0.266044 0.460802i
649649 0 0
650650 2.53209 2.53209
651651 1.43969 0.524005i 1.43969 0.524005i
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 1.43969 + 2.49362i 1.43969 + 2.49362i
655655 1.76604 + 3.05888i 1.76604 + 3.05888i
656656 0 0
657657 0 0
658658 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
659659 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
662662 0 0
663663 0.266044 0.460802i 0.266044 0.460802i
664664 0 0
665665 0 0
666666 2.06418 2.06418
667667 0 0
668668 −0.500000 0.866025i −0.500000 0.866025i
669669 1.17365 + 2.03282i 1.17365 + 2.03282i
670670 0 0
671671 0 0
672672 −1.43969 + 0.524005i −1.43969 + 0.524005i
673673 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
674674 −0.939693 + 1.62760i −0.939693 + 1.62760i
675675 −0.673648 1.16679i −0.673648 1.16679i
676676 −0.500000 0.866025i −0.500000 0.866025i
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 1.53209 1.53209
679679 0 0
680680 −0.652704 −0.652704
681681 0 0
682682 0 0
683683 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0 0
685685 0 0
686686 −0.500000 0.866025i −0.500000 0.866025i
687687 −2.34730 −2.34730
688688 0.939693 1.62760i 0.939693 1.62760i
689689 0 0
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −0.347296 −0.347296
695695 −0.326352 + 0.565258i −0.326352 + 0.565258i
696696 0 0
697697 0 0
698698 −0.173648 + 0.300767i −0.173648 + 0.300767i
699699 2.34730 2.34730
700700 2.37939 0.866025i 2.37939 0.866025i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 −0.266044 + 0.460802i −0.266044 + 0.460802i
703703 0 0
704704 0 0
705705 0.500000 0.866025i 0.500000 0.866025i
706706 0 0
707707 0 0
708708 0 0
709709 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
710710 −0.326352 0.565258i −0.326352 0.565258i
711711 0 0
712712 0 0
713713 0 0
714714 0.0923963 0.524005i 0.0923963 0.524005i
715715 0 0
716716 0.939693 1.62760i 0.939693 1.62760i
717717 1.17365 + 2.03282i 1.17365 + 2.03282i
718718 0.500000 + 0.866025i 0.500000 + 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 2.53209 2.53209
721721 0 0
722722 −1.00000 −1.00000
723723 0 0
724724 0 0
725725 0 0
726726 0.766044 1.32683i 0.766044 1.32683i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 −0.766044 0.642788i −0.766044 0.642788i
729729 −1.53209 −1.53209
730730 0 0
731731 0.326352 + 0.565258i 0.326352 + 0.565258i
732732 0 0
733733 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i 0.777778π-0.777778\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
734734 0 0
735735 0.500000 + 2.83564i 0.500000 + 2.83564i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 1.43969 2.49362i 1.43969 2.49362i
741741 0 0
742742 0 0
743743 −0.347296 −0.347296 −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
744744 0.766044 1.32683i 0.766044 1.32683i
745745 −0.939693 1.62760i −0.939693 1.62760i
746746 0 0
747747 0 0
748748 0 0
749749 −0.939693 + 0.342020i −0.939693 + 0.342020i
750750 −4.41147 −4.41147
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0.173648 + 0.300767i 0.173648 + 0.300767i
753753 0.766044 + 1.32683i 0.766044 + 1.32683i
754754 0 0
755755 −0.652704 −0.652704
756756 −0.0923963 + 0.524005i −0.0923963 + 0.524005i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 −0.326352 + 1.85083i −0.326352 + 1.85083i
764764 0 0
765765 −0.439693 + 0.761570i −0.439693 + 0.761570i
766766 −0.766044 1.32683i −0.766044 1.32683i
767767 0 0
768768 −0.766044 + 1.32683i −0.766044 + 1.32683i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 −2.87939 −2.87939
772772 0 0
773773 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
774774 −1.26604 2.19285i −1.26604 2.19285i
775775 −1.26604 + 2.19285i −1.26604 + 2.19285i
776776 0 0
777777 1.79813 + 1.50881i 1.79813 + 1.50881i
778778 0 0
779779 0 0
780780 1.43969 + 2.49362i 1.43969 + 2.49362i
781781 0 0
782782 0 0
783783 0 0
784784 −0.939693 0.342020i −0.939693 0.342020i
785785 0 0
786786 −1.43969 + 2.49362i −1.43969 + 2.49362i
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 −0.939693 1.62760i −0.939693 1.62760i
789789 0 0
790790 0 0
791791 0.766044 + 0.642788i 0.766044 + 0.642788i
792792 0 0
793793 0 0
794794 0.500000 + 0.866025i 0.500000 + 0.866025i
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −0.120615 −0.120615
800800 1.26604 2.19285i 1.26604 2.19285i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 1.00000 1.00000
807807 0 0
808808 0 0
809809 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
810810 −0.500000 + 0.866025i −0.500000 + 0.866025i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 2.87939 2.87939
814814 0 0
815815 0 0
816816 −0.266044 0.460802i −0.266044 0.460802i
817817 0 0
818818 0 0
819819 −1.26604 + 0.460802i −1.26604 + 0.460802i
820820 0 0
821821 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
822822 0 0
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
830830 0 0
831831 0 0
832832 −1.00000 −1.00000
833833 0.266044 0.223238i 0.266044 0.223238i
834834 −0.532089 −0.532089
835835 −0.939693 + 1.62760i −0.939693 + 1.62760i
836836 0 0
837837 −0.266044 0.460802i −0.266044 0.460802i
838838 −0.939693 + 1.62760i −0.939693 + 1.62760i
839839 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 2.20574 + 1.85083i 2.20574 + 1.85083i
841841 1.00000 1.00000
842842 0.939693 1.62760i 0.939693 1.62760i
843843 0 0
844844 −0.173648 0.300767i −0.173648 0.300767i
845845 −0.939693 + 1.62760i −0.939693 + 1.62760i
846846 0.467911 0.467911
847847 0.939693 0.342020i 0.939693 0.342020i
848848 0 0
849849 −1.53209 + 2.65366i −1.53209 + 2.65366i
850850 0.439693 + 0.761570i 0.439693 + 0.761570i
851851 0 0
852852 0.266044 0.460802i 0.266044 0.460802i
853853 −1.53209 −1.53209 −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
854854 0 0
855855 0 0
856856 −0.500000 + 0.866025i −0.500000 + 0.866025i
857857 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
858858 0 0
859859 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
860860 −3.53209 −3.53209
861861 0 0
862862 −1.87939 −1.87939
863863 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
864864 0.266044 + 0.460802i 0.266044 + 0.460802i
865865 0 0
866866 0.766044 1.32683i 0.766044 1.32683i
867867 −1.34730 −1.34730
868868 0.939693 0.342020i 0.939693 0.342020i
869869 0 0
870870 0 0
871871 0 0
872872 0.939693 + 1.62760i 0.939693 + 1.62760i
873873 0 0
874874 0 0
875875 −2.20574 1.85083i −2.20574 1.85083i
876876 0 0
877877 −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
878878 0 0
879879 1.17365 + 2.03282i 1.17365 + 2.03282i
880880 0 0
881881 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
882882 −1.03209 + 0.866025i −1.03209 + 0.866025i
883883 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
884884 0.173648 0.300767i 0.173648 0.300767i
885885 0 0
886886 0.766044 + 1.32683i 0.766044 + 1.32683i
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 2.34730 2.34730
889889 0 0
890890 0 0
891891 0 0
892892 0.766044 + 1.32683i 0.766044 + 1.32683i
893893 0 0
894894 0.766044 1.32683i 0.766044 1.32683i
895895 −3.53209 −3.53209
896896 −0.939693 + 0.342020i −0.939693 + 0.342020i
897897 0 0
898898 0 0
899899 0 0
900900 −1.70574 2.95442i −1.70574 2.95442i
901901 0 0
902902 0 0
903903 0.500000 2.83564i 0.500000 2.83564i
904904 1.00000 1.00000
905905 0 0
906906 −0.266044 0.460802i −0.266044 0.460802i
907907 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
908908 0 0
909909 0 0
910910 −0.326352 + 1.85083i −0.326352 + 1.85083i
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −1.53209 −1.53209
917917 −1.76604 + 0.642788i −1.76604 + 0.642788i
918918 −0.184793 −0.184793
919919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 −0.173648 + 0.300767i −0.173648 + 0.300767i
923923 0.347296 0.347296
924924 0 0
925925 −3.87939 −3.87939
926926 0.500000 0.866025i 0.500000 0.866025i
927927 0 0
928928 0 0
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 −2.87939 −2.87939
931931 0 0
932932 1.53209 1.53209
933933 0 0
934934 1.00000 + 1.73205i 1.00000 + 1.73205i
935935 0 0
936936 −0.673648 + 1.16679i −0.673648 + 1.16679i
937937 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
938938 0 0
939939 0.532089 0.532089
940940 0.326352 0.565258i 0.326352 0.565258i
941941 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
942942 0 0
943943 0 0
944944 0 0
945945 0.939693 0.342020i 0.939693 0.342020i
946946 0 0
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 1.53209 1.53209
952952 0.0603074 0.342020i 0.0603074 0.342020i
953953 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
954954 0 0
955955 0 0
956956 0.766044 + 1.32683i 0.766044 + 1.32683i
957957 0 0
958958 1.53209 1.53209
959959 0 0
960960 2.87939 2.87939
961961 0 0
962962 0.766044 + 1.32683i 0.766044 + 1.32683i
963963 0.673648 + 1.16679i 0.673648 + 1.16679i
964964 0 0
965965 0 0
966966 0 0
967967 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
968968 0.500000 0.866025i 0.500000 0.866025i
969969 0 0
970970 0 0
971971 −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
972972 −1.34730 −1.34730
973973 −0.266044 0.223238i −0.266044 0.223238i
974974 −1.00000 −1.00000
975975 1.93969 3.35965i 1.93969 3.35965i
976976 0 0
977977 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 0 0
979979 0 0
980980 0.326352 + 1.85083i 0.326352 + 1.85083i
981981 2.53209 2.53209
982982 −0.939693 + 1.62760i −0.939693 + 1.62760i
983983 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
984984 0 0
985985 −1.76604 + 3.05888i −1.76604 + 3.05888i
986986 0 0
987987 0.407604 + 0.342020i 0.407604 + 0.342020i
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
992992 0.500000 0.866025i 0.500000 0.866025i
993993 0 0
994994 0.326352 0.118782i 0.326352 0.118782i
995995 0 0
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0.407604 0.705990i 0.407604 0.705990i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.bs.b.51.1 yes 6
4.3 odd 2 2912.1.ci.a.1871.3 6
7.4 even 3 inner 728.1.bs.b.571.1 yes 6
8.3 odd 2 728.1.bs.a.51.1 6
8.5 even 2 2912.1.ci.b.1871.3 6
13.12 even 2 728.1.bs.a.51.1 6
28.11 odd 6 2912.1.ci.a.207.3 6
52.51 odd 2 2912.1.ci.b.1871.3 6
56.11 odd 6 728.1.bs.a.571.1 yes 6
56.53 even 6 2912.1.ci.b.207.3 6
91.25 even 6 728.1.bs.a.571.1 yes 6
104.51 odd 2 CM 728.1.bs.b.51.1 yes 6
104.77 even 2 2912.1.ci.a.1871.3 6
364.207 odd 6 2912.1.ci.b.207.3 6
728.389 even 6 2912.1.ci.a.207.3 6
728.571 odd 6 inner 728.1.bs.b.571.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.bs.a.51.1 6 8.3 odd 2
728.1.bs.a.51.1 6 13.12 even 2
728.1.bs.a.571.1 yes 6 56.11 odd 6
728.1.bs.a.571.1 yes 6 91.25 even 6
728.1.bs.b.51.1 yes 6 1.1 even 1 trivial
728.1.bs.b.51.1 yes 6 104.51 odd 2 CM
728.1.bs.b.571.1 yes 6 7.4 even 3 inner
728.1.bs.b.571.1 yes 6 728.571 odd 6 inner
2912.1.ci.a.207.3 6 28.11 odd 6
2912.1.ci.a.207.3 6 728.389 even 6
2912.1.ci.a.1871.3 6 4.3 odd 2
2912.1.ci.a.1871.3 6 104.77 even 2
2912.1.ci.b.207.3 6 56.53 even 6
2912.1.ci.b.207.3 6 364.207 odd 6
2912.1.ci.b.1871.3 6 8.5 even 2
2912.1.ci.b.1871.3 6 52.51 odd 2