Properties

Label 2912.2.h.a.2575.14
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.14
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.35

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48862i q^{3} +1.02997 q^{5} +(1.70779 - 2.02076i) q^{7} +0.784007 q^{9} -0.608038 q^{11} -1.00000 q^{13} -1.53323i q^{15} -0.526406i q^{17} -1.94810i q^{19} +(-3.00814 - 2.54225i) q^{21} +0.0153141i q^{23} -3.93917 q^{25} -5.63295i q^{27} -4.64455i q^{29} -4.57506 q^{31} +0.905138i q^{33} +(1.75897 - 2.08131i) q^{35} +2.15479i q^{37} +1.48862i q^{39} -6.24596i q^{41} +3.29851 q^{43} +0.807502 q^{45} +2.60155 q^{47} +(-1.16691 - 6.90205i) q^{49} -0.783619 q^{51} +1.16935i q^{53} -0.626260 q^{55} -2.89999 q^{57} -0.783099i q^{59} +5.32371 q^{61} +(1.33892 - 1.58429i) q^{63} -1.02997 q^{65} +4.18167 q^{67} +0.0227969 q^{69} +14.9594i q^{71} -9.18228i q^{73} +5.86392i q^{75} +(-1.03840 + 1.22870i) q^{77} -9.29066i q^{79} -6.03331 q^{81} -1.45140i q^{83} -0.542182i q^{85} -6.91397 q^{87} -12.0597i q^{89} +(-1.70779 + 2.02076i) q^{91} +6.81053i q^{93} -2.00649i q^{95} -8.46670i q^{97} -0.476706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.48862i 0.859456i −0.902958 0.429728i \(-0.858609\pi\)
0.902958 0.429728i \(-0.141391\pi\)
\(4\) 0 0
\(5\) 1.02997 0.460616 0.230308 0.973118i \(-0.426027\pi\)
0.230308 + 0.973118i \(0.426027\pi\)
\(6\) 0 0
\(7\) 1.70779 2.02076i 0.645484 0.763774i
\(8\) 0 0
\(9\) 0.784007 0.261336
\(10\) 0 0
\(11\) −0.608038 −0.183330 −0.0916651 0.995790i \(-0.529219\pi\)
−0.0916651 + 0.995790i \(0.529219\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 1.53323i 0.395879i
\(16\) 0 0
\(17\) 0.526406i 0.127672i −0.997960 0.0638361i \(-0.979667\pi\)
0.997960 0.0638361i \(-0.0203335\pi\)
\(18\) 0 0
\(19\) 1.94810i 0.446926i −0.974712 0.223463i \(-0.928264\pi\)
0.974712 0.223463i \(-0.0717361\pi\)
\(20\) 0 0
\(21\) −3.00814 2.54225i −0.656430 0.554765i
\(22\) 0 0
\(23\) 0.0153141i 0.00319321i 0.999999 + 0.00159660i \(0.000508215\pi\)
−0.999999 + 0.00159660i \(0.999492\pi\)
\(24\) 0 0
\(25\) −3.93917 −0.787833
\(26\) 0 0
\(27\) 5.63295i 1.08406i
\(28\) 0 0
\(29\) 4.64455i 0.862471i −0.902239 0.431236i \(-0.858078\pi\)
0.902239 0.431236i \(-0.141922\pi\)
\(30\) 0 0
\(31\) −4.57506 −0.821705 −0.410852 0.911702i \(-0.634769\pi\)
−0.410852 + 0.911702i \(0.634769\pi\)
\(32\) 0 0
\(33\) 0.905138i 0.157564i
\(34\) 0 0
\(35\) 1.75897 2.08131i 0.297320 0.351806i
\(36\) 0 0
\(37\) 2.15479i 0.354246i 0.984189 + 0.177123i \(0.0566790\pi\)
−0.984189 + 0.177123i \(0.943321\pi\)
\(38\) 0 0
\(39\) 1.48862i 0.238370i
\(40\) 0 0
\(41\) 6.24596i 0.975455i −0.872996 0.487727i \(-0.837826\pi\)
0.872996 0.487727i \(-0.162174\pi\)
\(42\) 0 0
\(43\) 3.29851 0.503019 0.251509 0.967855i \(-0.419073\pi\)
0.251509 + 0.967855i \(0.419073\pi\)
\(44\) 0 0
\(45\) 0.807502 0.120375
\(46\) 0 0
\(47\) 2.60155 0.379475 0.189737 0.981835i \(-0.439236\pi\)
0.189737 + 0.981835i \(0.439236\pi\)
\(48\) 0 0
\(49\) −1.16691 6.90205i −0.166701 0.986008i
\(50\) 0 0
\(51\) −0.783619 −0.109729
\(52\) 0 0
\(53\) 1.16935i 0.160622i 0.996770 + 0.0803111i \(0.0255914\pi\)
−0.996770 + 0.0803111i \(0.974409\pi\)
\(54\) 0 0
\(55\) −0.626260 −0.0844448
\(56\) 0 0
\(57\) −2.89999 −0.384113
\(58\) 0 0
\(59\) 0.783099i 0.101951i −0.998700 0.0509754i \(-0.983767\pi\)
0.998700 0.0509754i \(-0.0162330\pi\)
\(60\) 0 0
\(61\) 5.32371 0.681631 0.340815 0.940130i \(-0.389297\pi\)
0.340815 + 0.940130i \(0.389297\pi\)
\(62\) 0 0
\(63\) 1.33892 1.58429i 0.168688 0.199601i
\(64\) 0 0
\(65\) −1.02997 −0.127752
\(66\) 0 0
\(67\) 4.18167 0.510872 0.255436 0.966826i \(-0.417781\pi\)
0.255436 + 0.966826i \(0.417781\pi\)
\(68\) 0 0
\(69\) 0.0227969 0.00274442
\(70\) 0 0
\(71\) 14.9594i 1.77535i 0.460470 + 0.887675i \(0.347681\pi\)
−0.460470 + 0.887675i \(0.652319\pi\)
\(72\) 0 0
\(73\) 9.18228i 1.07470i −0.843358 0.537352i \(-0.819425\pi\)
0.843358 0.537352i \(-0.180575\pi\)
\(74\) 0 0
\(75\) 5.86392i 0.677108i
\(76\) 0 0
\(77\) −1.03840 + 1.22870i −0.118337 + 0.140023i
\(78\) 0 0
\(79\) 9.29066i 1.04528i −0.852553 0.522641i \(-0.824947\pi\)
0.852553 0.522641i \(-0.175053\pi\)
\(80\) 0 0
\(81\) −6.03331 −0.670368
\(82\) 0 0
\(83\) 1.45140i 0.159311i −0.996822 0.0796557i \(-0.974618\pi\)
0.996822 0.0796557i \(-0.0253821\pi\)
\(84\) 0 0
\(85\) 0.542182i 0.0588078i
\(86\) 0 0
\(87\) −6.91397 −0.741256
\(88\) 0 0
\(89\) 12.0597i 1.27832i −0.769073 0.639162i \(-0.779282\pi\)
0.769073 0.639162i \(-0.220718\pi\)
\(90\) 0 0
\(91\) −1.70779 + 2.02076i −0.179025 + 0.211833i
\(92\) 0 0
\(93\) 6.81053i 0.706219i
\(94\) 0 0
\(95\) 2.00649i 0.205861i
\(96\) 0 0
\(97\) 8.46670i 0.859663i −0.902909 0.429831i \(-0.858573\pi\)
0.902909 0.429831i \(-0.141427\pi\)
\(98\) 0 0
\(99\) −0.476706 −0.0479107
\(100\) 0 0
\(101\) 7.70127 0.766305 0.383153 0.923685i \(-0.374838\pi\)
0.383153 + 0.923685i \(0.374838\pi\)
\(102\) 0 0
\(103\) 4.43728 0.437218 0.218609 0.975813i \(-0.429848\pi\)
0.218609 + 0.975813i \(0.429848\pi\)
\(104\) 0 0
\(105\) −3.09829 2.61844i −0.302362 0.255534i
\(106\) 0 0
\(107\) −6.18159 −0.597597 −0.298798 0.954316i \(-0.596586\pi\)
−0.298798 + 0.954316i \(0.596586\pi\)
\(108\) 0 0
\(109\) 16.1401i 1.54594i 0.634441 + 0.772971i \(0.281230\pi\)
−0.634441 + 0.772971i \(0.718770\pi\)
\(110\) 0 0
\(111\) 3.20767 0.304459
\(112\) 0 0
\(113\) −2.76655 −0.260255 −0.130128 0.991497i \(-0.541539\pi\)
−0.130128 + 0.991497i \(0.541539\pi\)
\(114\) 0 0
\(115\) 0.0157730i 0.00147084i
\(116\) 0 0
\(117\) −0.784007 −0.0724815
\(118\) 0 0
\(119\) −1.06374 0.898991i −0.0975127 0.0824104i
\(120\) 0 0
\(121\) −10.6303 −0.966390
\(122\) 0 0
\(123\) −9.29787 −0.838360
\(124\) 0 0
\(125\) −9.20706 −0.823504
\(126\) 0 0
\(127\) 11.5046i 1.02087i 0.859917 + 0.510434i \(0.170515\pi\)
−0.859917 + 0.510434i \(0.829485\pi\)
\(128\) 0 0
\(129\) 4.91024i 0.432322i
\(130\) 0 0
\(131\) 10.8481i 0.947800i −0.880579 0.473900i \(-0.842846\pi\)
0.880579 0.473900i \(-0.157154\pi\)
\(132\) 0 0
\(133\) −3.93664 3.32695i −0.341350 0.288483i
\(134\) 0 0
\(135\) 5.80176i 0.499336i
\(136\) 0 0
\(137\) −3.67475 −0.313955 −0.156977 0.987602i \(-0.550175\pi\)
−0.156977 + 0.987602i \(0.550175\pi\)
\(138\) 0 0
\(139\) 14.5439i 1.23360i 0.787121 + 0.616798i \(0.211571\pi\)
−0.787121 + 0.616798i \(0.788429\pi\)
\(140\) 0 0
\(141\) 3.87272i 0.326142i
\(142\) 0 0
\(143\) 0.608038 0.0508467
\(144\) 0 0
\(145\) 4.78374i 0.397268i
\(146\) 0 0
\(147\) −10.2745 + 1.73708i −0.847430 + 0.143272i
\(148\) 0 0
\(149\) 15.7637i 1.29142i −0.763584 0.645708i \(-0.776562\pi\)
0.763584 0.645708i \(-0.223438\pi\)
\(150\) 0 0
\(151\) 8.76049i 0.712919i 0.934311 + 0.356459i \(0.116016\pi\)
−0.934311 + 0.356459i \(0.883984\pi\)
\(152\) 0 0
\(153\) 0.412706i 0.0333653i
\(154\) 0 0
\(155\) −4.71216 −0.378490
\(156\) 0 0
\(157\) 13.6353 1.08821 0.544106 0.839016i \(-0.316869\pi\)
0.544106 + 0.839016i \(0.316869\pi\)
\(158\) 0 0
\(159\) 1.74071 0.138048
\(160\) 0 0
\(161\) 0.0309460 + 0.0261533i 0.00243889 + 0.00206117i
\(162\) 0 0
\(163\) 5.71060 0.447288 0.223644 0.974671i \(-0.428205\pi\)
0.223644 + 0.974671i \(0.428205\pi\)
\(164\) 0 0
\(165\) 0.932263i 0.0725766i
\(166\) 0 0
\(167\) 16.0117 1.23902 0.619512 0.784987i \(-0.287331\pi\)
0.619512 + 0.784987i \(0.287331\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.52733i 0.116798i
\(172\) 0 0
\(173\) 13.1654 1.00095 0.500475 0.865751i \(-0.333159\pi\)
0.500475 + 0.865751i \(0.333159\pi\)
\(174\) 0 0
\(175\) −6.72727 + 7.96009i −0.508534 + 0.601726i
\(176\) 0 0
\(177\) −1.16574 −0.0876223
\(178\) 0 0
\(179\) −3.27796 −0.245006 −0.122503 0.992468i \(-0.539092\pi\)
−0.122503 + 0.992468i \(0.539092\pi\)
\(180\) 0 0
\(181\) −13.4214 −0.997606 −0.498803 0.866715i \(-0.666227\pi\)
−0.498803 + 0.866715i \(0.666227\pi\)
\(182\) 0 0
\(183\) 7.92498i 0.585831i
\(184\) 0 0
\(185\) 2.21937i 0.163171i
\(186\) 0 0
\(187\) 0.320075i 0.0234062i
\(188\) 0 0
\(189\) −11.3828 9.61990i −0.827978 0.699745i
\(190\) 0 0
\(191\) 13.3702i 0.967437i −0.875224 0.483719i \(-0.839286\pi\)
0.875224 0.483719i \(-0.160714\pi\)
\(192\) 0 0
\(193\) −14.0635 −1.01231 −0.506157 0.862441i \(-0.668934\pi\)
−0.506157 + 0.862441i \(0.668934\pi\)
\(194\) 0 0
\(195\) 1.53323i 0.109797i
\(196\) 0 0
\(197\) 7.40334i 0.527466i 0.964596 + 0.263733i \(0.0849538\pi\)
−0.964596 + 0.263733i \(0.915046\pi\)
\(198\) 0 0
\(199\) −21.2213 −1.50434 −0.752170 0.658969i \(-0.770993\pi\)
−0.752170 + 0.658969i \(0.770993\pi\)
\(200\) 0 0
\(201\) 6.22492i 0.439072i
\(202\) 0 0
\(203\) −9.38550 7.93191i −0.658733 0.556711i
\(204\) 0 0
\(205\) 6.43314i 0.449310i
\(206\) 0 0
\(207\) 0.0120064i 0.000834499i
\(208\) 0 0
\(209\) 1.18452i 0.0819350i
\(210\) 0 0
\(211\) 9.27855 0.638762 0.319381 0.947626i \(-0.396525\pi\)
0.319381 + 0.947626i \(0.396525\pi\)
\(212\) 0 0
\(213\) 22.2688 1.52584
\(214\) 0 0
\(215\) 3.39736 0.231698
\(216\) 0 0
\(217\) −7.81324 + 9.24507i −0.530397 + 0.627597i
\(218\) 0 0
\(219\) −13.6689 −0.923661
\(220\) 0 0
\(221\) 0.526406i 0.0354099i
\(222\) 0 0
\(223\) 0.650804 0.0435811 0.0217905 0.999763i \(-0.493063\pi\)
0.0217905 + 0.999763i \(0.493063\pi\)
\(224\) 0 0
\(225\) −3.08833 −0.205889
\(226\) 0 0
\(227\) 22.9227i 1.52143i −0.649084 0.760717i \(-0.724848\pi\)
0.649084 0.760717i \(-0.275152\pi\)
\(228\) 0 0
\(229\) −9.33589 −0.616933 −0.308467 0.951235i \(-0.599816\pi\)
−0.308467 + 0.951235i \(0.599816\pi\)
\(230\) 0 0
\(231\) 1.82906 + 1.54579i 0.120343 + 0.101705i
\(232\) 0 0
\(233\) −9.56308 −0.626498 −0.313249 0.949671i \(-0.601417\pi\)
−0.313249 + 0.949671i \(0.601417\pi\)
\(234\) 0 0
\(235\) 2.67951 0.174792
\(236\) 0 0
\(237\) −13.8303 −0.898373
\(238\) 0 0
\(239\) 16.2651i 1.05210i −0.850453 0.526051i \(-0.823672\pi\)
0.850453 0.526051i \(-0.176328\pi\)
\(240\) 0 0
\(241\) 17.9771i 1.15800i 0.815326 + 0.579002i \(0.196558\pi\)
−0.815326 + 0.579002i \(0.803442\pi\)
\(242\) 0 0
\(243\) 7.91754i 0.507911i
\(244\) 0 0
\(245\) −1.20188 7.10890i −0.0767851 0.454171i
\(246\) 0 0
\(247\) 1.94810i 0.123955i
\(248\) 0 0
\(249\) −2.16058 −0.136921
\(250\) 0 0
\(251\) 16.3892i 1.03447i −0.855842 0.517237i \(-0.826961\pi\)
0.855842 0.517237i \(-0.173039\pi\)
\(252\) 0 0
\(253\) 0.00931155i 0.000585412i
\(254\) 0 0
\(255\) −0.807103 −0.0505428
\(256\) 0 0
\(257\) 27.4462i 1.71205i 0.516937 + 0.856023i \(0.327072\pi\)
−0.516937 + 0.856023i \(0.672928\pi\)
\(258\) 0 0
\(259\) 4.35431 + 3.67993i 0.270564 + 0.228660i
\(260\) 0 0
\(261\) 3.64136i 0.225394i
\(262\) 0 0
\(263\) 4.35567i 0.268582i 0.990942 + 0.134291i \(0.0428757\pi\)
−0.990942 + 0.134291i \(0.957124\pi\)
\(264\) 0 0
\(265\) 1.20439i 0.0739851i
\(266\) 0 0
\(267\) −17.9523 −1.09866
\(268\) 0 0
\(269\) 20.3914 1.24328 0.621642 0.783302i \(-0.286466\pi\)
0.621642 + 0.783302i \(0.286466\pi\)
\(270\) 0 0
\(271\) 31.3447 1.90405 0.952027 0.306015i \(-0.0989957\pi\)
0.952027 + 0.306015i \(0.0989957\pi\)
\(272\) 0 0
\(273\) 3.00814 + 2.54225i 0.182061 + 0.153864i
\(274\) 0 0
\(275\) 2.39516 0.144434
\(276\) 0 0
\(277\) 5.40265i 0.324614i 0.986740 + 0.162307i \(0.0518934\pi\)
−0.986740 + 0.162307i \(0.948107\pi\)
\(278\) 0 0
\(279\) −3.58688 −0.214741
\(280\) 0 0
\(281\) 0.635876 0.0379332 0.0189666 0.999820i \(-0.493962\pi\)
0.0189666 + 0.999820i \(0.493962\pi\)
\(282\) 0 0
\(283\) 6.06925i 0.360779i 0.983595 + 0.180390i \(0.0577359\pi\)
−0.983595 + 0.180390i \(0.942264\pi\)
\(284\) 0 0
\(285\) −2.98690 −0.176928
\(286\) 0 0
\(287\) −12.6216 10.6668i −0.745027 0.629640i
\(288\) 0 0
\(289\) 16.7229 0.983700
\(290\) 0 0
\(291\) −12.6037 −0.738842
\(292\) 0 0
\(293\) −29.8751 −1.74532 −0.872660 0.488328i \(-0.837607\pi\)
−0.872660 + 0.488328i \(0.837607\pi\)
\(294\) 0 0
\(295\) 0.806568i 0.0469602i
\(296\) 0 0
\(297\) 3.42505i 0.198741i
\(298\) 0 0
\(299\) 0.0153141i 0.000885637i
\(300\) 0 0
\(301\) 5.63317 6.66549i 0.324690 0.384192i
\(302\) 0 0
\(303\) 11.4643i 0.658606i
\(304\) 0 0
\(305\) 5.48325 0.313970
\(306\) 0 0
\(307\) 22.3570i 1.27598i −0.770044 0.637991i \(-0.779766\pi\)
0.770044 0.637991i \(-0.220234\pi\)
\(308\) 0 0
\(309\) 6.60543i 0.375770i
\(310\) 0 0
\(311\) −21.5289 −1.22079 −0.610396 0.792096i \(-0.708990\pi\)
−0.610396 + 0.792096i \(0.708990\pi\)
\(312\) 0 0
\(313\) 2.06304i 0.116610i −0.998299 0.0583050i \(-0.981430\pi\)
0.998299 0.0583050i \(-0.0185696\pi\)
\(314\) 0 0
\(315\) 1.37904 1.63176i 0.0777003 0.0919395i
\(316\) 0 0
\(317\) 32.5712i 1.82938i 0.404156 + 0.914690i \(0.367565\pi\)
−0.404156 + 0.914690i \(0.632435\pi\)
\(318\) 0 0
\(319\) 2.82406i 0.158117i
\(320\) 0 0
\(321\) 9.20205i 0.513608i
\(322\) 0 0
\(323\) −1.02549 −0.0570600
\(324\) 0 0
\(325\) 3.93917 0.218506
\(326\) 0 0
\(327\) 24.0265 1.32867
\(328\) 0 0
\(329\) 4.44290 5.25709i 0.244945 0.289833i
\(330\) 0 0
\(331\) 14.1674 0.778710 0.389355 0.921088i \(-0.372698\pi\)
0.389355 + 0.921088i \(0.372698\pi\)
\(332\) 0 0
\(333\) 1.68937i 0.0925770i
\(334\) 0 0
\(335\) 4.30699 0.235316
\(336\) 0 0
\(337\) 23.0042 1.25312 0.626561 0.779373i \(-0.284462\pi\)
0.626561 + 0.779373i \(0.284462\pi\)
\(338\) 0 0
\(339\) 4.11834i 0.223678i
\(340\) 0 0
\(341\) 2.78181 0.150643
\(342\) 0 0
\(343\) −15.9402 9.42922i −0.860689 0.509130i
\(344\) 0 0
\(345\) 0.0234801 0.00126412
\(346\) 0 0
\(347\) −17.8224 −0.956756 −0.478378 0.878154i \(-0.658775\pi\)
−0.478378 + 0.878154i \(0.658775\pi\)
\(348\) 0 0
\(349\) 0.0209269 0.00112019 0.000560096 1.00000i \(-0.499822\pi\)
0.000560096 1.00000i \(0.499822\pi\)
\(350\) 0 0
\(351\) 5.63295i 0.300665i
\(352\) 0 0
\(353\) 8.02237i 0.426988i 0.976944 + 0.213494i \(0.0684844\pi\)
−0.976944 + 0.213494i \(0.931516\pi\)
\(354\) 0 0
\(355\) 15.4077i 0.817755i
\(356\) 0 0
\(357\) −1.33826 + 1.58350i −0.0708281 + 0.0838079i
\(358\) 0 0
\(359\) 14.8589i 0.784223i 0.919918 + 0.392112i \(0.128255\pi\)
−0.919918 + 0.392112i \(0.871745\pi\)
\(360\) 0 0
\(361\) 15.2049 0.800257
\(362\) 0 0
\(363\) 15.8245i 0.830570i
\(364\) 0 0
\(365\) 9.45746i 0.495026i
\(366\) 0 0
\(367\) −20.8036 −1.08594 −0.542970 0.839752i \(-0.682700\pi\)
−0.542970 + 0.839752i \(0.682700\pi\)
\(368\) 0 0
\(369\) 4.89687i 0.254921i
\(370\) 0 0
\(371\) 2.36296 + 1.99700i 0.122679 + 0.103679i
\(372\) 0 0
\(373\) 19.1563i 0.991875i −0.868358 0.495937i \(-0.834825\pi\)
0.868358 0.495937i \(-0.165175\pi\)
\(374\) 0 0
\(375\) 13.7058i 0.707766i
\(376\) 0 0
\(377\) 4.64455i 0.239206i
\(378\) 0 0
\(379\) −1.31524 −0.0675596 −0.0337798 0.999429i \(-0.510754\pi\)
−0.0337798 + 0.999429i \(0.510754\pi\)
\(380\) 0 0
\(381\) 17.1260 0.877392
\(382\) 0 0
\(383\) 8.37026 0.427700 0.213850 0.976866i \(-0.431400\pi\)
0.213850 + 0.976866i \(0.431400\pi\)
\(384\) 0 0
\(385\) −1.06952 + 1.26552i −0.0545078 + 0.0644968i
\(386\) 0 0
\(387\) 2.58606 0.131457
\(388\) 0 0
\(389\) 29.5123i 1.49634i 0.663510 + 0.748168i \(0.269066\pi\)
−0.663510 + 0.748168i \(0.730934\pi\)
\(390\) 0 0
\(391\) 0.00806143 0.000407684
\(392\) 0 0
\(393\) −16.1487 −0.814592
\(394\) 0 0
\(395\) 9.56909i 0.481473i
\(396\) 0 0
\(397\) −18.5170 −0.929339 −0.464670 0.885484i \(-0.653827\pi\)
−0.464670 + 0.885484i \(0.653827\pi\)
\(398\) 0 0
\(399\) −4.95257 + 5.86017i −0.247939 + 0.293375i
\(400\) 0 0
\(401\) 23.4394 1.17051 0.585253 0.810850i \(-0.300995\pi\)
0.585253 + 0.810850i \(0.300995\pi\)
\(402\) 0 0
\(403\) 4.57506 0.227900
\(404\) 0 0
\(405\) −6.21412 −0.308782
\(406\) 0 0
\(407\) 1.31019i 0.0649440i
\(408\) 0 0
\(409\) 1.04236i 0.0515414i −0.999668 0.0257707i \(-0.991796\pi\)
0.999668 0.0257707i \(-0.00820398\pi\)
\(410\) 0 0
\(411\) 5.47031i 0.269830i
\(412\) 0 0
\(413\) −1.58245 1.33737i −0.0778674 0.0658076i
\(414\) 0 0
\(415\) 1.49489i 0.0733813i
\(416\) 0 0
\(417\) 21.6503 1.06022
\(418\) 0 0
\(419\) 5.33068i 0.260421i 0.991486 + 0.130210i \(0.0415653\pi\)
−0.991486 + 0.130210i \(0.958435\pi\)
\(420\) 0 0
\(421\) 35.9690i 1.75302i 0.481381 + 0.876511i \(0.340135\pi\)
−0.481381 + 0.876511i \(0.659865\pi\)
\(422\) 0 0
\(423\) 2.03963 0.0991703
\(424\) 0 0
\(425\) 2.07360i 0.100584i
\(426\) 0 0
\(427\) 9.09177 10.7579i 0.439982 0.520612i
\(428\) 0 0
\(429\) 0.905138i 0.0437005i
\(430\) 0 0
\(431\) 22.1177i 1.06537i 0.846312 + 0.532687i \(0.178818\pi\)
−0.846312 + 0.532687i \(0.821182\pi\)
\(432\) 0 0
\(433\) 11.5805i 0.556523i 0.960505 + 0.278261i \(0.0897581\pi\)
−0.960505 + 0.278261i \(0.910242\pi\)
\(434\) 0 0
\(435\) −7.12117 −0.341434
\(436\) 0 0
\(437\) 0.0298334 0.00142713
\(438\) 0 0
\(439\) 38.2244 1.82435 0.912175 0.409801i \(-0.134402\pi\)
0.912175 + 0.409801i \(0.134402\pi\)
\(440\) 0 0
\(441\) −0.914863 5.41126i −0.0435649 0.257679i
\(442\) 0 0
\(443\) −15.3359 −0.728629 −0.364315 0.931276i \(-0.618697\pi\)
−0.364315 + 0.931276i \(0.618697\pi\)
\(444\) 0 0
\(445\) 12.4211i 0.588816i
\(446\) 0 0
\(447\) −23.4662 −1.10992
\(448\) 0 0
\(449\) 23.3025 1.09971 0.549857 0.835259i \(-0.314682\pi\)
0.549857 + 0.835259i \(0.314682\pi\)
\(450\) 0 0
\(451\) 3.79778i 0.178830i
\(452\) 0 0
\(453\) 13.0411 0.612722
\(454\) 0 0
\(455\) −1.75897 + 2.08131i −0.0824618 + 0.0975735i
\(456\) 0 0
\(457\) 7.74554 0.362321 0.181161 0.983454i \(-0.442015\pi\)
0.181161 + 0.983454i \(0.442015\pi\)
\(458\) 0 0
\(459\) −2.96522 −0.138405
\(460\) 0 0
\(461\) −22.6982 −1.05716 −0.528581 0.848883i \(-0.677276\pi\)
−0.528581 + 0.848883i \(0.677276\pi\)
\(462\) 0 0
\(463\) 15.2556i 0.708988i 0.935058 + 0.354494i \(0.115347\pi\)
−0.935058 + 0.354494i \(0.884653\pi\)
\(464\) 0 0
\(465\) 7.01463i 0.325296i
\(466\) 0 0
\(467\) 33.7119i 1.56000i −0.625779 0.780000i \(-0.715219\pi\)
0.625779 0.780000i \(-0.284781\pi\)
\(468\) 0 0
\(469\) 7.14141 8.45013i 0.329760 0.390191i
\(470\) 0 0
\(471\) 20.2977i 0.935271i
\(472\) 0 0
\(473\) −2.00562 −0.0922185
\(474\) 0 0
\(475\) 7.67390i 0.352103i
\(476\) 0 0
\(477\) 0.916776i 0.0419763i
\(478\) 0 0
\(479\) 27.5473 1.25867 0.629333 0.777136i \(-0.283328\pi\)
0.629333 + 0.777136i \(0.283328\pi\)
\(480\) 0 0
\(481\) 2.15479i 0.0982501i
\(482\) 0 0
\(483\) 0.0389323 0.0460669i 0.00177148 0.00209612i
\(484\) 0 0
\(485\) 8.72043i 0.395974i
\(486\) 0 0
\(487\) 13.1983i 0.598073i 0.954242 + 0.299037i \(0.0966653\pi\)
−0.954242 + 0.299037i \(0.903335\pi\)
\(488\) 0 0
\(489\) 8.50091i 0.384425i
\(490\) 0 0
\(491\) 8.07921 0.364609 0.182305 0.983242i \(-0.441644\pi\)
0.182305 + 0.983242i \(0.441644\pi\)
\(492\) 0 0
\(493\) −2.44492 −0.110114
\(494\) 0 0
\(495\) −0.490992 −0.0220684
\(496\) 0 0
\(497\) 30.2292 + 25.5475i 1.35597 + 1.14596i
\(498\) 0 0
\(499\) 26.0339 1.16544 0.582720 0.812673i \(-0.301989\pi\)
0.582720 + 0.812673i \(0.301989\pi\)
\(500\) 0 0
\(501\) 23.8354i 1.06489i
\(502\) 0 0
\(503\) 5.46230 0.243552 0.121776 0.992558i \(-0.461141\pi\)
0.121776 + 0.992558i \(0.461141\pi\)
\(504\) 0 0
\(505\) 7.93207 0.352972
\(506\) 0 0
\(507\) 1.48862i 0.0661120i
\(508\) 0 0
\(509\) 18.6505 0.826670 0.413335 0.910579i \(-0.364364\pi\)
0.413335 + 0.910579i \(0.364364\pi\)
\(510\) 0 0
\(511\) −18.5551 15.6814i −0.820831 0.693705i
\(512\) 0 0
\(513\) −10.9736 −0.484495
\(514\) 0 0
\(515\) 4.57026 0.201390
\(516\) 0 0
\(517\) −1.58184 −0.0695692
\(518\) 0 0
\(519\) 19.5984i 0.860273i
\(520\) 0 0
\(521\) 16.3034i 0.714267i −0.934053 0.357134i \(-0.883754\pi\)
0.934053 0.357134i \(-0.116246\pi\)
\(522\) 0 0
\(523\) 19.4624i 0.851031i 0.904951 + 0.425516i \(0.139907\pi\)
−0.904951 + 0.425516i \(0.860093\pi\)
\(524\) 0 0
\(525\) 11.8496 + 10.0144i 0.517157 + 0.437062i
\(526\) 0 0
\(527\) 2.40834i 0.104909i
\(528\) 0 0
\(529\) 22.9998 0.999990
\(530\) 0 0
\(531\) 0.613955i 0.0266434i
\(532\) 0 0
\(533\) 6.24596i 0.270543i
\(534\) 0 0
\(535\) −6.36684 −0.275263
\(536\) 0 0
\(537\) 4.87964i 0.210572i
\(538\) 0 0
\(539\) 0.709523 + 4.19671i 0.0305613 + 0.180765i
\(540\) 0 0
\(541\) 10.8033i 0.464471i −0.972660 0.232236i \(-0.925396\pi\)
0.972660 0.232236i \(-0.0746040\pi\)
\(542\) 0 0
\(543\) 19.9794i 0.857398i
\(544\) 0 0
\(545\) 16.6238i 0.712086i
\(546\) 0 0
\(547\) 32.4266 1.38646 0.693230 0.720717i \(-0.256187\pi\)
0.693230 + 0.720717i \(0.256187\pi\)
\(548\) 0 0
\(549\) 4.17382 0.178134
\(550\) 0 0
\(551\) −9.04806 −0.385460
\(552\) 0 0
\(553\) −18.7742 15.8665i −0.798358 0.674712i
\(554\) 0 0
\(555\) 3.30380 0.140238
\(556\) 0 0
\(557\) 4.44482i 0.188333i −0.995556 0.0941666i \(-0.969981\pi\)
0.995556 0.0941666i \(-0.0300186\pi\)
\(558\) 0 0
\(559\) −3.29851 −0.139512
\(560\) 0 0
\(561\) 0.476470 0.0201166
\(562\) 0 0
\(563\) 9.65256i 0.406807i −0.979095 0.203403i \(-0.934800\pi\)
0.979095 0.203403i \(-0.0652003\pi\)
\(564\) 0 0
\(565\) −2.84946 −0.119878
\(566\) 0 0
\(567\) −10.3036 + 12.1919i −0.432712 + 0.512010i
\(568\) 0 0
\(569\) 12.1247 0.508296 0.254148 0.967165i \(-0.418205\pi\)
0.254148 + 0.967165i \(0.418205\pi\)
\(570\) 0 0
\(571\) 33.2882 1.39307 0.696534 0.717524i \(-0.254724\pi\)
0.696534 + 0.717524i \(0.254724\pi\)
\(572\) 0 0
\(573\) −19.9032 −0.831469
\(574\) 0 0
\(575\) 0.0603247i 0.00251572i
\(576\) 0 0
\(577\) 27.7175i 1.15390i 0.816781 + 0.576948i \(0.195757\pi\)
−0.816781 + 0.576948i \(0.804243\pi\)
\(578\) 0 0
\(579\) 20.9353i 0.870039i
\(580\) 0 0
\(581\) −2.93291 2.47868i −0.121678 0.102833i
\(582\) 0 0
\(583\) 0.711007i 0.0294469i
\(584\) 0 0
\(585\) −0.807502 −0.0333861
\(586\) 0 0
\(587\) 21.9684i 0.906732i −0.891324 0.453366i \(-0.850223\pi\)
0.891324 0.453366i \(-0.149777\pi\)
\(588\) 0 0
\(589\) 8.91269i 0.367241i
\(590\) 0 0
\(591\) 11.0208 0.453334
\(592\) 0 0
\(593\) 16.3479i 0.671327i 0.941982 + 0.335663i \(0.108960\pi\)
−0.941982 + 0.335663i \(0.891040\pi\)
\(594\) 0 0
\(595\) −1.09562 0.925932i −0.0449159 0.0379595i
\(596\) 0 0
\(597\) 31.5905i 1.29291i
\(598\) 0 0
\(599\) 36.2459i 1.48097i −0.672075 0.740483i \(-0.734597\pi\)
0.672075 0.740483i \(-0.265403\pi\)
\(600\) 0 0
\(601\) 31.2461i 1.27455i −0.770635 0.637277i \(-0.780061\pi\)
0.770635 0.637277i \(-0.219939\pi\)
\(602\) 0 0
\(603\) 3.27846 0.133509
\(604\) 0 0
\(605\) −10.9489 −0.445135
\(606\) 0 0
\(607\) 41.8217 1.69749 0.848745 0.528803i \(-0.177359\pi\)
0.848745 + 0.528803i \(0.177359\pi\)
\(608\) 0 0
\(609\) −11.8076 + 13.9715i −0.478469 + 0.566152i
\(610\) 0 0
\(611\) −2.60155 −0.105247
\(612\) 0 0
\(613\) 4.71554i 0.190459i 0.995455 + 0.0952293i \(0.0303584\pi\)
−0.995455 + 0.0952293i \(0.969642\pi\)
\(614\) 0 0
\(615\) −9.57651 −0.386162
\(616\) 0 0
\(617\) 7.74058 0.311624 0.155812 0.987787i \(-0.450201\pi\)
0.155812 + 0.987787i \(0.450201\pi\)
\(618\) 0 0
\(619\) 44.8288i 1.80182i 0.434004 + 0.900911i \(0.357100\pi\)
−0.434004 + 0.900911i \(0.642900\pi\)
\(620\) 0 0
\(621\) 0.0862636 0.00346164
\(622\) 0 0
\(623\) −24.3697 20.5954i −0.976350 0.825137i
\(624\) 0 0
\(625\) 10.2128 0.408514
\(626\) 0 0
\(627\) 1.76330 0.0704195
\(628\) 0 0
\(629\) 1.13430 0.0452273
\(630\) 0 0
\(631\) 17.8015i 0.708666i −0.935119 0.354333i \(-0.884708\pi\)
0.935119 0.354333i \(-0.115292\pi\)
\(632\) 0 0
\(633\) 13.8122i 0.548988i
\(634\) 0 0
\(635\) 11.8494i 0.470228i
\(636\) 0 0
\(637\) 1.16691 + 6.90205i 0.0462345 + 0.273469i
\(638\) 0 0
\(639\) 11.7282i 0.463962i
\(640\) 0 0
\(641\) 13.9549 0.551187 0.275594 0.961274i \(-0.411126\pi\)
0.275594 + 0.961274i \(0.411126\pi\)
\(642\) 0 0
\(643\) 42.3514i 1.67017i 0.550117 + 0.835087i \(0.314583\pi\)
−0.550117 + 0.835087i \(0.685417\pi\)
\(644\) 0 0
\(645\) 5.05739i 0.199134i
\(646\) 0 0
\(647\) 28.5451 1.12222 0.561111 0.827741i \(-0.310374\pi\)
0.561111 + 0.827741i \(0.310374\pi\)
\(648\) 0 0
\(649\) 0.476154i 0.0186907i
\(650\) 0 0
\(651\) 13.7624 + 11.6310i 0.539392 + 0.455853i
\(652\) 0 0
\(653\) 35.7866i 1.40044i −0.713927 0.700220i \(-0.753085\pi\)
0.713927 0.700220i \(-0.246915\pi\)
\(654\) 0 0
\(655\) 11.1732i 0.436572i
\(656\) 0 0
\(657\) 7.19897i 0.280859i
\(658\) 0 0
\(659\) 9.09685 0.354363 0.177182 0.984178i \(-0.443302\pi\)
0.177182 + 0.984178i \(0.443302\pi\)
\(660\) 0 0
\(661\) 31.3058 1.21765 0.608827 0.793303i \(-0.291640\pi\)
0.608827 + 0.793303i \(0.291640\pi\)
\(662\) 0 0
\(663\) 0.783619 0.0304332
\(664\) 0 0
\(665\) −4.05462 3.42666i −0.157231 0.132880i
\(666\) 0 0
\(667\) 0.0711270 0.00275405
\(668\) 0 0
\(669\) 0.968800i 0.0374560i
\(670\) 0 0
\(671\) −3.23701 −0.124964
\(672\) 0 0
\(673\) −35.1110 −1.35343 −0.676715 0.736245i \(-0.736597\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(674\) 0 0
\(675\) 22.1891i 0.854060i
\(676\) 0 0
\(677\) 37.3515 1.43554 0.717768 0.696283i \(-0.245164\pi\)
0.717768 + 0.696283i \(0.245164\pi\)
\(678\) 0 0
\(679\) −17.1091 14.4593i −0.656588 0.554899i
\(680\) 0 0
\(681\) −34.1232 −1.30760
\(682\) 0 0
\(683\) 18.2389 0.697893 0.348947 0.937143i \(-0.386539\pi\)
0.348947 + 0.937143i \(0.386539\pi\)
\(684\) 0 0
\(685\) −3.78487 −0.144613
\(686\) 0 0
\(687\) 13.8976i 0.530227i
\(688\) 0 0
\(689\) 1.16935i 0.0445486i
\(690\) 0 0
\(691\) 30.2469i 1.15065i 0.817926 + 0.575323i \(0.195124\pi\)
−0.817926 + 0.575323i \(0.804876\pi\)
\(692\) 0 0
\(693\) −0.814113 + 0.963306i −0.0309256 + 0.0365930i
\(694\) 0 0
\(695\) 14.9797i 0.568214i
\(696\) 0 0
\(697\) −3.28791 −0.124538
\(698\) 0 0
\(699\) 14.2358i 0.538447i
\(700\) 0 0
\(701\) 34.8391i 1.31586i 0.753081 + 0.657928i \(0.228567\pi\)
−0.753081 + 0.657928i \(0.771433\pi\)
\(702\) 0 0
\(703\) 4.19776 0.158321
\(704\) 0 0
\(705\) 3.98878i 0.150226i
\(706\) 0 0
\(707\) 13.1522 15.5624i 0.494638 0.585284i
\(708\) 0 0
\(709\) 39.3740i 1.47872i −0.673309 0.739361i \(-0.735128\pi\)
0.673309 0.739361i \(-0.264872\pi\)
\(710\) 0 0
\(711\) 7.28394i 0.273169i
\(712\) 0 0
\(713\) 0.0700629i 0.00262387i
\(714\) 0 0
\(715\) 0.626260 0.0234208
\(716\) 0 0
\(717\) −24.2126 −0.904235
\(718\) 0 0
\(719\) 4.48168 0.167139 0.0835693 0.996502i \(-0.473368\pi\)
0.0835693 + 0.996502i \(0.473368\pi\)
\(720\) 0 0
\(721\) 7.57794 8.96665i 0.282217 0.333936i
\(722\) 0 0
\(723\) 26.7610 0.995253
\(724\) 0 0
\(725\) 18.2956i 0.679483i
\(726\) 0 0
\(727\) −16.5368 −0.613315 −0.306657 0.951820i \(-0.599211\pi\)
−0.306657 + 0.951820i \(0.599211\pi\)
\(728\) 0 0
\(729\) −29.8862 −1.10689
\(730\) 0 0
\(731\) 1.73636i 0.0642215i
\(732\) 0 0
\(733\) 30.2572 1.11757 0.558787 0.829311i \(-0.311267\pi\)
0.558787 + 0.829311i \(0.311267\pi\)
\(734\) 0 0
\(735\) −10.5825 + 1.78914i −0.390340 + 0.0659934i
\(736\) 0 0
\(737\) −2.54261 −0.0936583
\(738\) 0 0
\(739\) 32.9352 1.21154 0.605771 0.795639i \(-0.292865\pi\)
0.605771 + 0.795639i \(0.292865\pi\)
\(740\) 0 0
\(741\) 2.89999 0.106534
\(742\) 0 0
\(743\) 26.2593i 0.963360i 0.876347 + 0.481680i \(0.159973\pi\)
−0.876347 + 0.481680i \(0.840027\pi\)
\(744\) 0 0
\(745\) 16.2362i 0.594847i
\(746\) 0 0
\(747\) 1.13790i 0.0416337i
\(748\) 0 0
\(749\) −10.5569 + 12.4915i −0.385739 + 0.456429i
\(750\) 0 0
\(751\) 43.7992i 1.59826i 0.601161 + 0.799128i \(0.294705\pi\)
−0.601161 + 0.799128i \(0.705295\pi\)
\(752\) 0 0
\(753\) −24.3972 −0.889085
\(754\) 0 0
\(755\) 9.02303i 0.328382i
\(756\) 0 0
\(757\) 18.1033i 0.657974i −0.944334 0.328987i \(-0.893293\pi\)
0.944334 0.328987i \(-0.106707\pi\)
\(758\) 0 0
\(759\) −0.0138614 −0.000503136
\(760\) 0 0
\(761\) 23.9490i 0.868152i −0.900876 0.434076i \(-0.857075\pi\)
0.900876 0.434076i \(-0.142925\pi\)
\(762\) 0 0
\(763\) 32.6152 + 27.5639i 1.18075 + 0.997881i
\(764\) 0 0
\(765\) 0.425074i 0.0153686i
\(766\) 0 0
\(767\) 0.783099i 0.0282761i
\(768\) 0 0
\(769\) 39.8803i 1.43812i 0.694948 + 0.719060i \(0.255427\pi\)
−0.694948 + 0.719060i \(0.744573\pi\)
\(770\) 0 0
\(771\) 40.8570 1.47143
\(772\) 0 0
\(773\) −17.7022 −0.636704 −0.318352 0.947973i \(-0.603129\pi\)
−0.318352 + 0.947973i \(0.603129\pi\)
\(774\) 0 0
\(775\) 18.0219 0.647366
\(776\) 0 0
\(777\) 5.47803 6.48192i 0.196523 0.232537i
\(778\) 0 0
\(779\) −12.1678 −0.435956
\(780\) 0 0
\(781\) 9.09586i 0.325476i
\(782\) 0 0
\(783\) −26.1625 −0.934972
\(784\) 0 0
\(785\) 14.0439 0.501248
\(786\) 0 0
\(787\) 20.7451i 0.739482i 0.929135 + 0.369741i \(0.120554\pi\)
−0.929135 + 0.369741i \(0.879446\pi\)
\(788\) 0 0
\(789\) 6.48394 0.230835
\(790\) 0 0
\(791\) −4.72468 + 5.59052i −0.167990 + 0.198776i
\(792\) 0 0
\(793\) −5.32371 −0.189050
\(794\) 0 0
\(795\) 1.79288 0.0635869
\(796\) 0 0
\(797\) −11.6215 −0.411654 −0.205827 0.978588i \(-0.565988\pi\)
−0.205827 + 0.978588i \(0.565988\pi\)
\(798\) 0 0
\(799\) 1.36947i 0.0484484i
\(800\) 0 0
\(801\) 9.45487i 0.334071i
\(802\) 0 0
\(803\) 5.58317i 0.197026i
\(804\) 0 0
\(805\) 0.0318734 + 0.0269370i 0.00112339 + 0.000949405i
\(806\) 0 0
\(807\) 30.3550i 1.06855i
\(808\) 0 0
\(809\) −26.3459 −0.926271 −0.463136 0.886287i \(-0.653276\pi\)
−0.463136 + 0.886287i \(0.653276\pi\)
\(810\) 0 0
\(811\) 31.7543i 1.11504i 0.830163 + 0.557521i \(0.188248\pi\)
−0.830163 + 0.557521i \(0.811752\pi\)
\(812\) 0 0
\(813\) 46.6604i 1.63645i
\(814\) 0 0
\(815\) 5.88173 0.206028
\(816\) 0 0
\(817\) 6.42585i 0.224812i
\(818\) 0 0
\(819\) −1.33892 + 1.58429i −0.0467856 + 0.0553594i
\(820\) 0 0
\(821\) 32.1508i 1.12207i −0.827791 0.561036i \(-0.810403\pi\)
0.827791 0.561036i \(-0.189597\pi\)
\(822\) 0 0
\(823\) 26.3374i 0.918065i −0.888419 0.459033i \(-0.848196\pi\)
0.888419 0.459033i \(-0.151804\pi\)
\(824\) 0 0
\(825\) 3.56549i 0.124134i
\(826\) 0 0
\(827\) −28.2351 −0.981832 −0.490916 0.871207i \(-0.663338\pi\)
−0.490916 + 0.871207i \(0.663338\pi\)
\(828\) 0 0
\(829\) 7.20127 0.250110 0.125055 0.992150i \(-0.460089\pi\)
0.125055 + 0.992150i \(0.460089\pi\)
\(830\) 0 0
\(831\) 8.04249 0.278991
\(832\) 0 0
\(833\) −3.63328 + 0.614267i −0.125886 + 0.0212831i
\(834\) 0 0
\(835\) 16.4916 0.570714
\(836\) 0 0
\(837\) 25.7711i 0.890779i
\(838\) 0 0
\(839\) −14.9034 −0.514524 −0.257262 0.966342i \(-0.582820\pi\)
−0.257262 + 0.966342i \(0.582820\pi\)
\(840\) 0 0
\(841\) 7.42817 0.256144
\(842\) 0 0
\(843\) 0.946579i 0.0326019i
\(844\) 0 0
\(845\) 1.02997 0.0354320
\(846\) 0 0
\(847\) −18.1543 + 21.4812i −0.623789 + 0.738103i
\(848\) 0 0
\(849\) 9.03481 0.310074
\(850\) 0 0
\(851\) −0.0329987 −0.00113118
\(852\) 0 0
\(853\) −49.1718 −1.68361 −0.841804 0.539783i \(-0.818506\pi\)
−0.841804 + 0.539783i \(0.818506\pi\)
\(854\) 0 0
\(855\) 1.57310i 0.0537988i
\(856\) 0 0
\(857\) 20.6632i 0.705843i 0.935653 + 0.352922i \(0.114812\pi\)
−0.935653 + 0.352922i \(0.885188\pi\)
\(858\) 0 0
\(859\) 20.8182i 0.710309i 0.934808 + 0.355154i \(0.115572\pi\)
−0.934808 + 0.355154i \(0.884428\pi\)
\(860\) 0 0
\(861\) −15.8788 + 18.7887i −0.541148 + 0.640318i
\(862\) 0 0
\(863\) 30.4131i 1.03527i 0.855601 + 0.517637i \(0.173188\pi\)
−0.855601 + 0.517637i \(0.826812\pi\)
\(864\) 0 0
\(865\) 13.5600 0.461054
\(866\) 0 0
\(867\) 24.8941i 0.845447i
\(868\) 0 0
\(869\) 5.64907i 0.191632i
\(870\) 0 0
\(871\) −4.18167 −0.141690
\(872\) 0 0
\(873\) 6.63795i 0.224661i
\(874\) 0 0
\(875\) −15.7237 + 18.6052i −0.531559 + 0.628971i
\(876\) 0 0
\(877\) 8.60597i 0.290603i 0.989387 + 0.145301i \(0.0464152\pi\)
−0.989387 + 0.145301i \(0.953585\pi\)
\(878\) 0 0
\(879\) 44.4727i 1.50003i
\(880\) 0 0
\(881\) 22.7259i 0.765657i −0.923820 0.382828i \(-0.874950\pi\)
0.923820 0.382828i \(-0.125050\pi\)
\(882\) 0 0
\(883\) −26.0737 −0.877449 −0.438724 0.898622i \(-0.644570\pi\)
−0.438724 + 0.898622i \(0.644570\pi\)
\(884\) 0 0
\(885\) −1.20067 −0.0403602
\(886\) 0 0
\(887\) −18.7828 −0.630664 −0.315332 0.948981i \(-0.602116\pi\)
−0.315332 + 0.948981i \(0.602116\pi\)
\(888\) 0 0
\(889\) 23.2480 + 19.6475i 0.779713 + 0.658954i
\(890\) 0 0
\(891\) 3.66848 0.122899
\(892\) 0 0
\(893\) 5.06809i 0.169597i
\(894\) 0 0
\(895\) −3.37620 −0.112854
\(896\) 0 0
\(897\) −0.0227969 −0.000761166
\(898\) 0 0
\(899\) 21.2491i 0.708696i
\(900\) 0 0
\(901\) 0.615551 0.0205070
\(902\) 0 0
\(903\) −9.92239 8.38565i −0.330196 0.279057i
\(904\) 0 0
\(905\) −13.8236 −0.459513
\(906\) 0 0
\(907\) 2.93997 0.0976201 0.0488101 0.998808i \(-0.484457\pi\)
0.0488101 + 0.998808i \(0.484457\pi\)
\(908\) 0 0
\(909\) 6.03785 0.200263
\(910\) 0 0
\(911\) 37.3247i 1.23662i −0.785934 0.618311i \(-0.787817\pi\)
0.785934 0.618311i \(-0.212183\pi\)
\(912\) 0 0
\(913\) 0.882503i 0.0292066i
\(914\) 0 0
\(915\) 8.16248i 0.269843i
\(916\) 0 0
\(917\) −21.9213 18.5262i −0.723905 0.611790i
\(918\) 0 0
\(919\) 8.61037i 0.284030i 0.989865 + 0.142015i \(0.0453581\pi\)
−0.989865 + 0.142015i \(0.954642\pi\)
\(920\) 0 0
\(921\) −33.2811 −1.09665
\(922\) 0 0
\(923\) 14.9594i 0.492394i
\(924\) 0 0
\(925\) 8.48808i 0.279086i
\(926\) 0 0
\(927\) 3.47886 0.114261
\(928\) 0 0
\(929\) 55.5422i 1.82228i 0.412096 + 0.911140i \(0.364797\pi\)
−0.412096 + 0.911140i \(0.635203\pi\)
\(930\) 0 0
\(931\) −13.4459 + 2.27326i −0.440672 + 0.0745029i
\(932\) 0 0
\(933\) 32.0484i 1.04922i
\(934\) 0 0
\(935\) 0.329667i 0.0107813i
\(936\) 0 0
\(937\) 29.4465i 0.961974i 0.876728 + 0.480987i \(0.159722\pi\)
−0.876728 + 0.480987i \(0.840278\pi\)
\(938\) 0 0
\(939\) −3.07109 −0.100221
\(940\) 0 0
\(941\) 14.0302 0.457371 0.228686 0.973500i \(-0.426557\pi\)
0.228686 + 0.973500i \(0.426557\pi\)
\(942\) 0 0
\(943\) 0.0956512 0.00311483
\(944\) 0 0
\(945\) −11.7239 9.90819i −0.381380 0.322314i
\(946\) 0 0
\(947\) −46.5895 −1.51396 −0.756978 0.653440i \(-0.773325\pi\)
−0.756978 + 0.653440i \(0.773325\pi\)
\(948\) 0 0
\(949\) 9.18228i 0.298069i
\(950\) 0 0
\(951\) 48.4862 1.57227
\(952\) 0 0
\(953\) −42.9548 −1.39144 −0.695721 0.718312i \(-0.744915\pi\)
−0.695721 + 0.718312i \(0.744915\pi\)
\(954\) 0 0
\(955\) 13.7709i 0.445617i
\(956\) 0 0
\(957\) 4.20396 0.135895
\(958\) 0 0
\(959\) −6.27570 + 7.42577i −0.202653 + 0.239790i
\(960\) 0 0
\(961\) −10.0688 −0.324801
\(962\) 0 0
\(963\) −4.84641 −0.156173
\(964\) 0 0
\(965\) −14.4850 −0.466288
\(966\) 0 0
\(967\) 13.9605i 0.448940i 0.974481 + 0.224470i \(0.0720652\pi\)
−0.974481 + 0.224470i \(0.927935\pi\)
\(968\) 0 0
\(969\) 1.52657i 0.0490406i
\(970\) 0 0
\(971\) 12.7064i 0.407767i −0.978995 0.203884i \(-0.934644\pi\)
0.978995 0.203884i \(-0.0653564\pi\)
\(972\) 0 0
\(973\) 29.3896 + 24.8379i 0.942189 + 0.796267i
\(974\) 0 0
\(975\) 5.86392i 0.187796i
\(976\) 0 0
\(977\) 45.8920 1.46821 0.734107 0.679034i \(-0.237601\pi\)
0.734107 + 0.679034i \(0.237601\pi\)
\(978\) 0 0
\(979\) 7.33274i 0.234355i
\(980\) 0 0
\(981\) 12.6540i 0.404010i
\(982\) 0 0
\(983\) 34.2113 1.09117 0.545586 0.838055i \(-0.316307\pi\)
0.545586 + 0.838055i \(0.316307\pi\)
\(984\) 0 0
\(985\) 7.62520i 0.242959i
\(986\) 0 0
\(987\) −7.82582 6.61379i −0.249099 0.210519i
\(988\) 0 0
\(989\) 0.0505137i 0.00160624i
\(990\) 0 0
\(991\) 51.9670i 1.65079i −0.564559 0.825393i \(-0.690954\pi\)
0.564559 0.825393i \(-0.309046\pi\)
\(992\) 0 0
\(993\) 21.0899i 0.669266i
\(994\) 0 0
\(995\) −21.8573 −0.692923
\(996\) 0 0
\(997\) 6.95041 0.220122 0.110061 0.993925i \(-0.464895\pi\)
0.110061 + 0.993925i \(0.464895\pi\)
\(998\) 0 0
\(999\) 12.1378 0.384024
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.14 48
4.3 odd 2 728.2.h.a.27.47 48
7.6 odd 2 2912.2.h.b.2575.35 48
8.3 odd 2 2912.2.h.b.2575.14 48
8.5 even 2 728.2.h.b.27.48 yes 48
28.27 even 2 728.2.h.b.27.47 yes 48
56.13 odd 2 728.2.h.a.27.48 yes 48
56.27 even 2 inner 2912.2.h.a.2575.35 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.47 48 4.3 odd 2
728.2.h.a.27.48 yes 48 56.13 odd 2
728.2.h.b.27.47 yes 48 28.27 even 2
728.2.h.b.27.48 yes 48 8.5 even 2
2912.2.h.a.2575.14 48 1.1 even 1 trivial
2912.2.h.a.2575.35 48 56.27 even 2 inner
2912.2.h.b.2575.14 48 8.3 odd 2
2912.2.h.b.2575.35 48 7.6 odd 2