Properties

Label 2912.2.c.b.1457.14
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1457,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.14
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.b.1457.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.07539i q^{3} -3.29373i q^{5} -1.00000 q^{7} +1.84353 q^{9} -3.53548i q^{11} +1.00000i q^{13} -3.54204 q^{15} +7.07564 q^{17} -8.24042i q^{19} +1.07539i q^{21} +3.91963 q^{23} -5.84864 q^{25} -5.20869i q^{27} +4.44254i q^{29} -2.05760 q^{31} -3.80202 q^{33} +3.29373i q^{35} -9.27443i q^{37} +1.07539 q^{39} +7.97166 q^{41} +10.9281i q^{43} -6.07210i q^{45} +2.18113 q^{47} +1.00000 q^{49} -7.60908i q^{51} +7.21685i q^{53} -11.6449 q^{55} -8.86167 q^{57} -4.70334i q^{59} -11.2488i q^{61} -1.84353 q^{63} +3.29373 q^{65} +5.10411i q^{67} -4.21514i q^{69} +2.70611 q^{71} -2.30012 q^{73} +6.28957i q^{75} +3.53548i q^{77} +10.5704 q^{79} -0.0707804 q^{81} +4.62086i q^{83} -23.3052i q^{85} +4.77747 q^{87} -17.8295 q^{89} -1.00000i q^{91} +2.21272i q^{93} -27.1417 q^{95} +3.39038 q^{97} -6.51778i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 38 q^{7} - 46 q^{9} + 8 q^{15} + 20 q^{17} - 12 q^{23} - 50 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 38 q^{49} + 8 q^{57} + 46 q^{63} + 20 q^{65} + 12 q^{79} + 62 q^{81} + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.07539i − 0.620877i −0.950593 0.310439i \(-0.899524\pi\)
0.950593 0.310439i \(-0.100476\pi\)
\(4\) 0 0
\(5\) − 3.29373i − 1.47300i −0.676438 0.736500i \(-0.736477\pi\)
0.676438 0.736500i \(-0.263523\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.84353 0.614511
\(10\) 0 0
\(11\) − 3.53548i − 1.06599i −0.846119 0.532994i \(-0.821067\pi\)
0.846119 0.532994i \(-0.178933\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −3.54204 −0.914552
\(16\) 0 0
\(17\) 7.07564 1.71610 0.858048 0.513570i \(-0.171677\pi\)
0.858048 + 0.513570i \(0.171677\pi\)
\(18\) 0 0
\(19\) − 8.24042i − 1.89048i −0.326374 0.945241i \(-0.605827\pi\)
0.326374 0.945241i \(-0.394173\pi\)
\(20\) 0 0
\(21\) 1.07539i 0.234670i
\(22\) 0 0
\(23\) 3.91963 0.817300 0.408650 0.912691i \(-0.366000\pi\)
0.408650 + 0.912691i \(0.366000\pi\)
\(24\) 0 0
\(25\) −5.84864 −1.16973
\(26\) 0 0
\(27\) − 5.20869i − 1.00241i
\(28\) 0 0
\(29\) 4.44254i 0.824959i 0.910967 + 0.412479i \(0.135337\pi\)
−0.910967 + 0.412479i \(0.864663\pi\)
\(30\) 0 0
\(31\) −2.05760 −0.369556 −0.184778 0.982780i \(-0.559157\pi\)
−0.184778 + 0.982780i \(0.559157\pi\)
\(32\) 0 0
\(33\) −3.80202 −0.661847
\(34\) 0 0
\(35\) 3.29373i 0.556741i
\(36\) 0 0
\(37\) − 9.27443i − 1.52471i −0.647161 0.762353i \(-0.724044\pi\)
0.647161 0.762353i \(-0.275956\pi\)
\(38\) 0 0
\(39\) 1.07539 0.172200
\(40\) 0 0
\(41\) 7.97166 1.24496 0.622482 0.782634i \(-0.286124\pi\)
0.622482 + 0.782634i \(0.286124\pi\)
\(42\) 0 0
\(43\) 10.9281i 1.66651i 0.552887 + 0.833256i \(0.313526\pi\)
−0.552887 + 0.833256i \(0.686474\pi\)
\(44\) 0 0
\(45\) − 6.07210i − 0.905175i
\(46\) 0 0
\(47\) 2.18113 0.318150 0.159075 0.987267i \(-0.449149\pi\)
0.159075 + 0.987267i \(0.449149\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) − 7.60908i − 1.06548i
\(52\) 0 0
\(53\) 7.21685i 0.991311i 0.868519 + 0.495655i \(0.165072\pi\)
−0.868519 + 0.495655i \(0.834928\pi\)
\(54\) 0 0
\(55\) −11.6449 −1.57020
\(56\) 0 0
\(57\) −8.86167 −1.17376
\(58\) 0 0
\(59\) − 4.70334i − 0.612322i −0.951980 0.306161i \(-0.900955\pi\)
0.951980 0.306161i \(-0.0990446\pi\)
\(60\) 0 0
\(61\) − 11.2488i − 1.44026i −0.693838 0.720131i \(-0.744082\pi\)
0.693838 0.720131i \(-0.255918\pi\)
\(62\) 0 0
\(63\) −1.84353 −0.232263
\(64\) 0 0
\(65\) 3.29373 0.408537
\(66\) 0 0
\(67\) 5.10411i 0.623566i 0.950153 + 0.311783i \(0.100926\pi\)
−0.950153 + 0.311783i \(0.899074\pi\)
\(68\) 0 0
\(69\) − 4.21514i − 0.507443i
\(70\) 0 0
\(71\) 2.70611 0.321156 0.160578 0.987023i \(-0.448664\pi\)
0.160578 + 0.987023i \(0.448664\pi\)
\(72\) 0 0
\(73\) −2.30012 −0.269209 −0.134604 0.990899i \(-0.542976\pi\)
−0.134604 + 0.990899i \(0.542976\pi\)
\(74\) 0 0
\(75\) 6.28957i 0.726257i
\(76\) 0 0
\(77\) 3.53548i 0.402905i
\(78\) 0 0
\(79\) 10.5704 1.18926 0.594630 0.803999i \(-0.297299\pi\)
0.594630 + 0.803999i \(0.297299\pi\)
\(80\) 0 0
\(81\) −0.0707804 −0.00786449
\(82\) 0 0
\(83\) 4.62086i 0.507205i 0.967309 + 0.253602i \(0.0816155\pi\)
−0.967309 + 0.253602i \(0.918385\pi\)
\(84\) 0 0
\(85\) − 23.3052i − 2.52781i
\(86\) 0 0
\(87\) 4.77747 0.512198
\(88\) 0 0
\(89\) −17.8295 −1.88992 −0.944961 0.327184i \(-0.893900\pi\)
−0.944961 + 0.327184i \(0.893900\pi\)
\(90\) 0 0
\(91\) − 1.00000i − 0.104828i
\(92\) 0 0
\(93\) 2.21272i 0.229449i
\(94\) 0 0
\(95\) −27.1417 −2.78468
\(96\) 0 0
\(97\) 3.39038 0.344241 0.172121 0.985076i \(-0.444938\pi\)
0.172121 + 0.985076i \(0.444938\pi\)
\(98\) 0 0
\(99\) − 6.51778i − 0.655061i
\(100\) 0 0
\(101\) 1.36196i 0.135520i 0.997702 + 0.0677601i \(0.0215852\pi\)
−0.997702 + 0.0677601i \(0.978415\pi\)
\(102\) 0 0
\(103\) −14.1718 −1.39639 −0.698195 0.715908i \(-0.746013\pi\)
−0.698195 + 0.715908i \(0.746013\pi\)
\(104\) 0 0
\(105\) 3.54204 0.345668
\(106\) 0 0
\(107\) 0.539384i 0.0521442i 0.999660 + 0.0260721i \(0.00829995\pi\)
−0.999660 + 0.0260721i \(0.991700\pi\)
\(108\) 0 0
\(109\) 13.6657i 1.30894i 0.756088 + 0.654470i \(0.227108\pi\)
−0.756088 + 0.654470i \(0.772892\pi\)
\(110\) 0 0
\(111\) −9.97364 −0.946656
\(112\) 0 0
\(113\) −1.23174 −0.115873 −0.0579363 0.998320i \(-0.518452\pi\)
−0.0579363 + 0.998320i \(0.518452\pi\)
\(114\) 0 0
\(115\) − 12.9102i − 1.20388i
\(116\) 0 0
\(117\) 1.84353i 0.170435i
\(118\) 0 0
\(119\) −7.07564 −0.648623
\(120\) 0 0
\(121\) −1.49961 −0.136328
\(122\) 0 0
\(123\) − 8.57265i − 0.772970i
\(124\) 0 0
\(125\) 2.79518i 0.250008i
\(126\) 0 0
\(127\) −7.07896 −0.628156 −0.314078 0.949397i \(-0.601695\pi\)
−0.314078 + 0.949397i \(0.601695\pi\)
\(128\) 0 0
\(129\) 11.7519 1.03470
\(130\) 0 0
\(131\) 11.0564i 0.966003i 0.875620 + 0.483001i \(0.160453\pi\)
−0.875620 + 0.483001i \(0.839547\pi\)
\(132\) 0 0
\(133\) 8.24042i 0.714535i
\(134\) 0 0
\(135\) −17.1560 −1.47655
\(136\) 0 0
\(137\) −15.4186 −1.31730 −0.658652 0.752448i \(-0.728873\pi\)
−0.658652 + 0.752448i \(0.728873\pi\)
\(138\) 0 0
\(139\) 19.6410i 1.66593i 0.553327 + 0.832964i \(0.313358\pi\)
−0.553327 + 0.832964i \(0.686642\pi\)
\(140\) 0 0
\(141\) − 2.34556i − 0.197532i
\(142\) 0 0
\(143\) 3.53548 0.295652
\(144\) 0 0
\(145\) 14.6325 1.21516
\(146\) 0 0
\(147\) − 1.07539i − 0.0886968i
\(148\) 0 0
\(149\) − 8.12461i − 0.665594i −0.942999 0.332797i \(-0.892008\pi\)
0.942999 0.332797i \(-0.107992\pi\)
\(150\) 0 0
\(151\) 12.1005 0.984729 0.492364 0.870389i \(-0.336133\pi\)
0.492364 + 0.870389i \(0.336133\pi\)
\(152\) 0 0
\(153\) 13.0442 1.05456
\(154\) 0 0
\(155\) 6.77717i 0.544355i
\(156\) 0 0
\(157\) 1.92301i 0.153473i 0.997051 + 0.0767364i \(0.0244500\pi\)
−0.997051 + 0.0767364i \(0.975550\pi\)
\(158\) 0 0
\(159\) 7.76094 0.615482
\(160\) 0 0
\(161\) −3.91963 −0.308910
\(162\) 0 0
\(163\) 6.46440i 0.506331i 0.967423 + 0.253165i \(0.0814717\pi\)
−0.967423 + 0.253165i \(0.918528\pi\)
\(164\) 0 0
\(165\) 12.5228i 0.974901i
\(166\) 0 0
\(167\) −6.58375 −0.509466 −0.254733 0.967011i \(-0.581988\pi\)
−0.254733 + 0.967011i \(0.581988\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) − 15.1915i − 1.16172i
\(172\) 0 0
\(173\) 6.25239i 0.475360i 0.971343 + 0.237680i \(0.0763870\pi\)
−0.971343 + 0.237680i \(0.923613\pi\)
\(174\) 0 0
\(175\) 5.84864 0.442115
\(176\) 0 0
\(177\) −5.05793 −0.380177
\(178\) 0 0
\(179\) 3.50515i 0.261988i 0.991383 + 0.130994i \(0.0418168\pi\)
−0.991383 + 0.130994i \(0.958183\pi\)
\(180\) 0 0
\(181\) 6.61055i 0.491358i 0.969351 + 0.245679i \(0.0790109\pi\)
−0.969351 + 0.245679i \(0.920989\pi\)
\(182\) 0 0
\(183\) −12.0969 −0.894226
\(184\) 0 0
\(185\) −30.5474 −2.24589
\(186\) 0 0
\(187\) − 25.0158i − 1.82934i
\(188\) 0 0
\(189\) 5.20869i 0.378877i
\(190\) 0 0
\(191\) −21.5534 −1.55955 −0.779773 0.626062i \(-0.784666\pi\)
−0.779773 + 0.626062i \(0.784666\pi\)
\(192\) 0 0
\(193\) −17.1582 −1.23508 −0.617538 0.786541i \(-0.711870\pi\)
−0.617538 + 0.786541i \(0.711870\pi\)
\(194\) 0 0
\(195\) − 3.54204i − 0.253651i
\(196\) 0 0
\(197\) − 14.4506i − 1.02956i −0.857322 0.514780i \(-0.827873\pi\)
0.857322 0.514780i \(-0.172127\pi\)
\(198\) 0 0
\(199\) −10.2918 −0.729570 −0.364785 0.931092i \(-0.618857\pi\)
−0.364785 + 0.931092i \(0.618857\pi\)
\(200\) 0 0
\(201\) 5.48891 0.387158
\(202\) 0 0
\(203\) − 4.44254i − 0.311805i
\(204\) 0 0
\(205\) − 26.2565i − 1.83383i
\(206\) 0 0
\(207\) 7.22597 0.502240
\(208\) 0 0
\(209\) −29.1338 −2.01523
\(210\) 0 0
\(211\) 14.4148i 0.992354i 0.868221 + 0.496177i \(0.165263\pi\)
−0.868221 + 0.496177i \(0.834737\pi\)
\(212\) 0 0
\(213\) − 2.91013i − 0.199399i
\(214\) 0 0
\(215\) 35.9940 2.45477
\(216\) 0 0
\(217\) 2.05760 0.139679
\(218\) 0 0
\(219\) 2.47353i 0.167146i
\(220\) 0 0
\(221\) 7.07564i 0.475959i
\(222\) 0 0
\(223\) 15.5235 1.03953 0.519766 0.854309i \(-0.326019\pi\)
0.519766 + 0.854309i \(0.326019\pi\)
\(224\) 0 0
\(225\) −10.7822 −0.718811
\(226\) 0 0
\(227\) 24.4833i 1.62502i 0.582950 + 0.812508i \(0.301898\pi\)
−0.582950 + 0.812508i \(0.698102\pi\)
\(228\) 0 0
\(229\) − 4.71799i − 0.311774i −0.987775 0.155887i \(-0.950176\pi\)
0.987775 0.155887i \(-0.0498235\pi\)
\(230\) 0 0
\(231\) 3.80202 0.250155
\(232\) 0 0
\(233\) −8.58327 −0.562309 −0.281154 0.959663i \(-0.590717\pi\)
−0.281154 + 0.959663i \(0.590717\pi\)
\(234\) 0 0
\(235\) − 7.18403i − 0.468635i
\(236\) 0 0
\(237\) − 11.3673i − 0.738385i
\(238\) 0 0
\(239\) −3.56238 −0.230431 −0.115216 0.993340i \(-0.536756\pi\)
−0.115216 + 0.993340i \(0.536756\pi\)
\(240\) 0 0
\(241\) 5.93125 0.382065 0.191033 0.981584i \(-0.438816\pi\)
0.191033 + 0.981584i \(0.438816\pi\)
\(242\) 0 0
\(243\) − 15.5500i − 0.997531i
\(244\) 0 0
\(245\) − 3.29373i − 0.210428i
\(246\) 0 0
\(247\) 8.24042 0.524325
\(248\) 0 0
\(249\) 4.96923 0.314912
\(250\) 0 0
\(251\) − 21.0334i − 1.32762i −0.747902 0.663809i \(-0.768939\pi\)
0.747902 0.663809i \(-0.231061\pi\)
\(252\) 0 0
\(253\) − 13.8578i − 0.871231i
\(254\) 0 0
\(255\) −25.0622 −1.56946
\(256\) 0 0
\(257\) 20.8969 1.30351 0.651756 0.758429i \(-0.274033\pi\)
0.651756 + 0.758429i \(0.274033\pi\)
\(258\) 0 0
\(259\) 9.27443i 0.576285i
\(260\) 0 0
\(261\) 8.18997i 0.506946i
\(262\) 0 0
\(263\) 10.8422 0.668556 0.334278 0.942475i \(-0.391508\pi\)
0.334278 + 0.942475i \(0.391508\pi\)
\(264\) 0 0
\(265\) 23.7703 1.46020
\(266\) 0 0
\(267\) 19.1737i 1.17341i
\(268\) 0 0
\(269\) − 12.2396i − 0.746259i −0.927779 0.373129i \(-0.878285\pi\)
0.927779 0.373129i \(-0.121715\pi\)
\(270\) 0 0
\(271\) 12.5722 0.763710 0.381855 0.924222i \(-0.375285\pi\)
0.381855 + 0.924222i \(0.375285\pi\)
\(272\) 0 0
\(273\) −1.07539 −0.0650856
\(274\) 0 0
\(275\) 20.6777i 1.24691i
\(276\) 0 0
\(277\) − 20.6185i − 1.23885i −0.785057 0.619423i \(-0.787367\pi\)
0.785057 0.619423i \(-0.212633\pi\)
\(278\) 0 0
\(279\) −3.79325 −0.227096
\(280\) 0 0
\(281\) −23.8821 −1.42468 −0.712342 0.701832i \(-0.752366\pi\)
−0.712342 + 0.701832i \(0.752366\pi\)
\(282\) 0 0
\(283\) − 8.59400i − 0.510861i −0.966827 0.255430i \(-0.917783\pi\)
0.966827 0.255430i \(-0.0822171\pi\)
\(284\) 0 0
\(285\) 29.1879i 1.72894i
\(286\) 0 0
\(287\) −7.97166 −0.470552
\(288\) 0 0
\(289\) 33.0647 1.94498
\(290\) 0 0
\(291\) − 3.64599i − 0.213731i
\(292\) 0 0
\(293\) 29.5096i 1.72397i 0.506933 + 0.861986i \(0.330779\pi\)
−0.506933 + 0.861986i \(0.669221\pi\)
\(294\) 0 0
\(295\) −15.4915 −0.901950
\(296\) 0 0
\(297\) −18.4152 −1.06856
\(298\) 0 0
\(299\) 3.91963i 0.226678i
\(300\) 0 0
\(301\) − 10.9281i − 0.629883i
\(302\) 0 0
\(303\) 1.46464 0.0841414
\(304\) 0 0
\(305\) −37.0505 −2.12150
\(306\) 0 0
\(307\) 15.3024i 0.873355i 0.899618 + 0.436677i \(0.143845\pi\)
−0.899618 + 0.436677i \(0.856155\pi\)
\(308\) 0 0
\(309\) 15.2402i 0.866986i
\(310\) 0 0
\(311\) 20.3603 1.15453 0.577264 0.816557i \(-0.304120\pi\)
0.577264 + 0.816557i \(0.304120\pi\)
\(312\) 0 0
\(313\) 19.7452 1.11607 0.558033 0.829819i \(-0.311556\pi\)
0.558033 + 0.829819i \(0.311556\pi\)
\(314\) 0 0
\(315\) 6.07210i 0.342124i
\(316\) 0 0
\(317\) 22.9991i 1.29176i 0.763439 + 0.645880i \(0.223509\pi\)
−0.763439 + 0.645880i \(0.776491\pi\)
\(318\) 0 0
\(319\) 15.7065 0.879395
\(320\) 0 0
\(321\) 0.580049 0.0323752
\(322\) 0 0
\(323\) − 58.3062i − 3.24425i
\(324\) 0 0
\(325\) − 5.84864i − 0.324424i
\(326\) 0 0
\(327\) 14.6960 0.812691
\(328\) 0 0
\(329\) −2.18113 −0.120249
\(330\) 0 0
\(331\) 8.59180i 0.472248i 0.971723 + 0.236124i \(0.0758771\pi\)
−0.971723 + 0.236124i \(0.924123\pi\)
\(332\) 0 0
\(333\) − 17.0977i − 0.936950i
\(334\) 0 0
\(335\) 16.8115 0.918513
\(336\) 0 0
\(337\) 13.5694 0.739175 0.369587 0.929196i \(-0.379499\pi\)
0.369587 + 0.929196i \(0.379499\pi\)
\(338\) 0 0
\(339\) 1.32461i 0.0719427i
\(340\) 0 0
\(341\) 7.27460i 0.393942i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −13.8835 −0.747463
\(346\) 0 0
\(347\) − 7.08248i − 0.380207i −0.981764 0.190104i \(-0.939118\pi\)
0.981764 0.190104i \(-0.0608824\pi\)
\(348\) 0 0
\(349\) − 25.7646i − 1.37915i −0.724216 0.689574i \(-0.757798\pi\)
0.724216 0.689574i \(-0.242202\pi\)
\(350\) 0 0
\(351\) 5.20869 0.278019
\(352\) 0 0
\(353\) 20.2468 1.07763 0.538814 0.842425i \(-0.318873\pi\)
0.538814 + 0.842425i \(0.318873\pi\)
\(354\) 0 0
\(355\) − 8.91319i − 0.473063i
\(356\) 0 0
\(357\) 7.60908i 0.402715i
\(358\) 0 0
\(359\) 27.8989 1.47245 0.736223 0.676739i \(-0.236607\pi\)
0.736223 + 0.676739i \(0.236607\pi\)
\(360\) 0 0
\(361\) −48.9045 −2.57392
\(362\) 0 0
\(363\) 1.61267i 0.0846433i
\(364\) 0 0
\(365\) 7.57597i 0.396545i
\(366\) 0 0
\(367\) −14.4161 −0.752517 −0.376258 0.926515i \(-0.622789\pi\)
−0.376258 + 0.926515i \(0.622789\pi\)
\(368\) 0 0
\(369\) 14.6960 0.765045
\(370\) 0 0
\(371\) − 7.21685i − 0.374680i
\(372\) 0 0
\(373\) 5.84685i 0.302738i 0.988477 + 0.151369i \(0.0483682\pi\)
−0.988477 + 0.151369i \(0.951632\pi\)
\(374\) 0 0
\(375\) 3.00591 0.155224
\(376\) 0 0
\(377\) −4.44254 −0.228802
\(378\) 0 0
\(379\) − 3.49300i − 0.179423i −0.995968 0.0897117i \(-0.971405\pi\)
0.995968 0.0897117i \(-0.0285946\pi\)
\(380\) 0 0
\(381\) 7.61265i 0.390008i
\(382\) 0 0
\(383\) 11.9167 0.608917 0.304459 0.952526i \(-0.401524\pi\)
0.304459 + 0.952526i \(0.401524\pi\)
\(384\) 0 0
\(385\) 11.6449 0.593479
\(386\) 0 0
\(387\) 20.1462i 1.02409i
\(388\) 0 0
\(389\) − 16.2782i − 0.825337i −0.910881 0.412669i \(-0.864597\pi\)
0.910881 0.412669i \(-0.135403\pi\)
\(390\) 0 0
\(391\) 27.7339 1.40256
\(392\) 0 0
\(393\) 11.8900 0.599769
\(394\) 0 0
\(395\) − 34.8159i − 1.75178i
\(396\) 0 0
\(397\) 20.7126i 1.03953i 0.854308 + 0.519767i \(0.173981\pi\)
−0.854308 + 0.519767i \(0.826019\pi\)
\(398\) 0 0
\(399\) 8.86167 0.443639
\(400\) 0 0
\(401\) −8.10034 −0.404512 −0.202256 0.979333i \(-0.564827\pi\)
−0.202256 + 0.979333i \(0.564827\pi\)
\(402\) 0 0
\(403\) − 2.05760i − 0.102496i
\(404\) 0 0
\(405\) 0.233131i 0.0115844i
\(406\) 0 0
\(407\) −32.7896 −1.62532
\(408\) 0 0
\(409\) 3.28603 0.162484 0.0812419 0.996694i \(-0.474111\pi\)
0.0812419 + 0.996694i \(0.474111\pi\)
\(410\) 0 0
\(411\) 16.5811i 0.817884i
\(412\) 0 0
\(413\) 4.70334i 0.231436i
\(414\) 0 0
\(415\) 15.2198 0.747112
\(416\) 0 0
\(417\) 21.1218 1.03434
\(418\) 0 0
\(419\) − 10.5245i − 0.514154i −0.966391 0.257077i \(-0.917241\pi\)
0.966391 0.257077i \(-0.0827594\pi\)
\(420\) 0 0
\(421\) − 1.95938i − 0.0954943i −0.998859 0.0477471i \(-0.984796\pi\)
0.998859 0.0477471i \(-0.0152042\pi\)
\(422\) 0 0
\(423\) 4.02098 0.195507
\(424\) 0 0
\(425\) −41.3829 −2.00736
\(426\) 0 0
\(427\) 11.2488i 0.544368i
\(428\) 0 0
\(429\) − 3.80202i − 0.183563i
\(430\) 0 0
\(431\) 17.2196 0.829437 0.414719 0.909950i \(-0.363880\pi\)
0.414719 + 0.909950i \(0.363880\pi\)
\(432\) 0 0
\(433\) 27.4973 1.32144 0.660719 0.750634i \(-0.270252\pi\)
0.660719 + 0.750634i \(0.270252\pi\)
\(434\) 0 0
\(435\) − 15.7357i − 0.754467i
\(436\) 0 0
\(437\) − 32.2994i − 1.54509i
\(438\) 0 0
\(439\) 11.2679 0.537785 0.268893 0.963170i \(-0.413342\pi\)
0.268893 + 0.963170i \(0.413342\pi\)
\(440\) 0 0
\(441\) 1.84353 0.0877873
\(442\) 0 0
\(443\) − 6.61429i − 0.314255i −0.987578 0.157127i \(-0.949777\pi\)
0.987578 0.157127i \(-0.0502233\pi\)
\(444\) 0 0
\(445\) 58.7255i 2.78385i
\(446\) 0 0
\(447\) −8.73713 −0.413252
\(448\) 0 0
\(449\) −30.8166 −1.45433 −0.727164 0.686464i \(-0.759162\pi\)
−0.727164 + 0.686464i \(0.759162\pi\)
\(450\) 0 0
\(451\) − 28.1836i − 1.32712i
\(452\) 0 0
\(453\) − 13.0128i − 0.611396i
\(454\) 0 0
\(455\) −3.29373 −0.154412
\(456\) 0 0
\(457\) −0.152457 −0.00713164 −0.00356582 0.999994i \(-0.501135\pi\)
−0.00356582 + 0.999994i \(0.501135\pi\)
\(458\) 0 0
\(459\) − 36.8548i − 1.72024i
\(460\) 0 0
\(461\) 8.56283i 0.398811i 0.979917 + 0.199405i \(0.0639010\pi\)
−0.979917 + 0.199405i \(0.936099\pi\)
\(462\) 0 0
\(463\) −2.68222 −0.124653 −0.0623267 0.998056i \(-0.519852\pi\)
−0.0623267 + 0.998056i \(0.519852\pi\)
\(464\) 0 0
\(465\) 7.28811 0.337978
\(466\) 0 0
\(467\) − 34.2546i − 1.58511i −0.609797 0.792557i \(-0.708749\pi\)
0.609797 0.792557i \(-0.291251\pi\)
\(468\) 0 0
\(469\) − 5.10411i − 0.235686i
\(470\) 0 0
\(471\) 2.06799 0.0952878
\(472\) 0 0
\(473\) 38.6359 1.77648
\(474\) 0 0
\(475\) 48.1952i 2.21135i
\(476\) 0 0
\(477\) 13.3045i 0.609172i
\(478\) 0 0
\(479\) −20.9436 −0.956939 −0.478469 0.878104i \(-0.658808\pi\)
−0.478469 + 0.878104i \(0.658808\pi\)
\(480\) 0 0
\(481\) 9.27443 0.422878
\(482\) 0 0
\(483\) 4.21514i 0.191795i
\(484\) 0 0
\(485\) − 11.1670i − 0.507067i
\(486\) 0 0
\(487\) −25.8592 −1.17179 −0.585897 0.810386i \(-0.699258\pi\)
−0.585897 + 0.810386i \(0.699258\pi\)
\(488\) 0 0
\(489\) 6.95176 0.314369
\(490\) 0 0
\(491\) − 15.7060i − 0.708802i −0.935094 0.354401i \(-0.884685\pi\)
0.935094 0.354401i \(-0.115315\pi\)
\(492\) 0 0
\(493\) 31.4338i 1.41571i
\(494\) 0 0
\(495\) −21.4678 −0.964905
\(496\) 0 0
\(497\) −2.70611 −0.121386
\(498\) 0 0
\(499\) 7.09732i 0.317720i 0.987301 + 0.158860i \(0.0507818\pi\)
−0.987301 + 0.158860i \(0.949218\pi\)
\(500\) 0 0
\(501\) 7.08010i 0.316316i
\(502\) 0 0
\(503\) −4.14825 −0.184961 −0.0924806 0.995714i \(-0.529480\pi\)
−0.0924806 + 0.995714i \(0.529480\pi\)
\(504\) 0 0
\(505\) 4.48593 0.199621
\(506\) 0 0
\(507\) 1.07539i 0.0477598i
\(508\) 0 0
\(509\) − 4.40744i − 0.195356i −0.995218 0.0976781i \(-0.968858\pi\)
0.995218 0.0976781i \(-0.0311416\pi\)
\(510\) 0 0
\(511\) 2.30012 0.101751
\(512\) 0 0
\(513\) −42.9218 −1.89504
\(514\) 0 0
\(515\) 46.6780i 2.05688i
\(516\) 0 0
\(517\) − 7.71133i − 0.339144i
\(518\) 0 0
\(519\) 6.72377 0.295141
\(520\) 0 0
\(521\) 23.9822 1.05068 0.525340 0.850893i \(-0.323938\pi\)
0.525340 + 0.850893i \(0.323938\pi\)
\(522\) 0 0
\(523\) − 22.9106i − 1.00181i −0.865503 0.500904i \(-0.833001\pi\)
0.865503 0.500904i \(-0.166999\pi\)
\(524\) 0 0
\(525\) − 6.28957i − 0.274499i
\(526\) 0 0
\(527\) −14.5588 −0.634193
\(528\) 0 0
\(529\) −7.63649 −0.332021
\(530\) 0 0
\(531\) − 8.67076i − 0.376279i
\(532\) 0 0
\(533\) 7.97166i 0.345291i
\(534\) 0 0
\(535\) 1.77658 0.0768084
\(536\) 0 0
\(537\) 3.76941 0.162662
\(538\) 0 0
\(539\) − 3.53548i − 0.152284i
\(540\) 0 0
\(541\) 29.7802i 1.28035i 0.768228 + 0.640176i \(0.221139\pi\)
−0.768228 + 0.640176i \(0.778861\pi\)
\(542\) 0 0
\(543\) 7.10892 0.305073
\(544\) 0 0
\(545\) 45.0112 1.92807
\(546\) 0 0
\(547\) 3.91692i 0.167476i 0.996488 + 0.0837378i \(0.0266858\pi\)
−0.996488 + 0.0837378i \(0.973314\pi\)
\(548\) 0 0
\(549\) − 20.7375i − 0.885057i
\(550\) 0 0
\(551\) 36.6084 1.55957
\(552\) 0 0
\(553\) −10.5704 −0.449498
\(554\) 0 0
\(555\) 32.8504i 1.39442i
\(556\) 0 0
\(557\) 39.7322i 1.68351i 0.539863 + 0.841753i \(0.318476\pi\)
−0.539863 + 0.841753i \(0.681524\pi\)
\(558\) 0 0
\(559\) −10.9281 −0.462207
\(560\) 0 0
\(561\) −26.9018 −1.13579
\(562\) 0 0
\(563\) 4.85396i 0.204570i 0.994755 + 0.102285i \(0.0326154\pi\)
−0.994755 + 0.102285i \(0.967385\pi\)
\(564\) 0 0
\(565\) 4.05702i 0.170680i
\(566\) 0 0
\(567\) 0.0707804 0.00297250
\(568\) 0 0
\(569\) 43.2659 1.81380 0.906901 0.421343i \(-0.138441\pi\)
0.906901 + 0.421343i \(0.138441\pi\)
\(570\) 0 0
\(571\) 3.98213i 0.166647i 0.996523 + 0.0833234i \(0.0265534\pi\)
−0.996523 + 0.0833234i \(0.973447\pi\)
\(572\) 0 0
\(573\) 23.1783i 0.968287i
\(574\) 0 0
\(575\) −22.9245 −0.956018
\(576\) 0 0
\(577\) 22.1093 0.920424 0.460212 0.887809i \(-0.347773\pi\)
0.460212 + 0.887809i \(0.347773\pi\)
\(578\) 0 0
\(579\) 18.4518i 0.766831i
\(580\) 0 0
\(581\) − 4.62086i − 0.191705i
\(582\) 0 0
\(583\) 25.5150 1.05672
\(584\) 0 0
\(585\) 6.07210 0.251050
\(586\) 0 0
\(587\) 43.8225i 1.80875i 0.426740 + 0.904374i \(0.359662\pi\)
−0.426740 + 0.904374i \(0.640338\pi\)
\(588\) 0 0
\(589\) 16.9555i 0.698638i
\(590\) 0 0
\(591\) −15.5400 −0.639231
\(592\) 0 0
\(593\) −14.1537 −0.581224 −0.290612 0.956841i \(-0.593859\pi\)
−0.290612 + 0.956841i \(0.593859\pi\)
\(594\) 0 0
\(595\) 23.3052i 0.955421i
\(596\) 0 0
\(597\) 11.0678i 0.452973i
\(598\) 0 0
\(599\) 12.0963 0.494240 0.247120 0.968985i \(-0.420516\pi\)
0.247120 + 0.968985i \(0.420516\pi\)
\(600\) 0 0
\(601\) 18.9414 0.772637 0.386318 0.922366i \(-0.373747\pi\)
0.386318 + 0.922366i \(0.373747\pi\)
\(602\) 0 0
\(603\) 9.40960i 0.383189i
\(604\) 0 0
\(605\) 4.93932i 0.200812i
\(606\) 0 0
\(607\) 13.8448 0.561945 0.280972 0.959716i \(-0.409343\pi\)
0.280972 + 0.959716i \(0.409343\pi\)
\(608\) 0 0
\(609\) −4.77747 −0.193593
\(610\) 0 0
\(611\) 2.18113i 0.0882389i
\(612\) 0 0
\(613\) − 27.5703i − 1.11355i −0.830662 0.556777i \(-0.812038\pi\)
0.830662 0.556777i \(-0.187962\pi\)
\(614\) 0 0
\(615\) −28.2360 −1.13858
\(616\) 0 0
\(617\) 39.6703 1.59706 0.798532 0.601952i \(-0.205610\pi\)
0.798532 + 0.601952i \(0.205610\pi\)
\(618\) 0 0
\(619\) 5.27718i 0.212108i 0.994360 + 0.106054i \(0.0338216\pi\)
−0.994360 + 0.106054i \(0.966178\pi\)
\(620\) 0 0
\(621\) − 20.4162i − 0.819272i
\(622\) 0 0
\(623\) 17.8295 0.714323
\(624\) 0 0
\(625\) −20.0366 −0.801465
\(626\) 0 0
\(627\) 31.3303i 1.25121i
\(628\) 0 0
\(629\) − 65.6225i − 2.61654i
\(630\) 0 0
\(631\) −40.3059 −1.60455 −0.802277 0.596953i \(-0.796378\pi\)
−0.802277 + 0.596953i \(0.796378\pi\)
\(632\) 0 0
\(633\) 15.5015 0.616130
\(634\) 0 0
\(635\) 23.3162i 0.925274i
\(636\) 0 0
\(637\) 1.00000i 0.0396214i
\(638\) 0 0
\(639\) 4.98881 0.197354
\(640\) 0 0
\(641\) −28.4345 −1.12309 −0.561547 0.827445i \(-0.689793\pi\)
−0.561547 + 0.827445i \(0.689793\pi\)
\(642\) 0 0
\(643\) 27.4356i 1.08196i 0.841037 + 0.540978i \(0.181946\pi\)
−0.841037 + 0.540978i \(0.818054\pi\)
\(644\) 0 0
\(645\) − 38.7077i − 1.52411i
\(646\) 0 0
\(647\) 27.2040 1.06950 0.534751 0.845010i \(-0.320406\pi\)
0.534751 + 0.845010i \(0.320406\pi\)
\(648\) 0 0
\(649\) −16.6286 −0.652728
\(650\) 0 0
\(651\) − 2.21272i − 0.0867235i
\(652\) 0 0
\(653\) 23.2488i 0.909794i 0.890544 + 0.454897i \(0.150324\pi\)
−0.890544 + 0.454897i \(0.849676\pi\)
\(654\) 0 0
\(655\) 36.4168 1.42292
\(656\) 0 0
\(657\) −4.24035 −0.165432
\(658\) 0 0
\(659\) − 20.4720i − 0.797476i −0.917065 0.398738i \(-0.869448\pi\)
0.917065 0.398738i \(-0.130552\pi\)
\(660\) 0 0
\(661\) 15.2233i 0.592116i 0.955170 + 0.296058i \(0.0956722\pi\)
−0.955170 + 0.296058i \(0.904328\pi\)
\(662\) 0 0
\(663\) 7.60908 0.295512
\(664\) 0 0
\(665\) 27.1417 1.05251
\(666\) 0 0
\(667\) 17.4131i 0.674238i
\(668\) 0 0
\(669\) − 16.6939i − 0.645422i
\(670\) 0 0
\(671\) −39.7699 −1.53530
\(672\) 0 0
\(673\) 36.5446 1.40869 0.704346 0.709857i \(-0.251240\pi\)
0.704346 + 0.709857i \(0.251240\pi\)
\(674\) 0 0
\(675\) 30.4638i 1.17255i
\(676\) 0 0
\(677\) 5.69044i 0.218702i 0.994003 + 0.109351i \(0.0348772\pi\)
−0.994003 + 0.109351i \(0.965123\pi\)
\(678\) 0 0
\(679\) −3.39038 −0.130111
\(680\) 0 0
\(681\) 26.3292 1.00894
\(682\) 0 0
\(683\) 34.9695i 1.33807i 0.743231 + 0.669035i \(0.233292\pi\)
−0.743231 + 0.669035i \(0.766708\pi\)
\(684\) 0 0
\(685\) 50.7848i 1.94039i
\(686\) 0 0
\(687\) −5.07369 −0.193573
\(688\) 0 0
\(689\) −7.21685 −0.274940
\(690\) 0 0
\(691\) 16.4333i 0.625153i 0.949893 + 0.312577i \(0.101192\pi\)
−0.949893 + 0.312577i \(0.898808\pi\)
\(692\) 0 0
\(693\) 6.51778i 0.247590i
\(694\) 0 0
\(695\) 64.6921 2.45391
\(696\) 0 0
\(697\) 56.4046 2.13648
\(698\) 0 0
\(699\) 9.23037i 0.349125i
\(700\) 0 0
\(701\) − 1.51469i − 0.0572091i −0.999591 0.0286046i \(-0.990894\pi\)
0.999591 0.0286046i \(-0.00910635\pi\)
\(702\) 0 0
\(703\) −76.4252 −2.88243
\(704\) 0 0
\(705\) −7.72565 −0.290965
\(706\) 0 0
\(707\) − 1.36196i − 0.0512218i
\(708\) 0 0
\(709\) − 0.866021i − 0.0325241i −0.999868 0.0162621i \(-0.994823\pi\)
0.999868 0.0162621i \(-0.00517660\pi\)
\(710\) 0 0
\(711\) 19.4868 0.730814
\(712\) 0 0
\(713\) −8.06503 −0.302038
\(714\) 0 0
\(715\) − 11.6449i − 0.435495i
\(716\) 0 0
\(717\) 3.83095i 0.143070i
\(718\) 0 0
\(719\) −7.35218 −0.274190 −0.137095 0.990558i \(-0.543777\pi\)
−0.137095 + 0.990558i \(0.543777\pi\)
\(720\) 0 0
\(721\) 14.1718 0.527786
\(722\) 0 0
\(723\) − 6.37841i − 0.237216i
\(724\) 0 0
\(725\) − 25.9828i − 0.964977i
\(726\) 0 0
\(727\) 35.8895 1.33107 0.665534 0.746367i \(-0.268204\pi\)
0.665534 + 0.746367i \(0.268204\pi\)
\(728\) 0 0
\(729\) −16.9346 −0.627209
\(730\) 0 0
\(731\) 77.3230i 2.85989i
\(732\) 0 0
\(733\) 12.9753i 0.479255i 0.970865 + 0.239627i \(0.0770253\pi\)
−0.970865 + 0.239627i \(0.922975\pi\)
\(734\) 0 0
\(735\) −3.54204 −0.130650
\(736\) 0 0
\(737\) 18.0455 0.664714
\(738\) 0 0
\(739\) − 19.0725i − 0.701593i −0.936452 0.350796i \(-0.885911\pi\)
0.936452 0.350796i \(-0.114089\pi\)
\(740\) 0 0
\(741\) − 8.86167i − 0.325542i
\(742\) 0 0
\(743\) 32.0906 1.17729 0.588645 0.808392i \(-0.299662\pi\)
0.588645 + 0.808392i \(0.299662\pi\)
\(744\) 0 0
\(745\) −26.7602 −0.980419
\(746\) 0 0
\(747\) 8.51870i 0.311683i
\(748\) 0 0
\(749\) − 0.539384i − 0.0197087i
\(750\) 0 0
\(751\) 0.631312 0.0230369 0.0115185 0.999934i \(-0.496333\pi\)
0.0115185 + 0.999934i \(0.496333\pi\)
\(752\) 0 0
\(753\) −22.6192 −0.824288
\(754\) 0 0
\(755\) − 39.8559i − 1.45050i
\(756\) 0 0
\(757\) − 48.2035i − 1.75199i −0.482324 0.875993i \(-0.660207\pi\)
0.482324 0.875993i \(-0.339793\pi\)
\(758\) 0 0
\(759\) −14.9025 −0.540928
\(760\) 0 0
\(761\) 19.3671 0.702057 0.351028 0.936365i \(-0.385832\pi\)
0.351028 + 0.936365i \(0.385832\pi\)
\(762\) 0 0
\(763\) − 13.6657i − 0.494733i
\(764\) 0 0
\(765\) − 42.9640i − 1.55337i
\(766\) 0 0
\(767\) 4.70334 0.169828
\(768\) 0 0
\(769\) −35.3325 −1.27412 −0.637062 0.770813i \(-0.719850\pi\)
−0.637062 + 0.770813i \(0.719850\pi\)
\(770\) 0 0
\(771\) − 22.4723i − 0.809321i
\(772\) 0 0
\(773\) − 6.73815i − 0.242354i −0.992631 0.121177i \(-0.961333\pi\)
0.992631 0.121177i \(-0.0386669\pi\)
\(774\) 0 0
\(775\) 12.0342 0.432279
\(776\) 0 0
\(777\) 9.97364 0.357802
\(778\) 0 0
\(779\) − 65.6898i − 2.35358i
\(780\) 0 0
\(781\) − 9.56740i − 0.342348i
\(782\) 0 0
\(783\) 23.1398 0.826950
\(784\) 0 0
\(785\) 6.33386 0.226065
\(786\) 0 0
\(787\) 14.0496i 0.500815i 0.968141 + 0.250407i \(0.0805646\pi\)
−0.968141 + 0.250407i \(0.919435\pi\)
\(788\) 0 0
\(789\) − 11.6596i − 0.415091i
\(790\) 0 0
\(791\) 1.23174 0.0437957
\(792\) 0 0
\(793\) 11.2488 0.399457
\(794\) 0 0
\(795\) − 25.5624i − 0.906605i
\(796\) 0 0
\(797\) − 5.17217i − 0.183208i −0.995796 0.0916038i \(-0.970801\pi\)
0.995796 0.0916038i \(-0.0291993\pi\)
\(798\) 0 0
\(799\) 15.4329 0.545976
\(800\) 0 0
\(801\) −32.8693 −1.16138
\(802\) 0 0
\(803\) 8.13203i 0.286973i
\(804\) 0 0
\(805\) 12.9102i 0.455025i
\(806\) 0 0
\(807\) −13.1623 −0.463335
\(808\) 0 0
\(809\) −39.2545 −1.38012 −0.690058 0.723754i \(-0.742415\pi\)
−0.690058 + 0.723754i \(0.742415\pi\)
\(810\) 0 0
\(811\) − 28.7996i − 1.01129i −0.862741 0.505646i \(-0.831254\pi\)
0.862741 0.505646i \(-0.168746\pi\)
\(812\) 0 0
\(813\) − 13.5201i − 0.474170i
\(814\) 0 0
\(815\) 21.2920 0.745825
\(816\) 0 0
\(817\) 90.0517 3.15051
\(818\) 0 0
\(819\) − 1.84353i − 0.0644183i
\(820\) 0 0
\(821\) 8.35801i 0.291697i 0.989307 + 0.145848i \(0.0465911\pi\)
−0.989307 + 0.145848i \(0.953409\pi\)
\(822\) 0 0
\(823\) 27.4158 0.955653 0.477827 0.878454i \(-0.341425\pi\)
0.477827 + 0.878454i \(0.341425\pi\)
\(824\) 0 0
\(825\) 22.2366 0.774181
\(826\) 0 0
\(827\) − 22.7213i − 0.790099i −0.918660 0.395049i \(-0.870727\pi\)
0.918660 0.395049i \(-0.129273\pi\)
\(828\) 0 0
\(829\) − 24.3132i − 0.844433i −0.906495 0.422217i \(-0.861252\pi\)
0.906495 0.422217i \(-0.138748\pi\)
\(830\) 0 0
\(831\) −22.1730 −0.769172
\(832\) 0 0
\(833\) 7.07564 0.245156
\(834\) 0 0
\(835\) 21.6851i 0.750443i
\(836\) 0 0
\(837\) 10.7174i 0.370448i
\(838\) 0 0
\(839\) −4.37406 −0.151009 −0.0755047 0.997145i \(-0.524057\pi\)
−0.0755047 + 0.997145i \(0.524057\pi\)
\(840\) 0 0
\(841\) 9.26386 0.319443
\(842\) 0 0
\(843\) 25.6826i 0.884555i
\(844\) 0 0
\(845\) 3.29373i 0.113308i
\(846\) 0 0
\(847\) 1.49961 0.0515273
\(848\) 0 0
\(849\) −9.24192 −0.317182
\(850\) 0 0
\(851\) − 36.3524i − 1.24614i
\(852\) 0 0
\(853\) − 40.2813i − 1.37920i −0.724189 0.689602i \(-0.757786\pi\)
0.724189 0.689602i \(-0.242214\pi\)
\(854\) 0 0
\(855\) −50.0366 −1.71122
\(856\) 0 0
\(857\) 2.44368 0.0834745 0.0417372 0.999129i \(-0.486711\pi\)
0.0417372 + 0.999129i \(0.486711\pi\)
\(858\) 0 0
\(859\) 35.2686i 1.20335i 0.798741 + 0.601675i \(0.205500\pi\)
−0.798741 + 0.601675i \(0.794500\pi\)
\(860\) 0 0
\(861\) 8.57265i 0.292155i
\(862\) 0 0
\(863\) −47.1579 −1.60527 −0.802637 0.596468i \(-0.796570\pi\)
−0.802637 + 0.596468i \(0.796570\pi\)
\(864\) 0 0
\(865\) 20.5937 0.700206
\(866\) 0 0
\(867\) − 35.5575i − 1.20760i
\(868\) 0 0
\(869\) − 37.3713i − 1.26774i
\(870\) 0 0
\(871\) −5.10411 −0.172946
\(872\) 0 0
\(873\) 6.25028 0.211540
\(874\) 0 0
\(875\) − 2.79518i − 0.0944942i
\(876\) 0 0
\(877\) 41.3342i 1.39576i 0.716216 + 0.697878i \(0.245872\pi\)
−0.716216 + 0.697878i \(0.754128\pi\)
\(878\) 0 0
\(879\) 31.7344 1.07037
\(880\) 0 0
\(881\) 16.2539 0.547608 0.273804 0.961785i \(-0.411718\pi\)
0.273804 + 0.961785i \(0.411718\pi\)
\(882\) 0 0
\(883\) − 8.18469i − 0.275437i −0.990471 0.137718i \(-0.956023\pi\)
0.990471 0.137718i \(-0.0439769\pi\)
\(884\) 0 0
\(885\) 16.6594i 0.560001i
\(886\) 0 0
\(887\) −13.9240 −0.467521 −0.233760 0.972294i \(-0.575103\pi\)
−0.233760 + 0.972294i \(0.575103\pi\)
\(888\) 0 0
\(889\) 7.07896 0.237421
\(890\) 0 0
\(891\) 0.250243i 0.00838345i
\(892\) 0 0
\(893\) − 17.9734i − 0.601457i
\(894\) 0 0
\(895\) 11.5450 0.385908
\(896\) 0 0
\(897\) 4.21514 0.140739
\(898\) 0 0
\(899\) − 9.14096i − 0.304868i
\(900\) 0 0
\(901\) 51.0639i 1.70118i
\(902\) 0 0
\(903\) −11.7519 −0.391080
\(904\) 0 0
\(905\) 21.7733 0.723770
\(906\) 0 0
\(907\) − 4.38627i − 0.145644i −0.997345 0.0728219i \(-0.976800\pi\)
0.997345 0.0728219i \(-0.0232005\pi\)
\(908\) 0 0
\(909\) 2.51082i 0.0832787i
\(910\) 0 0
\(911\) −40.7194 −1.34909 −0.674547 0.738232i \(-0.735661\pi\)
−0.674547 + 0.738232i \(0.735661\pi\)
\(912\) 0 0
\(913\) 16.3369 0.540674
\(914\) 0 0
\(915\) 39.8438i 1.31719i
\(916\) 0 0
\(917\) − 11.0564i − 0.365115i
\(918\) 0 0
\(919\) −6.58805 −0.217320 −0.108660 0.994079i \(-0.534656\pi\)
−0.108660 + 0.994079i \(0.534656\pi\)
\(920\) 0 0
\(921\) 16.4561 0.542246
\(922\) 0 0
\(923\) 2.70611i 0.0890727i
\(924\) 0 0
\(925\) 54.2428i 1.78349i
\(926\) 0 0
\(927\) −26.1262 −0.858097
\(928\) 0 0
\(929\) 13.8167 0.453312 0.226656 0.973975i \(-0.427221\pi\)
0.226656 + 0.973975i \(0.427221\pi\)
\(930\) 0 0
\(931\) − 8.24042i − 0.270069i
\(932\) 0 0
\(933\) − 21.8953i − 0.716821i
\(934\) 0 0
\(935\) −82.3952 −2.69461
\(936\) 0 0
\(937\) 3.62263 0.118346 0.0591731 0.998248i \(-0.481154\pi\)
0.0591731 + 0.998248i \(0.481154\pi\)
\(938\) 0 0
\(939\) − 21.2338i − 0.692940i
\(940\) 0 0
\(941\) 46.8059i 1.52583i 0.646500 + 0.762914i \(0.276232\pi\)
−0.646500 + 0.762914i \(0.723768\pi\)
\(942\) 0 0
\(943\) 31.2460 1.01751
\(944\) 0 0
\(945\) 17.1560 0.558085
\(946\) 0 0
\(947\) − 31.9520i − 1.03830i −0.854683 0.519151i \(-0.826248\pi\)
0.854683 0.519151i \(-0.173752\pi\)
\(948\) 0 0
\(949\) − 2.30012i − 0.0746651i
\(950\) 0 0
\(951\) 24.7331 0.802025
\(952\) 0 0
\(953\) 21.8310 0.707175 0.353587 0.935402i \(-0.384962\pi\)
0.353587 + 0.935402i \(0.384962\pi\)
\(954\) 0 0
\(955\) 70.9909i 2.29721i
\(956\) 0 0
\(957\) − 16.8906i − 0.545997i
\(958\) 0 0
\(959\) 15.4186 0.497894
\(960\) 0 0
\(961\) −26.7663 −0.863429
\(962\) 0 0
\(963\) 0.994373i 0.0320432i
\(964\) 0 0
\(965\) 56.5145i 1.81927i
\(966\) 0 0
\(967\) −7.00868 −0.225384 −0.112692 0.993630i \(-0.535947\pi\)
−0.112692 + 0.993630i \(0.535947\pi\)
\(968\) 0 0
\(969\) −62.7020 −2.01428
\(970\) 0 0
\(971\) − 11.1885i − 0.359057i −0.983753 0.179529i \(-0.942543\pi\)
0.983753 0.179529i \(-0.0574572\pi\)
\(972\) 0 0
\(973\) − 19.6410i − 0.629662i
\(974\) 0 0
\(975\) −6.28957 −0.201427
\(976\) 0 0
\(977\) −44.4907 −1.42338 −0.711691 0.702493i \(-0.752070\pi\)
−0.711691 + 0.702493i \(0.752070\pi\)
\(978\) 0 0
\(979\) 63.0358i 2.01463i
\(980\) 0 0
\(981\) 25.1932i 0.804358i
\(982\) 0 0
\(983\) 2.17498 0.0693711 0.0346855 0.999398i \(-0.488957\pi\)
0.0346855 + 0.999398i \(0.488957\pi\)
\(984\) 0 0
\(985\) −47.5963 −1.51654
\(986\) 0 0
\(987\) 2.34556i 0.0746601i
\(988\) 0 0
\(989\) 42.8339i 1.36204i
\(990\) 0 0
\(991\) 20.1092 0.638791 0.319396 0.947621i \(-0.396520\pi\)
0.319396 + 0.947621i \(0.396520\pi\)
\(992\) 0 0
\(993\) 9.23954 0.293208
\(994\) 0 0
\(995\) 33.8985i 1.07466i
\(996\) 0 0
\(997\) − 23.3968i − 0.740985i −0.928836 0.370492i \(-0.879189\pi\)
0.928836 0.370492i \(-0.120811\pi\)
\(998\) 0 0
\(999\) −48.3077 −1.52839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.b.1457.14 38
4.3 odd 2 728.2.c.b.365.26 yes 38
8.3 odd 2 728.2.c.b.365.25 38
8.5 even 2 inner 2912.2.c.b.1457.25 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.25 38 8.3 odd 2
728.2.c.b.365.26 yes 38 4.3 odd 2
2912.2.c.b.1457.14 38 1.1 even 1 trivial
2912.2.c.b.1457.25 38 8.5 even 2 inner