Properties

Label 2912.2.c.b
Level $2912$
Weight $2$
Character orbit 2912.c
Analytic conductor $23.252$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1457,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 38 q - 38 q^{7} - 46 q^{9} + 8 q^{15} + 20 q^{17} - 12 q^{23} - 50 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 38 q^{49} + 8 q^{57} + 46 q^{63} + 20 q^{65} + 12 q^{79} + 62 q^{81} + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1457.1 0 3.25810i 0 1.19614i 0 −1.00000 0 −7.61524 0
1457.2 0 3.17321i 0 3.62722i 0 −1.00000 0 −7.06928 0
1457.3 0 3.05148i 0 3.70659i 0 −1.00000 0 −6.31151 0
1457.4 0 2.99675i 0 2.10333i 0 −1.00000 0 −5.98049 0
1457.5 0 2.79941i 0 3.17859i 0 −1.00000 0 −4.83671 0
1457.6 0 2.40918i 0 0.687773i 0 −1.00000 0 −2.80413 0
1457.7 0 2.33171i 0 0.889625i 0 −1.00000 0 −2.43685 0
1457.8 0 2.23317i 0 1.70457i 0 −1.00000 0 −1.98704 0
1457.9 0 2.10063i 0 0.418613i 0 −1.00000 0 −1.41263 0
1457.10 0 1.89594i 0 1.04788i 0 −1.00000 0 −0.594602 0
1457.11 0 1.67830i 0 0.0254406i 0 −1.00000 0 0.183319 0
1457.12 0 1.48422i 0 4.04476i 0 −1.00000 0 0.797083 0
1457.13 0 1.13807i 0 2.82904i 0 −1.00000 0 1.70480 0
1457.14 0 1.07539i 0 3.29373i 0 −1.00000 0 1.84353 0
1457.15 0 0.912057i 0 2.01280i 0 −1.00000 0 2.16815 0
1457.16 0 0.560000i 0 0.293198i 0 −1.00000 0 2.68640 0
1457.17 0 0.472093i 0 4.35100i 0 −1.00000 0 2.77713 0
1457.18 0 0.273626i 0 2.12501i 0 −1.00000 0 2.92513 0
1457.19 0 0.192506i 0 2.98429i 0 −1.00000 0 2.96294 0
1457.20 0 0.192506i 0 2.98429i 0 −1.00000 0 2.96294 0
See all 38 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1457.38
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2912.2.c.b 38
4.b odd 2 1 728.2.c.b 38
8.b even 2 1 inner 2912.2.c.b 38
8.d odd 2 1 728.2.c.b 38
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.c.b 38 4.b odd 2 1
728.2.c.b 38 8.d odd 2 1
2912.2.c.b 38 1.a even 1 1 trivial
2912.2.c.b 38 8.b even 2 1 inner