Properties

Label 2912.2.c.b.1457.2
Level $2912$
Weight $2$
Character 2912.1457
Analytic conductor $23.252$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(1457,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.1457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.2
Character \(\chi\) \(=\) 2912.1457
Dual form 2912.2.c.b.1457.37

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.17321i q^{3} +3.62722i q^{5} -1.00000 q^{7} -7.06928 q^{9} +4.46405i q^{11} -1.00000i q^{13} +11.5100 q^{15} -4.52215 q^{17} -5.32637i q^{19} +3.17321i q^{21} +3.03715 q^{23} -8.15676 q^{25} +12.9127i q^{27} -5.95865i q^{29} +2.16610 q^{31} +14.1654 q^{33} -3.62722i q^{35} +5.35761i q^{37} -3.17321 q^{39} +7.13247 q^{41} -10.8225i q^{43} -25.6419i q^{45} +5.62889 q^{47} +1.00000 q^{49} +14.3498i q^{51} -4.80681i q^{53} -16.1921 q^{55} -16.9017 q^{57} -9.69248i q^{59} -1.86977i q^{61} +7.06928 q^{63} +3.62722 q^{65} -2.96132i q^{67} -9.63752i q^{69} +7.49730 q^{71} +8.99757 q^{73} +25.8831i q^{75} -4.46405i q^{77} +0.795743 q^{79} +19.7668 q^{81} -15.6044i q^{83} -16.4029i q^{85} -18.9080 q^{87} +5.98526 q^{89} +1.00000i q^{91} -6.87349i q^{93} +19.3200 q^{95} -4.04656 q^{97} -31.5576i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 38 q^{7} - 46 q^{9} + 8 q^{15} + 20 q^{17} - 12 q^{23} - 50 q^{25} - 16 q^{31} - 8 q^{33} - 8 q^{39} + 8 q^{41} + 38 q^{49} + 8 q^{57} + 46 q^{63} + 20 q^{65} + 12 q^{79} + 62 q^{81} + 56 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.17321i − 1.83206i −0.401115 0.916028i \(-0.631377\pi\)
0.401115 0.916028i \(-0.368623\pi\)
\(4\) 0 0
\(5\) 3.62722i 1.62214i 0.584946 + 0.811072i \(0.301116\pi\)
−0.584946 + 0.811072i \(0.698884\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −7.06928 −2.35643
\(10\) 0 0
\(11\) 4.46405i 1.34596i 0.739659 + 0.672981i \(0.234987\pi\)
−0.739659 + 0.672981i \(0.765013\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 11.5100 2.97186
\(16\) 0 0
\(17\) −4.52215 −1.09678 −0.548392 0.836222i \(-0.684760\pi\)
−0.548392 + 0.836222i \(0.684760\pi\)
\(18\) 0 0
\(19\) − 5.32637i − 1.22195i −0.791648 0.610977i \(-0.790777\pi\)
0.791648 0.610977i \(-0.209223\pi\)
\(20\) 0 0
\(21\) 3.17321i 0.692452i
\(22\) 0 0
\(23\) 3.03715 0.633289 0.316645 0.948544i \(-0.397444\pi\)
0.316645 + 0.948544i \(0.397444\pi\)
\(24\) 0 0
\(25\) −8.15676 −1.63135
\(26\) 0 0
\(27\) 12.9127i 2.48505i
\(28\) 0 0
\(29\) − 5.95865i − 1.10649i −0.833018 0.553246i \(-0.813389\pi\)
0.833018 0.553246i \(-0.186611\pi\)
\(30\) 0 0
\(31\) 2.16610 0.389043 0.194521 0.980898i \(-0.437685\pi\)
0.194521 + 0.980898i \(0.437685\pi\)
\(32\) 0 0
\(33\) 14.1654 2.46588
\(34\) 0 0
\(35\) − 3.62722i − 0.613113i
\(36\) 0 0
\(37\) 5.35761i 0.880786i 0.897805 + 0.440393i \(0.145161\pi\)
−0.897805 + 0.440393i \(0.854839\pi\)
\(38\) 0 0
\(39\) −3.17321 −0.508121
\(40\) 0 0
\(41\) 7.13247 1.11391 0.556953 0.830544i \(-0.311971\pi\)
0.556953 + 0.830544i \(0.311971\pi\)
\(42\) 0 0
\(43\) − 10.8225i − 1.65041i −0.564832 0.825206i \(-0.691059\pi\)
0.564832 0.825206i \(-0.308941\pi\)
\(44\) 0 0
\(45\) − 25.6419i − 3.82246i
\(46\) 0 0
\(47\) 5.62889 0.821058 0.410529 0.911848i \(-0.365344\pi\)
0.410529 + 0.911848i \(0.365344\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 14.3498i 2.00937i
\(52\) 0 0
\(53\) − 4.80681i − 0.660266i −0.943934 0.330133i \(-0.892906\pi\)
0.943934 0.330133i \(-0.107094\pi\)
\(54\) 0 0
\(55\) −16.1921 −2.18335
\(56\) 0 0
\(57\) −16.9017 −2.23869
\(58\) 0 0
\(59\) − 9.69248i − 1.26185i −0.775843 0.630927i \(-0.782675\pi\)
0.775843 0.630927i \(-0.217325\pi\)
\(60\) 0 0
\(61\) − 1.86977i − 0.239400i −0.992810 0.119700i \(-0.961807\pi\)
0.992810 0.119700i \(-0.0381932\pi\)
\(62\) 0 0
\(63\) 7.06928 0.890645
\(64\) 0 0
\(65\) 3.62722 0.449902
\(66\) 0 0
\(67\) − 2.96132i − 0.361783i −0.983503 0.180891i \(-0.942102\pi\)
0.983503 0.180891i \(-0.0578982\pi\)
\(68\) 0 0
\(69\) − 9.63752i − 1.16022i
\(70\) 0 0
\(71\) 7.49730 0.889766 0.444883 0.895589i \(-0.353245\pi\)
0.444883 + 0.895589i \(0.353245\pi\)
\(72\) 0 0
\(73\) 8.99757 1.05309 0.526543 0.850148i \(-0.323488\pi\)
0.526543 + 0.850148i \(0.323488\pi\)
\(74\) 0 0
\(75\) 25.8831i 2.98873i
\(76\) 0 0
\(77\) − 4.46405i − 0.508726i
\(78\) 0 0
\(79\) 0.795743 0.0895280 0.0447640 0.998998i \(-0.485746\pi\)
0.0447640 + 0.998998i \(0.485746\pi\)
\(80\) 0 0
\(81\) 19.7668 2.19632
\(82\) 0 0
\(83\) − 15.6044i − 1.71280i −0.516312 0.856401i \(-0.672695\pi\)
0.516312 0.856401i \(-0.327305\pi\)
\(84\) 0 0
\(85\) − 16.4029i − 1.77914i
\(86\) 0 0
\(87\) −18.9080 −2.02716
\(88\) 0 0
\(89\) 5.98526 0.634436 0.317218 0.948353i \(-0.397251\pi\)
0.317218 + 0.948353i \(0.397251\pi\)
\(90\) 0 0
\(91\) 1.00000i 0.104828i
\(92\) 0 0
\(93\) − 6.87349i − 0.712747i
\(94\) 0 0
\(95\) 19.3200 1.98219
\(96\) 0 0
\(97\) −4.04656 −0.410866 −0.205433 0.978671i \(-0.565860\pi\)
−0.205433 + 0.978671i \(0.565860\pi\)
\(98\) 0 0
\(99\) − 31.5576i − 3.17166i
\(100\) 0 0
\(101\) − 11.2085i − 1.11529i −0.830080 0.557644i \(-0.811705\pi\)
0.830080 0.557644i \(-0.188295\pi\)
\(102\) 0 0
\(103\) 9.91121 0.976580 0.488290 0.872681i \(-0.337621\pi\)
0.488290 + 0.872681i \(0.337621\pi\)
\(104\) 0 0
\(105\) −11.5100 −1.12326
\(106\) 0 0
\(107\) − 18.7309i − 1.81079i −0.424572 0.905394i \(-0.639575\pi\)
0.424572 0.905394i \(-0.360425\pi\)
\(108\) 0 0
\(109\) 1.34276i 0.128613i 0.997930 + 0.0643064i \(0.0204835\pi\)
−0.997930 + 0.0643064i \(0.979517\pi\)
\(110\) 0 0
\(111\) 17.0008 1.61365
\(112\) 0 0
\(113\) −3.29148 −0.309637 −0.154818 0.987943i \(-0.549479\pi\)
−0.154818 + 0.987943i \(0.549479\pi\)
\(114\) 0 0
\(115\) 11.0164i 1.02729i
\(116\) 0 0
\(117\) 7.06928i 0.653555i
\(118\) 0 0
\(119\) 4.52215 0.414545
\(120\) 0 0
\(121\) −8.92778 −0.811616
\(122\) 0 0
\(123\) − 22.6329i − 2.04074i
\(124\) 0 0
\(125\) − 11.4503i − 1.02414i
\(126\) 0 0
\(127\) −5.40864 −0.479939 −0.239970 0.970780i \(-0.577137\pi\)
−0.239970 + 0.970780i \(0.577137\pi\)
\(128\) 0 0
\(129\) −34.3420 −3.02364
\(130\) 0 0
\(131\) 2.37850i 0.207811i 0.994587 + 0.103905i \(0.0331339\pi\)
−0.994587 + 0.103905i \(0.966866\pi\)
\(132\) 0 0
\(133\) 5.32637i 0.461855i
\(134\) 0 0
\(135\) −46.8372 −4.03110
\(136\) 0 0
\(137\) 11.6939 0.999078 0.499539 0.866291i \(-0.333503\pi\)
0.499539 + 0.866291i \(0.333503\pi\)
\(138\) 0 0
\(139\) 8.82105i 0.748191i 0.927390 + 0.374096i \(0.122047\pi\)
−0.927390 + 0.374096i \(0.877953\pi\)
\(140\) 0 0
\(141\) − 17.8617i − 1.50422i
\(142\) 0 0
\(143\) 4.46405 0.373303
\(144\) 0 0
\(145\) 21.6133 1.79489
\(146\) 0 0
\(147\) − 3.17321i − 0.261722i
\(148\) 0 0
\(149\) 21.8767i 1.79221i 0.443847 + 0.896103i \(0.353613\pi\)
−0.443847 + 0.896103i \(0.646387\pi\)
\(150\) 0 0
\(151\) −14.7699 −1.20196 −0.600980 0.799264i \(-0.705223\pi\)
−0.600980 + 0.799264i \(0.705223\pi\)
\(152\) 0 0
\(153\) 31.9684 2.58449
\(154\) 0 0
\(155\) 7.85692i 0.631083i
\(156\) 0 0
\(157\) 20.9384i 1.67107i 0.549439 + 0.835534i \(0.314841\pi\)
−0.549439 + 0.835534i \(0.685159\pi\)
\(158\) 0 0
\(159\) −15.2530 −1.20964
\(160\) 0 0
\(161\) −3.03715 −0.239361
\(162\) 0 0
\(163\) 8.42682i 0.660039i 0.943974 + 0.330020i \(0.107055\pi\)
−0.943974 + 0.330020i \(0.892945\pi\)
\(164\) 0 0
\(165\) 51.3811i 4.00001i
\(166\) 0 0
\(167\) 6.62169 0.512402 0.256201 0.966624i \(-0.417529\pi\)
0.256201 + 0.966624i \(0.417529\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 37.6536i 2.87944i
\(172\) 0 0
\(173\) − 0.690244i − 0.0524782i −0.999656 0.0262391i \(-0.991647\pi\)
0.999656 0.0262391i \(-0.00835313\pi\)
\(174\) 0 0
\(175\) 8.15676 0.616593
\(176\) 0 0
\(177\) −30.7563 −2.31178
\(178\) 0 0
\(179\) 8.77446i 0.655834i 0.944707 + 0.327917i \(0.106347\pi\)
−0.944707 + 0.327917i \(0.893653\pi\)
\(180\) 0 0
\(181\) − 17.0171i − 1.26487i −0.774612 0.632437i \(-0.782055\pi\)
0.774612 0.632437i \(-0.217945\pi\)
\(182\) 0 0
\(183\) −5.93318 −0.438593
\(184\) 0 0
\(185\) −19.4333 −1.42876
\(186\) 0 0
\(187\) − 20.1871i − 1.47623i
\(188\) 0 0
\(189\) − 12.9127i − 0.939259i
\(190\) 0 0
\(191\) 4.35994 0.315474 0.157737 0.987481i \(-0.449580\pi\)
0.157737 + 0.987481i \(0.449580\pi\)
\(192\) 0 0
\(193\) −6.26746 −0.451142 −0.225571 0.974227i \(-0.572425\pi\)
−0.225571 + 0.974227i \(0.572425\pi\)
\(194\) 0 0
\(195\) − 11.5100i − 0.824245i
\(196\) 0 0
\(197\) − 4.63140i − 0.329973i −0.986296 0.164987i \(-0.947242\pi\)
0.986296 0.164987i \(-0.0527581\pi\)
\(198\) 0 0
\(199\) −4.22515 −0.299513 −0.149757 0.988723i \(-0.547849\pi\)
−0.149757 + 0.988723i \(0.547849\pi\)
\(200\) 0 0
\(201\) −9.39689 −0.662806
\(202\) 0 0
\(203\) 5.95865i 0.418215i
\(204\) 0 0
\(205\) 25.8711i 1.80691i
\(206\) 0 0
\(207\) −21.4704 −1.49230
\(208\) 0 0
\(209\) 23.7772 1.64470
\(210\) 0 0
\(211\) 18.5552i 1.27739i 0.769458 + 0.638697i \(0.220526\pi\)
−0.769458 + 0.638697i \(0.779474\pi\)
\(212\) 0 0
\(213\) − 23.7905i − 1.63010i
\(214\) 0 0
\(215\) 39.2555 2.67721
\(216\) 0 0
\(217\) −2.16610 −0.147044
\(218\) 0 0
\(219\) − 28.5512i − 1.92931i
\(220\) 0 0
\(221\) 4.52215i 0.304193i
\(222\) 0 0
\(223\) −21.6455 −1.44949 −0.724744 0.689018i \(-0.758042\pi\)
−0.724744 + 0.689018i \(0.758042\pi\)
\(224\) 0 0
\(225\) 57.6624 3.84416
\(226\) 0 0
\(227\) − 6.40745i − 0.425278i −0.977131 0.212639i \(-0.931794\pi\)
0.977131 0.212639i \(-0.0682058\pi\)
\(228\) 0 0
\(229\) 16.2529i 1.07402i 0.843576 + 0.537009i \(0.180446\pi\)
−0.843576 + 0.537009i \(0.819554\pi\)
\(230\) 0 0
\(231\) −14.1654 −0.932014
\(232\) 0 0
\(233\) −10.9511 −0.717433 −0.358716 0.933447i \(-0.616785\pi\)
−0.358716 + 0.933447i \(0.616785\pi\)
\(234\) 0 0
\(235\) 20.4172i 1.33187i
\(236\) 0 0
\(237\) − 2.52506i − 0.164020i
\(238\) 0 0
\(239\) 18.6060 1.20352 0.601762 0.798675i \(-0.294466\pi\)
0.601762 + 0.798675i \(0.294466\pi\)
\(240\) 0 0
\(241\) −9.60417 −0.618659 −0.309330 0.950955i \(-0.600105\pi\)
−0.309330 + 0.950955i \(0.600105\pi\)
\(242\) 0 0
\(243\) − 23.9864i − 1.53873i
\(244\) 0 0
\(245\) 3.62722i 0.231735i
\(246\) 0 0
\(247\) −5.32637 −0.338909
\(248\) 0 0
\(249\) −49.5160 −3.13795
\(250\) 0 0
\(251\) − 15.9028i − 1.00377i −0.864933 0.501887i \(-0.832639\pi\)
0.864933 0.501887i \(-0.167361\pi\)
\(252\) 0 0
\(253\) 13.5580i 0.852384i
\(254\) 0 0
\(255\) −52.0498 −3.25948
\(256\) 0 0
\(257\) −0.438800 −0.0273716 −0.0136858 0.999906i \(-0.504356\pi\)
−0.0136858 + 0.999906i \(0.504356\pi\)
\(258\) 0 0
\(259\) − 5.35761i − 0.332906i
\(260\) 0 0
\(261\) 42.1233i 2.60737i
\(262\) 0 0
\(263\) −8.10209 −0.499597 −0.249798 0.968298i \(-0.580364\pi\)
−0.249798 + 0.968298i \(0.580364\pi\)
\(264\) 0 0
\(265\) 17.4354 1.07105
\(266\) 0 0
\(267\) − 18.9925i − 1.16232i
\(268\) 0 0
\(269\) 7.74819i 0.472415i 0.971703 + 0.236208i \(0.0759046\pi\)
−0.971703 + 0.236208i \(0.924095\pi\)
\(270\) 0 0
\(271\) −1.96747 −0.119515 −0.0597577 0.998213i \(-0.519033\pi\)
−0.0597577 + 0.998213i \(0.519033\pi\)
\(272\) 0 0
\(273\) 3.17321 0.192052
\(274\) 0 0
\(275\) − 36.4122i − 2.19574i
\(276\) 0 0
\(277\) − 27.2840i − 1.63934i −0.572839 0.819668i \(-0.694158\pi\)
0.572839 0.819668i \(-0.305842\pi\)
\(278\) 0 0
\(279\) −15.3127 −0.916750
\(280\) 0 0
\(281\) −11.1502 −0.665168 −0.332584 0.943074i \(-0.607920\pi\)
−0.332584 + 0.943074i \(0.607920\pi\)
\(282\) 0 0
\(283\) − 28.0765i − 1.66897i −0.551028 0.834487i \(-0.685764\pi\)
0.551028 0.834487i \(-0.314236\pi\)
\(284\) 0 0
\(285\) − 61.3063i − 3.63147i
\(286\) 0 0
\(287\) −7.13247 −0.421017
\(288\) 0 0
\(289\) 3.44987 0.202933
\(290\) 0 0
\(291\) 12.8406i 0.752729i
\(292\) 0 0
\(293\) 22.9916i 1.34318i 0.740921 + 0.671592i \(0.234389\pi\)
−0.740921 + 0.671592i \(0.765611\pi\)
\(294\) 0 0
\(295\) 35.1568 2.04691
\(296\) 0 0
\(297\) −57.6429 −3.34478
\(298\) 0 0
\(299\) − 3.03715i − 0.175643i
\(300\) 0 0
\(301\) 10.8225i 0.623797i
\(302\) 0 0
\(303\) −35.5670 −2.04327
\(304\) 0 0
\(305\) 6.78208 0.388341
\(306\) 0 0
\(307\) − 4.76516i − 0.271962i −0.990711 0.135981i \(-0.956581\pi\)
0.990711 0.135981i \(-0.0434186\pi\)
\(308\) 0 0
\(309\) − 31.4504i − 1.78915i
\(310\) 0 0
\(311\) 17.7286 1.00530 0.502649 0.864490i \(-0.332359\pi\)
0.502649 + 0.864490i \(0.332359\pi\)
\(312\) 0 0
\(313\) 1.92067 0.108563 0.0542813 0.998526i \(-0.482713\pi\)
0.0542813 + 0.998526i \(0.482713\pi\)
\(314\) 0 0
\(315\) 25.6419i 1.44475i
\(316\) 0 0
\(317\) − 14.6051i − 0.820305i −0.912017 0.410152i \(-0.865476\pi\)
0.912017 0.410152i \(-0.134524\pi\)
\(318\) 0 0
\(319\) 26.5997 1.48930
\(320\) 0 0
\(321\) −59.4373 −3.31746
\(322\) 0 0
\(323\) 24.0867i 1.34022i
\(324\) 0 0
\(325\) 8.15676i 0.452456i
\(326\) 0 0
\(327\) 4.26085 0.235626
\(328\) 0 0
\(329\) −5.62889 −0.310331
\(330\) 0 0
\(331\) − 23.8200i − 1.30927i −0.755947 0.654633i \(-0.772823\pi\)
0.755947 0.654633i \(-0.227177\pi\)
\(332\) 0 0
\(333\) − 37.8745i − 2.07551i
\(334\) 0 0
\(335\) 10.7414 0.586864
\(336\) 0 0
\(337\) 12.2389 0.666698 0.333349 0.942804i \(-0.391821\pi\)
0.333349 + 0.942804i \(0.391821\pi\)
\(338\) 0 0
\(339\) 10.4446i 0.567271i
\(340\) 0 0
\(341\) 9.66958i 0.523637i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 34.9574 1.88205
\(346\) 0 0
\(347\) − 17.3706i − 0.932505i −0.884652 0.466253i \(-0.845604\pi\)
0.884652 0.466253i \(-0.154396\pi\)
\(348\) 0 0
\(349\) − 20.6803i − 1.10699i −0.832852 0.553497i \(-0.813293\pi\)
0.832852 0.553497i \(-0.186707\pi\)
\(350\) 0 0
\(351\) 12.9127 0.689228
\(352\) 0 0
\(353\) 25.0345 1.33245 0.666227 0.745749i \(-0.267908\pi\)
0.666227 + 0.745749i \(0.267908\pi\)
\(354\) 0 0
\(355\) 27.1944i 1.44333i
\(356\) 0 0
\(357\) − 14.3498i − 0.759469i
\(358\) 0 0
\(359\) −34.6180 −1.82707 −0.913535 0.406761i \(-0.866658\pi\)
−0.913535 + 0.406761i \(0.866658\pi\)
\(360\) 0 0
\(361\) −9.37027 −0.493172
\(362\) 0 0
\(363\) 28.3297i 1.48693i
\(364\) 0 0
\(365\) 32.6362i 1.70826i
\(366\) 0 0
\(367\) 29.6400 1.54719 0.773597 0.633677i \(-0.218455\pi\)
0.773597 + 0.633677i \(0.218455\pi\)
\(368\) 0 0
\(369\) −50.4214 −2.62483
\(370\) 0 0
\(371\) 4.80681i 0.249557i
\(372\) 0 0
\(373\) − 2.18046i − 0.112900i −0.998405 0.0564499i \(-0.982022\pi\)
0.998405 0.0564499i \(-0.0179781\pi\)
\(374\) 0 0
\(375\) −36.3342 −1.87629
\(376\) 0 0
\(377\) −5.95865 −0.306886
\(378\) 0 0
\(379\) 6.07608i 0.312107i 0.987749 + 0.156054i \(0.0498773\pi\)
−0.987749 + 0.156054i \(0.950123\pi\)
\(380\) 0 0
\(381\) 17.1628i 0.879275i
\(382\) 0 0
\(383\) 17.9109 0.915204 0.457602 0.889157i \(-0.348708\pi\)
0.457602 + 0.889157i \(0.348708\pi\)
\(384\) 0 0
\(385\) 16.1921 0.825227
\(386\) 0 0
\(387\) 76.5071i 3.88907i
\(388\) 0 0
\(389\) − 2.17676i − 0.110366i −0.998476 0.0551830i \(-0.982426\pi\)
0.998476 0.0551830i \(-0.0175742\pi\)
\(390\) 0 0
\(391\) −13.7344 −0.694581
\(392\) 0 0
\(393\) 7.54749 0.380720
\(394\) 0 0
\(395\) 2.88634i 0.145227i
\(396\) 0 0
\(397\) 2.95214i 0.148164i 0.997252 + 0.0740818i \(0.0236026\pi\)
−0.997252 + 0.0740818i \(0.976397\pi\)
\(398\) 0 0
\(399\) 16.9017 0.846144
\(400\) 0 0
\(401\) −2.03003 −0.101375 −0.0506875 0.998715i \(-0.516141\pi\)
−0.0506875 + 0.998715i \(0.516141\pi\)
\(402\) 0 0
\(403\) − 2.16610i − 0.107901i
\(404\) 0 0
\(405\) 71.6988i 3.56274i
\(406\) 0 0
\(407\) −23.9167 −1.18551
\(408\) 0 0
\(409\) −35.9771 −1.77895 −0.889477 0.456981i \(-0.848931\pi\)
−0.889477 + 0.456981i \(0.848931\pi\)
\(410\) 0 0
\(411\) − 37.1073i − 1.83037i
\(412\) 0 0
\(413\) 9.69248i 0.476936i
\(414\) 0 0
\(415\) 56.6005 2.77841
\(416\) 0 0
\(417\) 27.9910 1.37073
\(418\) 0 0
\(419\) 4.64982i 0.227158i 0.993529 + 0.113579i \(0.0362316\pi\)
−0.993529 + 0.113579i \(0.963768\pi\)
\(420\) 0 0
\(421\) − 2.96094i − 0.144307i −0.997394 0.0721537i \(-0.977013\pi\)
0.997394 0.0721537i \(-0.0229872\pi\)
\(422\) 0 0
\(423\) −39.7922 −1.93476
\(424\) 0 0
\(425\) 36.8861 1.78924
\(426\) 0 0
\(427\) 1.86977i 0.0904846i
\(428\) 0 0
\(429\) − 14.1654i − 0.683912i
\(430\) 0 0
\(431\) −18.2306 −0.878136 −0.439068 0.898454i \(-0.644691\pi\)
−0.439068 + 0.898454i \(0.644691\pi\)
\(432\) 0 0
\(433\) 32.8482 1.57858 0.789291 0.614019i \(-0.210448\pi\)
0.789291 + 0.614019i \(0.210448\pi\)
\(434\) 0 0
\(435\) − 68.5837i − 3.28834i
\(436\) 0 0
\(437\) − 16.1770i − 0.773850i
\(438\) 0 0
\(439\) −22.7606 −1.08630 −0.543151 0.839635i \(-0.682769\pi\)
−0.543151 + 0.839635i \(0.682769\pi\)
\(440\) 0 0
\(441\) −7.06928 −0.336632
\(442\) 0 0
\(443\) 3.26039i 0.154906i 0.996996 + 0.0774529i \(0.0246787\pi\)
−0.996996 + 0.0774529i \(0.975321\pi\)
\(444\) 0 0
\(445\) 21.7099i 1.02915i
\(446\) 0 0
\(447\) 69.4193 3.28342
\(448\) 0 0
\(449\) −2.78848 −0.131597 −0.0657983 0.997833i \(-0.520959\pi\)
−0.0657983 + 0.997833i \(0.520959\pi\)
\(450\) 0 0
\(451\) 31.8397i 1.49927i
\(452\) 0 0
\(453\) 46.8682i 2.20206i
\(454\) 0 0
\(455\) −3.62722 −0.170047
\(456\) 0 0
\(457\) 14.7310 0.689088 0.344544 0.938770i \(-0.388033\pi\)
0.344544 + 0.938770i \(0.388033\pi\)
\(458\) 0 0
\(459\) − 58.3931i − 2.72556i
\(460\) 0 0
\(461\) − 20.4768i − 0.953698i −0.878985 0.476849i \(-0.841779\pi\)
0.878985 0.476849i \(-0.158221\pi\)
\(462\) 0 0
\(463\) 10.3546 0.481220 0.240610 0.970622i \(-0.422652\pi\)
0.240610 + 0.970622i \(0.422652\pi\)
\(464\) 0 0
\(465\) 24.9317 1.15618
\(466\) 0 0
\(467\) − 31.9235i − 1.47724i −0.674120 0.738622i \(-0.735477\pi\)
0.674120 0.738622i \(-0.264523\pi\)
\(468\) 0 0
\(469\) 2.96132i 0.136741i
\(470\) 0 0
\(471\) 66.4420 3.06149
\(472\) 0 0
\(473\) 48.3121 2.22139
\(474\) 0 0
\(475\) 43.4460i 1.99344i
\(476\) 0 0
\(477\) 33.9806i 1.55587i
\(478\) 0 0
\(479\) −10.5582 −0.482414 −0.241207 0.970474i \(-0.577543\pi\)
−0.241207 + 0.970474i \(0.577543\pi\)
\(480\) 0 0
\(481\) 5.35761 0.244286
\(482\) 0 0
\(483\) 9.63752i 0.438522i
\(484\) 0 0
\(485\) − 14.6778i − 0.666484i
\(486\) 0 0
\(487\) −42.8480 −1.94163 −0.970815 0.239831i \(-0.922908\pi\)
−0.970815 + 0.239831i \(0.922908\pi\)
\(488\) 0 0
\(489\) 26.7401 1.20923
\(490\) 0 0
\(491\) 5.44721i 0.245829i 0.992417 + 0.122915i \(0.0392242\pi\)
−0.992417 + 0.122915i \(0.960776\pi\)
\(492\) 0 0
\(493\) 26.9459i 1.21358i
\(494\) 0 0
\(495\) 114.467 5.14489
\(496\) 0 0
\(497\) −7.49730 −0.336300
\(498\) 0 0
\(499\) − 7.15957i − 0.320506i −0.987076 0.160253i \(-0.948769\pi\)
0.987076 0.160253i \(-0.0512311\pi\)
\(500\) 0 0
\(501\) − 21.0120i − 0.938748i
\(502\) 0 0
\(503\) 8.08761 0.360609 0.180304 0.983611i \(-0.442292\pi\)
0.180304 + 0.983611i \(0.442292\pi\)
\(504\) 0 0
\(505\) 40.6558 1.80916
\(506\) 0 0
\(507\) 3.17321i 0.140927i
\(508\) 0 0
\(509\) 17.5326i 0.777120i 0.921423 + 0.388560i \(0.127027\pi\)
−0.921423 + 0.388560i \(0.872973\pi\)
\(510\) 0 0
\(511\) −8.99757 −0.398029
\(512\) 0 0
\(513\) 68.7778 3.03661
\(514\) 0 0
\(515\) 35.9502i 1.58415i
\(516\) 0 0
\(517\) 25.1277i 1.10511i
\(518\) 0 0
\(519\) −2.19029 −0.0961430
\(520\) 0 0
\(521\) 38.2311 1.67494 0.837468 0.546487i \(-0.184035\pi\)
0.837468 + 0.546487i \(0.184035\pi\)
\(522\) 0 0
\(523\) − 3.18625i − 0.139325i −0.997571 0.0696624i \(-0.977808\pi\)
0.997571 0.0696624i \(-0.0221922\pi\)
\(524\) 0 0
\(525\) − 25.8831i − 1.12963i
\(526\) 0 0
\(527\) −9.79542 −0.426695
\(528\) 0 0
\(529\) −13.7757 −0.598945
\(530\) 0 0
\(531\) 68.5188i 2.97346i
\(532\) 0 0
\(533\) − 7.13247i − 0.308942i
\(534\) 0 0
\(535\) 67.9413 2.93736
\(536\) 0 0
\(537\) 27.8432 1.20152
\(538\) 0 0
\(539\) 4.46405i 0.192280i
\(540\) 0 0
\(541\) − 22.5640i − 0.970103i −0.874486 0.485051i \(-0.838801\pi\)
0.874486 0.485051i \(-0.161199\pi\)
\(542\) 0 0
\(543\) −53.9990 −2.31732
\(544\) 0 0
\(545\) −4.87048 −0.208628
\(546\) 0 0
\(547\) 1.52020i 0.0649990i 0.999472 + 0.0324995i \(0.0103467\pi\)
−0.999472 + 0.0324995i \(0.989653\pi\)
\(548\) 0 0
\(549\) 13.2179i 0.564127i
\(550\) 0 0
\(551\) −31.7380 −1.35208
\(552\) 0 0
\(553\) −0.795743 −0.0338384
\(554\) 0 0
\(555\) 61.6659i 2.61757i
\(556\) 0 0
\(557\) − 15.1703i − 0.642785i −0.946946 0.321393i \(-0.895849\pi\)
0.946946 0.321393i \(-0.104151\pi\)
\(558\) 0 0
\(559\) −10.8225 −0.457742
\(560\) 0 0
\(561\) −64.0581 −2.70453
\(562\) 0 0
\(563\) 22.5767i 0.951493i 0.879583 + 0.475746i \(0.157822\pi\)
−0.879583 + 0.475746i \(0.842178\pi\)
\(564\) 0 0
\(565\) − 11.9389i − 0.502275i
\(566\) 0 0
\(567\) −19.7668 −0.830129
\(568\) 0 0
\(569\) −30.2677 −1.26889 −0.634445 0.772968i \(-0.718771\pi\)
−0.634445 + 0.772968i \(0.718771\pi\)
\(570\) 0 0
\(571\) − 32.5548i − 1.36238i −0.732108 0.681189i \(-0.761463\pi\)
0.732108 0.681189i \(-0.238537\pi\)
\(572\) 0 0
\(573\) − 13.8350i − 0.577966i
\(574\) 0 0
\(575\) −24.7733 −1.03312
\(576\) 0 0
\(577\) 28.9127 1.20365 0.601826 0.798627i \(-0.294440\pi\)
0.601826 + 0.798627i \(0.294440\pi\)
\(578\) 0 0
\(579\) 19.8880i 0.826516i
\(580\) 0 0
\(581\) 15.6044i 0.647378i
\(582\) 0 0
\(583\) 21.4578 0.888693
\(584\) 0 0
\(585\) −25.6419 −1.06016
\(586\) 0 0
\(587\) 29.5264i 1.21868i 0.792908 + 0.609342i \(0.208566\pi\)
−0.792908 + 0.609342i \(0.791434\pi\)
\(588\) 0 0
\(589\) − 11.5374i − 0.475392i
\(590\) 0 0
\(591\) −14.6964 −0.604529
\(592\) 0 0
\(593\) 6.44558 0.264688 0.132344 0.991204i \(-0.457750\pi\)
0.132344 + 0.991204i \(0.457750\pi\)
\(594\) 0 0
\(595\) 16.4029i 0.672452i
\(596\) 0 0
\(597\) 13.4073i 0.548725i
\(598\) 0 0
\(599\) 9.42470 0.385083 0.192541 0.981289i \(-0.438327\pi\)
0.192541 + 0.981289i \(0.438327\pi\)
\(600\) 0 0
\(601\) −7.96744 −0.324999 −0.162499 0.986709i \(-0.551956\pi\)
−0.162499 + 0.986709i \(0.551956\pi\)
\(602\) 0 0
\(603\) 20.9344i 0.852514i
\(604\) 0 0
\(605\) − 32.3831i − 1.31656i
\(606\) 0 0
\(607\) 24.9085 1.01100 0.505502 0.862826i \(-0.331307\pi\)
0.505502 + 0.862826i \(0.331307\pi\)
\(608\) 0 0
\(609\) 18.9080 0.766193
\(610\) 0 0
\(611\) − 5.62889i − 0.227720i
\(612\) 0 0
\(613\) − 29.7739i − 1.20256i −0.799040 0.601278i \(-0.794659\pi\)
0.799040 0.601278i \(-0.205341\pi\)
\(614\) 0 0
\(615\) 82.0944 3.31037
\(616\) 0 0
\(617\) 33.7904 1.36035 0.680175 0.733050i \(-0.261904\pi\)
0.680175 + 0.733050i \(0.261904\pi\)
\(618\) 0 0
\(619\) − 10.9841i − 0.441488i −0.975332 0.220744i \(-0.929151\pi\)
0.975332 0.220744i \(-0.0708486\pi\)
\(620\) 0 0
\(621\) 39.2177i 1.57375i
\(622\) 0 0
\(623\) −5.98526 −0.239794
\(624\) 0 0
\(625\) 0.748927 0.0299571
\(626\) 0 0
\(627\) − 75.4502i − 3.01319i
\(628\) 0 0
\(629\) − 24.2280i − 0.966032i
\(630\) 0 0
\(631\) −20.7918 −0.827708 −0.413854 0.910343i \(-0.635818\pi\)
−0.413854 + 0.910343i \(0.635818\pi\)
\(632\) 0 0
\(633\) 58.8797 2.34026
\(634\) 0 0
\(635\) − 19.6183i − 0.778530i
\(636\) 0 0
\(637\) − 1.00000i − 0.0396214i
\(638\) 0 0
\(639\) −53.0005 −2.09667
\(640\) 0 0
\(641\) 20.7776 0.820665 0.410332 0.911936i \(-0.365413\pi\)
0.410332 + 0.911936i \(0.365413\pi\)
\(642\) 0 0
\(643\) − 4.80576i − 0.189521i −0.995500 0.0947604i \(-0.969791\pi\)
0.995500 0.0947604i \(-0.0302085\pi\)
\(644\) 0 0
\(645\) − 124.566i − 4.90479i
\(646\) 0 0
\(647\) 24.8286 0.976114 0.488057 0.872812i \(-0.337706\pi\)
0.488057 + 0.872812i \(0.337706\pi\)
\(648\) 0 0
\(649\) 43.2677 1.69841
\(650\) 0 0
\(651\) 6.87349i 0.269393i
\(652\) 0 0
\(653\) − 28.1755i − 1.10259i −0.834309 0.551296i \(-0.814133\pi\)
0.834309 0.551296i \(-0.185867\pi\)
\(654\) 0 0
\(655\) −8.62736 −0.337099
\(656\) 0 0
\(657\) −63.6063 −2.48152
\(658\) 0 0
\(659\) − 43.4049i − 1.69082i −0.534121 0.845408i \(-0.679357\pi\)
0.534121 0.845408i \(-0.320643\pi\)
\(660\) 0 0
\(661\) 12.4759i 0.485256i 0.970119 + 0.242628i \(0.0780094\pi\)
−0.970119 + 0.242628i \(0.921991\pi\)
\(662\) 0 0
\(663\) 14.3498 0.557298
\(664\) 0 0
\(665\) −19.3200 −0.749196
\(666\) 0 0
\(667\) − 18.0973i − 0.700730i
\(668\) 0 0
\(669\) 68.6857i 2.65554i
\(670\) 0 0
\(671\) 8.34676 0.322223
\(672\) 0 0
\(673\) −16.7979 −0.647513 −0.323756 0.946141i \(-0.604946\pi\)
−0.323756 + 0.946141i \(0.604946\pi\)
\(674\) 0 0
\(675\) − 105.326i − 4.05398i
\(676\) 0 0
\(677\) 32.4535i 1.24729i 0.781709 + 0.623644i \(0.214348\pi\)
−0.781709 + 0.623644i \(0.785652\pi\)
\(678\) 0 0
\(679\) 4.04656 0.155293
\(680\) 0 0
\(681\) −20.3322 −0.779132
\(682\) 0 0
\(683\) − 47.5144i − 1.81809i −0.416698 0.909045i \(-0.636813\pi\)
0.416698 0.909045i \(-0.363187\pi\)
\(684\) 0 0
\(685\) 42.4164i 1.62065i
\(686\) 0 0
\(687\) 51.5738 1.96766
\(688\) 0 0
\(689\) −4.80681 −0.183125
\(690\) 0 0
\(691\) 41.8900i 1.59357i 0.604263 + 0.796785i \(0.293468\pi\)
−0.604263 + 0.796785i \(0.706532\pi\)
\(692\) 0 0
\(693\) 31.5576i 1.19878i
\(694\) 0 0
\(695\) −31.9959 −1.21367
\(696\) 0 0
\(697\) −32.2541 −1.22171
\(698\) 0 0
\(699\) 34.7503i 1.31438i
\(700\) 0 0
\(701\) − 27.9376i − 1.05519i −0.849496 0.527595i \(-0.823094\pi\)
0.849496 0.527595i \(-0.176906\pi\)
\(702\) 0 0
\(703\) 28.5367 1.07628
\(704\) 0 0
\(705\) 64.7882 2.44007
\(706\) 0 0
\(707\) 11.2085i 0.421540i
\(708\) 0 0
\(709\) − 33.9800i − 1.27615i −0.769975 0.638074i \(-0.779731\pi\)
0.769975 0.638074i \(-0.220269\pi\)
\(710\) 0 0
\(711\) −5.62532 −0.210966
\(712\) 0 0
\(713\) 6.57876 0.246376
\(714\) 0 0
\(715\) 16.1921i 0.605551i
\(716\) 0 0
\(717\) − 59.0409i − 2.20492i
\(718\) 0 0
\(719\) −22.1904 −0.827563 −0.413781 0.910376i \(-0.635792\pi\)
−0.413781 + 0.910376i \(0.635792\pi\)
\(720\) 0 0
\(721\) −9.91121 −0.369113
\(722\) 0 0
\(723\) 30.4761i 1.13342i
\(724\) 0 0
\(725\) 48.6032i 1.80508i
\(726\) 0 0
\(727\) 21.1722 0.785235 0.392618 0.919702i \(-0.371570\pi\)
0.392618 + 0.919702i \(0.371570\pi\)
\(728\) 0 0
\(729\) −16.8133 −0.622713
\(730\) 0 0
\(731\) 48.9409i 1.81014i
\(732\) 0 0
\(733\) 31.5545i 1.16549i 0.812654 + 0.582746i \(0.198022\pi\)
−0.812654 + 0.582746i \(0.801978\pi\)
\(734\) 0 0
\(735\) 11.5100 0.424551
\(736\) 0 0
\(737\) 13.2195 0.486946
\(738\) 0 0
\(739\) 21.3923i 0.786930i 0.919340 + 0.393465i \(0.128724\pi\)
−0.919340 + 0.393465i \(0.871276\pi\)
\(740\) 0 0
\(741\) 16.9017i 0.620900i
\(742\) 0 0
\(743\) −36.1540 −1.32636 −0.663180 0.748460i \(-0.730794\pi\)
−0.663180 + 0.748460i \(0.730794\pi\)
\(744\) 0 0
\(745\) −79.3515 −2.90722
\(746\) 0 0
\(747\) 110.312i 4.03609i
\(748\) 0 0
\(749\) 18.7309i 0.684414i
\(750\) 0 0
\(751\) −25.1618 −0.918167 −0.459083 0.888393i \(-0.651822\pi\)
−0.459083 + 0.888393i \(0.651822\pi\)
\(752\) 0 0
\(753\) −50.4629 −1.83897
\(754\) 0 0
\(755\) − 53.5739i − 1.94975i
\(756\) 0 0
\(757\) − 1.96348i − 0.0713639i −0.999363 0.0356819i \(-0.988640\pi\)
0.999363 0.0356819i \(-0.0113603\pi\)
\(758\) 0 0
\(759\) 43.0224 1.56161
\(760\) 0 0
\(761\) −13.8287 −0.501292 −0.250646 0.968079i \(-0.580643\pi\)
−0.250646 + 0.968079i \(0.580643\pi\)
\(762\) 0 0
\(763\) − 1.34276i − 0.0486111i
\(764\) 0 0
\(765\) 115.956i 4.19241i
\(766\) 0 0
\(767\) −9.69248 −0.349975
\(768\) 0 0
\(769\) 26.0028 0.937684 0.468842 0.883282i \(-0.344671\pi\)
0.468842 + 0.883282i \(0.344671\pi\)
\(770\) 0 0
\(771\) 1.39241i 0.0501463i
\(772\) 0 0
\(773\) 4.06853i 0.146335i 0.997320 + 0.0731675i \(0.0233108\pi\)
−0.997320 + 0.0731675i \(0.976689\pi\)
\(774\) 0 0
\(775\) −17.6683 −0.634665
\(776\) 0 0
\(777\) −17.0008 −0.609902
\(778\) 0 0
\(779\) − 37.9902i − 1.36114i
\(780\) 0 0
\(781\) 33.4684i 1.19759i
\(782\) 0 0
\(783\) 76.9421 2.74969
\(784\) 0 0
\(785\) −75.9483 −2.71071
\(786\) 0 0
\(787\) − 38.3646i − 1.36755i −0.729692 0.683776i \(-0.760337\pi\)
0.729692 0.683776i \(-0.239663\pi\)
\(788\) 0 0
\(789\) 25.7097i 0.915288i
\(790\) 0 0
\(791\) 3.29148 0.117032
\(792\) 0 0
\(793\) −1.86977 −0.0663975
\(794\) 0 0
\(795\) − 55.3261i − 1.96222i
\(796\) 0 0
\(797\) − 33.8141i − 1.19776i −0.800840 0.598879i \(-0.795613\pi\)
0.800840 0.598879i \(-0.204387\pi\)
\(798\) 0 0
\(799\) −25.4547 −0.900522
\(800\) 0 0
\(801\) −42.3114 −1.49500
\(802\) 0 0
\(803\) 40.1656i 1.41741i
\(804\) 0 0
\(805\) − 11.0164i − 0.388278i
\(806\) 0 0
\(807\) 24.5866 0.865491
\(808\) 0 0
\(809\) 29.0912 1.02279 0.511396 0.859345i \(-0.329129\pi\)
0.511396 + 0.859345i \(0.329129\pi\)
\(810\) 0 0
\(811\) 26.0470i 0.914635i 0.889303 + 0.457318i \(0.151190\pi\)
−0.889303 + 0.457318i \(0.848810\pi\)
\(812\) 0 0
\(813\) 6.24320i 0.218959i
\(814\) 0 0
\(815\) −30.5660 −1.07068
\(816\) 0 0
\(817\) −57.6445 −2.01673
\(818\) 0 0
\(819\) − 7.06928i − 0.247021i
\(820\) 0 0
\(821\) 49.1118i 1.71401i 0.515306 + 0.857006i \(0.327678\pi\)
−0.515306 + 0.857006i \(0.672322\pi\)
\(822\) 0 0
\(823\) 32.7800 1.14264 0.571320 0.820728i \(-0.306432\pi\)
0.571320 + 0.820728i \(0.306432\pi\)
\(824\) 0 0
\(825\) −115.544 −4.02271
\(826\) 0 0
\(827\) − 13.9227i − 0.484139i −0.970259 0.242070i \(-0.922174\pi\)
0.970259 0.242070i \(-0.0778263\pi\)
\(828\) 0 0
\(829\) 29.9759i 1.04110i 0.853830 + 0.520552i \(0.174274\pi\)
−0.853830 + 0.520552i \(0.825726\pi\)
\(830\) 0 0
\(831\) −86.5779 −3.00335
\(832\) 0 0
\(833\) −4.52215 −0.156683
\(834\) 0 0
\(835\) 24.0184i 0.831190i
\(836\) 0 0
\(837\) 27.9701i 0.966789i
\(838\) 0 0
\(839\) −22.6147 −0.780746 −0.390373 0.920657i \(-0.627654\pi\)
−0.390373 + 0.920657i \(0.627654\pi\)
\(840\) 0 0
\(841\) −6.50546 −0.224326
\(842\) 0 0
\(843\) 35.3821i 1.21862i
\(844\) 0 0
\(845\) − 3.62722i − 0.124780i
\(846\) 0 0
\(847\) 8.92778 0.306762
\(848\) 0 0
\(849\) −89.0926 −3.05765
\(850\) 0 0
\(851\) 16.2719i 0.557793i
\(852\) 0 0
\(853\) 29.5133i 1.01052i 0.862968 + 0.505259i \(0.168603\pi\)
−0.862968 + 0.505259i \(0.831397\pi\)
\(854\) 0 0
\(855\) −136.578 −4.67087
\(856\) 0 0
\(857\) 29.6904 1.01420 0.507102 0.861886i \(-0.330717\pi\)
0.507102 + 0.861886i \(0.330717\pi\)
\(858\) 0 0
\(859\) 41.2118i 1.40613i 0.711126 + 0.703065i \(0.248186\pi\)
−0.711126 + 0.703065i \(0.751814\pi\)
\(860\) 0 0
\(861\) 22.6329i 0.771326i
\(862\) 0 0
\(863\) −11.3243 −0.385484 −0.192742 0.981249i \(-0.561738\pi\)
−0.192742 + 0.981249i \(0.561738\pi\)
\(864\) 0 0
\(865\) 2.50367 0.0851273
\(866\) 0 0
\(867\) − 10.9472i − 0.371785i
\(868\) 0 0
\(869\) 3.55224i 0.120501i
\(870\) 0 0
\(871\) −2.96132 −0.100340
\(872\) 0 0
\(873\) 28.6062 0.968175
\(874\) 0 0
\(875\) 11.4503i 0.387090i
\(876\) 0 0
\(877\) − 35.1561i − 1.18714i −0.804783 0.593569i \(-0.797718\pi\)
0.804783 0.593569i \(-0.202282\pi\)
\(878\) 0 0
\(879\) 72.9572 2.46079
\(880\) 0 0
\(881\) 26.8598 0.904929 0.452464 0.891782i \(-0.350545\pi\)
0.452464 + 0.891782i \(0.350545\pi\)
\(882\) 0 0
\(883\) − 4.48500i − 0.150932i −0.997148 0.0754661i \(-0.975956\pi\)
0.997148 0.0754661i \(-0.0240445\pi\)
\(884\) 0 0
\(885\) − 111.560i − 3.75005i
\(886\) 0 0
\(887\) −22.5853 −0.758340 −0.379170 0.925327i \(-0.623790\pi\)
−0.379170 + 0.925327i \(0.623790\pi\)
\(888\) 0 0
\(889\) 5.40864 0.181400
\(890\) 0 0
\(891\) 88.2403i 2.95616i
\(892\) 0 0
\(893\) − 29.9816i − 1.00329i
\(894\) 0 0
\(895\) −31.8270 −1.06386
\(896\) 0 0
\(897\) −9.63752 −0.321787
\(898\) 0 0
\(899\) − 12.9070i − 0.430473i
\(900\) 0 0
\(901\) 21.7371i 0.724168i
\(902\) 0 0
\(903\) 34.3420 1.14283
\(904\) 0 0
\(905\) 61.7250 2.05181
\(906\) 0 0
\(907\) 4.92450i 0.163515i 0.996652 + 0.0817577i \(0.0260534\pi\)
−0.996652 + 0.0817577i \(0.973947\pi\)
\(908\) 0 0
\(909\) 79.2361i 2.62810i
\(910\) 0 0
\(911\) 2.34456 0.0776787 0.0388393 0.999245i \(-0.487634\pi\)
0.0388393 + 0.999245i \(0.487634\pi\)
\(912\) 0 0
\(913\) 69.6587 2.30537
\(914\) 0 0
\(915\) − 21.5210i − 0.711462i
\(916\) 0 0
\(917\) − 2.37850i − 0.0785450i
\(918\) 0 0
\(919\) 46.5700 1.53620 0.768102 0.640328i \(-0.221201\pi\)
0.768102 + 0.640328i \(0.221201\pi\)
\(920\) 0 0
\(921\) −15.1209 −0.498249
\(922\) 0 0
\(923\) − 7.49730i − 0.246777i
\(924\) 0 0
\(925\) − 43.7008i − 1.43687i
\(926\) 0 0
\(927\) −70.0651 −2.30124
\(928\) 0 0
\(929\) 21.9902 0.721475 0.360737 0.932667i \(-0.382525\pi\)
0.360737 + 0.932667i \(0.382525\pi\)
\(930\) 0 0
\(931\) − 5.32637i − 0.174565i
\(932\) 0 0
\(933\) − 56.2567i − 1.84176i
\(934\) 0 0
\(935\) 73.2233 2.39466
\(936\) 0 0
\(937\) −39.7320 −1.29799 −0.648994 0.760794i \(-0.724810\pi\)
−0.648994 + 0.760794i \(0.724810\pi\)
\(938\) 0 0
\(939\) − 6.09469i − 0.198893i
\(940\) 0 0
\(941\) − 35.5095i − 1.15758i −0.815477 0.578789i \(-0.803525\pi\)
0.815477 0.578789i \(-0.196475\pi\)
\(942\) 0 0
\(943\) 21.6624 0.705424
\(944\) 0 0
\(945\) 46.8372 1.52361
\(946\) 0 0
\(947\) 36.8412i 1.19718i 0.801056 + 0.598590i \(0.204272\pi\)
−0.801056 + 0.598590i \(0.795728\pi\)
\(948\) 0 0
\(949\) − 8.99757i − 0.292074i
\(950\) 0 0
\(951\) −46.3451 −1.50284
\(952\) 0 0
\(953\) −54.3777 −1.76147 −0.880733 0.473612i \(-0.842950\pi\)
−0.880733 + 0.473612i \(0.842950\pi\)
\(954\) 0 0
\(955\) 15.8145i 0.511744i
\(956\) 0 0
\(957\) − 84.4066i − 2.72848i
\(958\) 0 0
\(959\) −11.6939 −0.377616
\(960\) 0 0
\(961\) −26.3080 −0.848646
\(962\) 0 0
\(963\) 132.414i 4.26699i
\(964\) 0 0
\(965\) − 22.7335i − 0.731817i
\(966\) 0 0
\(967\) −39.4871 −1.26982 −0.634910 0.772586i \(-0.718963\pi\)
−0.634910 + 0.772586i \(0.718963\pi\)
\(968\) 0 0
\(969\) 76.4322 2.45535
\(970\) 0 0
\(971\) − 31.6915i − 1.01703i −0.861054 0.508514i \(-0.830195\pi\)
0.861054 0.508514i \(-0.169805\pi\)
\(972\) 0 0
\(973\) − 8.82105i − 0.282790i
\(974\) 0 0
\(975\) 25.8831 0.828924
\(976\) 0 0
\(977\) −22.8224 −0.730154 −0.365077 0.930977i \(-0.618957\pi\)
−0.365077 + 0.930977i \(0.618957\pi\)
\(978\) 0 0
\(979\) 26.7185i 0.853927i
\(980\) 0 0
\(981\) − 9.49232i − 0.303066i
\(982\) 0 0
\(983\) 22.5531 0.719331 0.359665 0.933081i \(-0.382891\pi\)
0.359665 + 0.933081i \(0.382891\pi\)
\(984\) 0 0
\(985\) 16.7991 0.535264
\(986\) 0 0
\(987\) 17.8617i 0.568543i
\(988\) 0 0
\(989\) − 32.8695i − 1.04519i
\(990\) 0 0
\(991\) −10.4713 −0.332631 −0.166315 0.986073i \(-0.553187\pi\)
−0.166315 + 0.986073i \(0.553187\pi\)
\(992\) 0 0
\(993\) −75.5859 −2.39865
\(994\) 0 0
\(995\) − 15.3256i − 0.485854i
\(996\) 0 0
\(997\) 15.9240i 0.504319i 0.967686 + 0.252159i \(0.0811408\pi\)
−0.967686 + 0.252159i \(0.918859\pi\)
\(998\) 0 0
\(999\) −69.1812 −2.18880
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.c.b.1457.2 38
4.3 odd 2 728.2.c.b.365.3 38
8.3 odd 2 728.2.c.b.365.4 yes 38
8.5 even 2 inner 2912.2.c.b.1457.37 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.3 38 4.3 odd 2
728.2.c.b.365.4 yes 38 8.3 odd 2
2912.2.c.b.1457.2 38 1.1 even 1 trivial
2912.2.c.b.1457.37 38 8.5 even 2 inner