Properties

Label 728.2.h.b.27.47
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.47
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.48

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41227 - 0.0740988i) q^{2} -1.48862i q^{3} +(1.98902 - 0.209295i) q^{4} -1.02997 q^{5} +(-0.110305 - 2.10234i) q^{6} +(1.70779 + 2.02076i) q^{7} +(2.79352 - 0.442965i) q^{8} +0.784007 q^{9} +(-1.45459 + 0.0763194i) q^{10} +0.608038 q^{11} +(-0.311561 - 2.96090i) q^{12} +1.00000 q^{13} +(2.56160 + 2.72731i) q^{14} +1.53323i q^{15} +(3.91239 - 0.832584i) q^{16} +0.526406i q^{17} +(1.10723 - 0.0580940i) q^{18} -1.94810i q^{19} +(-2.04863 + 0.215567i) q^{20} +(3.00814 - 2.54225i) q^{21} +(0.858714 - 0.0450549i) q^{22} -0.0153141i q^{23} +(-0.659408 - 4.15850i) q^{24} -3.93917 q^{25} +(1.41227 - 0.0740988i) q^{26} -5.63295i q^{27} +(3.81976 + 3.66189i) q^{28} -4.64455i q^{29} +(0.113611 + 2.16534i) q^{30} -4.57506 q^{31} +(5.46366 - 1.46574i) q^{32} -0.905138i q^{33} +(0.0390061 + 0.743428i) q^{34} +(-1.75897 - 2.08131i) q^{35} +(1.55940 - 0.164089i) q^{36} +2.15479i q^{37} +(-0.144352 - 2.75125i) q^{38} -1.48862i q^{39} +(-2.87724 + 0.456240i) q^{40} +6.24596i q^{41} +(4.05993 - 3.81325i) q^{42} -3.29851 q^{43} +(1.20940 - 0.127259i) q^{44} -0.807502 q^{45} +(-0.00113476 - 0.0216276i) q^{46} +2.60155 q^{47} +(-1.23940 - 5.82407i) q^{48} +(-1.16691 + 6.90205i) q^{49} +(-5.56317 + 0.291887i) q^{50} +0.783619 q^{51} +(1.98902 - 0.209295i) q^{52} +1.16935i q^{53} +(-0.417395 - 7.95526i) q^{54} -0.626260 q^{55} +(5.66588 + 4.88854i) q^{56} -2.89999 q^{57} +(-0.344155 - 6.55936i) q^{58} -0.783099i q^{59} +(0.320898 + 3.04963i) q^{60} -5.32371 q^{61} +(-6.46122 + 0.339006i) q^{62} +(1.33892 + 1.58429i) q^{63} +(7.60756 - 2.47487i) q^{64} -1.02997 q^{65} +(-0.0670696 - 1.27830i) q^{66} -4.18167 q^{67} +(0.110174 + 1.04703i) q^{68} -0.0227969 q^{69} +(-2.63836 - 2.80904i) q^{70} -14.9594i q^{71} +(2.19014 - 0.347288i) q^{72} +9.18228i q^{73} +(0.159668 + 3.04315i) q^{74} +5.86392i q^{75} +(-0.407729 - 3.87482i) q^{76} +(1.03840 + 1.22870i) q^{77} +(-0.110305 - 2.10234i) q^{78} +9.29066i q^{79} +(-4.02964 + 0.857535i) q^{80} -6.03331 q^{81} +(0.462818 + 8.82099i) q^{82} -1.45140i q^{83} +(5.45117 - 5.68618i) q^{84} -0.542182i q^{85} +(-4.65839 + 0.244416i) q^{86} -6.91397 q^{87} +(1.69857 - 0.269340i) q^{88} +12.0597i q^{89} +(-1.14041 + 0.0598349i) q^{90} +(1.70779 + 2.02076i) q^{91} +(-0.00320517 - 0.0304600i) q^{92} +6.81053i q^{93} +(3.67409 - 0.192772i) q^{94} +2.00649i q^{95} +(-2.18193 - 8.13332i) q^{96} +8.46670i q^{97} +(-1.13655 + 9.83403i) q^{98} +0.476706 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41227 0.0740988i 0.998626 0.0523958i
\(3\) 1.48862i 0.859456i −0.902958 0.429728i \(-0.858609\pi\)
0.902958 0.429728i \(-0.141391\pi\)
\(4\) 1.98902 0.209295i 0.994509 0.104648i
\(5\) −1.02997 −0.460616 −0.230308 0.973118i \(-0.573973\pi\)
−0.230308 + 0.973118i \(0.573973\pi\)
\(6\) −0.110305 2.10234i −0.0450318 0.858275i
\(7\) 1.70779 + 2.02076i 0.645484 + 0.763774i
\(8\) 2.79352 0.442965i 0.987660 0.156612i
\(9\) 0.784007 0.261336
\(10\) −1.45459 + 0.0763194i −0.459983 + 0.0241343i
\(11\) 0.608038 0.183330 0.0916651 0.995790i \(-0.470781\pi\)
0.0916651 + 0.995790i \(0.470781\pi\)
\(12\) −0.311561 2.96090i −0.0899400 0.854737i
\(13\) 1.00000 0.277350
\(14\) 2.56160 + 2.72731i 0.684616 + 0.728904i
\(15\) 1.53323i 0.395879i
\(16\) 3.91239 0.832584i 0.978098 0.208146i
\(17\) 0.526406i 0.127672i 0.997960 + 0.0638361i \(0.0203335\pi\)
−0.997960 + 0.0638361i \(0.979667\pi\)
\(18\) 1.10723 0.0580940i 0.260977 0.0136929i
\(19\) 1.94810i 0.446926i −0.974712 0.223463i \(-0.928264\pi\)
0.974712 0.223463i \(-0.0717361\pi\)
\(20\) −2.04863 + 0.215567i −0.458087 + 0.0482023i
\(21\) 3.00814 2.54225i 0.656430 0.554765i
\(22\) 0.858714 0.0450549i 0.183078 0.00960573i
\(23\) 0.0153141i 0.00319321i −0.999999 0.00159660i \(-0.999492\pi\)
0.999999 0.00159660i \(-0.000508215\pi\)
\(24\) −0.659408 4.15850i −0.134601 0.848850i
\(25\) −3.93917 −0.787833
\(26\) 1.41227 0.0740988i 0.276969 0.0145320i
\(27\) 5.63295i 1.08406i
\(28\) 3.81976 + 3.66189i 0.721867 + 0.692032i
\(29\) 4.64455i 0.862471i −0.902239 0.431236i \(-0.858078\pi\)
0.902239 0.431236i \(-0.141922\pi\)
\(30\) 0.113611 + 2.16534i 0.0207424 + 0.395335i
\(31\) −4.57506 −0.821705 −0.410852 0.911702i \(-0.634769\pi\)
−0.410852 + 0.911702i \(0.634769\pi\)
\(32\) 5.46366 1.46574i 0.965848 0.259108i
\(33\) 0.905138i 0.157564i
\(34\) 0.0390061 + 0.743428i 0.00668948 + 0.127497i
\(35\) −1.75897 2.08131i −0.297320 0.351806i
\(36\) 1.55940 0.164089i 0.259901 0.0273481i
\(37\) 2.15479i 0.354246i 0.984189 + 0.177123i \(0.0566790\pi\)
−0.984189 + 0.177123i \(0.943321\pi\)
\(38\) −0.144352 2.75125i −0.0234170 0.446312i
\(39\) 1.48862i 0.238370i
\(40\) −2.87724 + 0.456240i −0.454932 + 0.0721379i
\(41\) 6.24596i 0.975455i 0.872996 + 0.487727i \(0.162174\pi\)
−0.872996 + 0.487727i \(0.837826\pi\)
\(42\) 4.05993 3.81325i 0.626461 0.588397i
\(43\) −3.29851 −0.503019 −0.251509 0.967855i \(-0.580927\pi\)
−0.251509 + 0.967855i \(0.580927\pi\)
\(44\) 1.20940 0.127259i 0.182324 0.0191851i
\(45\) −0.807502 −0.120375
\(46\) −0.00113476 0.0216276i −0.000167311 0.00318882i
\(47\) 2.60155 0.379475 0.189737 0.981835i \(-0.439236\pi\)
0.189737 + 0.981835i \(0.439236\pi\)
\(48\) −1.23940 5.82407i −0.178892 0.840632i
\(49\) −1.16691 + 6.90205i −0.166701 + 0.986008i
\(50\) −5.56317 + 0.291887i −0.786751 + 0.0412791i
\(51\) 0.783619 0.109729
\(52\) 1.98902 0.209295i 0.275827 0.0290240i
\(53\) 1.16935i 0.160622i 0.996770 + 0.0803111i \(0.0255914\pi\)
−0.996770 + 0.0803111i \(0.974409\pi\)
\(54\) −0.417395 7.95526i −0.0568003 1.08257i
\(55\) −0.626260 −0.0844448
\(56\) 5.66588 + 4.88854i 0.757135 + 0.653259i
\(57\) −2.89999 −0.384113
\(58\) −0.344155 6.55936i −0.0451898 0.861286i
\(59\) 0.783099i 0.101951i −0.998700 0.0509754i \(-0.983767\pi\)
0.998700 0.0509754i \(-0.0162330\pi\)
\(60\) 0.320898 + 3.04963i 0.0414278 + 0.393705i
\(61\) −5.32371 −0.681631 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(62\) −6.46122 + 0.339006i −0.820576 + 0.0430538i
\(63\) 1.33892 + 1.58429i 0.168688 + 0.199601i
\(64\) 7.60756 2.47487i 0.950945 0.309359i
\(65\) −1.02997 −0.127752
\(66\) −0.0670696 1.27830i −0.00825570 0.157348i
\(67\) −4.18167 −0.510872 −0.255436 0.966826i \(-0.582219\pi\)
−0.255436 + 0.966826i \(0.582219\pi\)
\(68\) 0.110174 + 1.04703i 0.0133606 + 0.126971i
\(69\) −0.0227969 −0.00274442
\(70\) −2.63836 2.80904i −0.315345 0.335745i
\(71\) 14.9594i 1.77535i −0.460470 0.887675i \(-0.652319\pi\)
0.460470 0.887675i \(-0.347681\pi\)
\(72\) 2.19014 0.347288i 0.258111 0.0409283i
\(73\) 9.18228i 1.07470i 0.843358 + 0.537352i \(0.180575\pi\)
−0.843358 + 0.537352i \(0.819425\pi\)
\(74\) 0.159668 + 3.04315i 0.0185610 + 0.353759i
\(75\) 5.86392i 0.677108i
\(76\) −0.407729 3.87482i −0.0467697 0.444472i
\(77\) 1.03840 + 1.22870i 0.118337 + 0.140023i
\(78\) −0.110305 2.10234i −0.0124896 0.238043i
\(79\) 9.29066i 1.04528i 0.852553 + 0.522641i \(0.175053\pi\)
−0.852553 + 0.522641i \(0.824947\pi\)
\(80\) −4.02964 + 0.857535i −0.450527 + 0.0958753i
\(81\) −6.03331 −0.670368
\(82\) 0.462818 + 8.82099i 0.0511097 + 0.974115i
\(83\) 1.45140i 0.159311i −0.996822 0.0796557i \(-0.974618\pi\)
0.996822 0.0796557i \(-0.0253821\pi\)
\(84\) 5.45117 5.68618i 0.594771 0.620413i
\(85\) 0.542182i 0.0588078i
\(86\) −4.65839 + 0.244416i −0.502328 + 0.0263560i
\(87\) −6.91397 −0.741256
\(88\) 1.69857 0.269340i 0.181068 0.0287117i
\(89\) 12.0597i 1.27832i 0.769073 + 0.639162i \(0.220718\pi\)
−0.769073 + 0.639162i \(0.779282\pi\)
\(90\) −1.14041 + 0.0598349i −0.120210 + 0.00630716i
\(91\) 1.70779 + 2.02076i 0.179025 + 0.211833i
\(92\) −0.00320517 0.0304600i −0.000334162 0.00317568i
\(93\) 6.81053i 0.706219i
\(94\) 3.67409 0.192772i 0.378954 0.0198829i
\(95\) 2.00649i 0.205861i
\(96\) −2.18193 8.13332i −0.222692 0.830104i
\(97\) 8.46670i 0.859663i 0.902909 + 0.429831i \(0.141427\pi\)
−0.902909 + 0.429831i \(0.858573\pi\)
\(98\) −1.13655 + 9.83403i −0.114809 + 0.993388i
\(99\) 0.476706 0.0479107
\(100\) −7.83507 + 0.824448i −0.783507 + 0.0824448i
\(101\) −7.70127 −0.766305 −0.383153 0.923685i \(-0.625162\pi\)
−0.383153 + 0.923685i \(0.625162\pi\)
\(102\) 1.10668 0.0580652i 0.109578 0.00574932i
\(103\) 4.43728 0.437218 0.218609 0.975813i \(-0.429848\pi\)
0.218609 + 0.975813i \(0.429848\pi\)
\(104\) 2.79352 0.442965i 0.273928 0.0434363i
\(105\) −3.09829 + 2.61844i −0.302362 + 0.255534i
\(106\) 0.0866472 + 1.65143i 0.00841592 + 0.160402i
\(107\) 6.18159 0.597597 0.298798 0.954316i \(-0.403414\pi\)
0.298798 + 0.954316i \(0.403414\pi\)
\(108\) −1.17895 11.2040i −0.113444 1.07811i
\(109\) 16.1401i 1.54594i 0.634441 + 0.772971i \(0.281230\pi\)
−0.634441 + 0.772971i \(0.718770\pi\)
\(110\) −0.884448 + 0.0464051i −0.0843288 + 0.00442455i
\(111\) 3.20767 0.304459
\(112\) 8.36399 + 6.48411i 0.790323 + 0.612691i
\(113\) −2.76655 −0.260255 −0.130128 0.991497i \(-0.541539\pi\)
−0.130128 + 0.991497i \(0.541539\pi\)
\(114\) −4.09557 + 0.214886i −0.383585 + 0.0201259i
\(115\) 0.0157730i 0.00147084i
\(116\) −0.972082 9.23809i −0.0902555 0.857736i
\(117\) 0.784007 0.0724815
\(118\) −0.0580267 1.10595i −0.00534179 0.101811i
\(119\) −1.06374 + 0.898991i −0.0975127 + 0.0824104i
\(120\) 0.679169 + 4.28312i 0.0619994 + 0.390994i
\(121\) −10.6303 −0.966390
\(122\) −7.51851 + 0.394480i −0.680694 + 0.0357146i
\(123\) 9.29787 0.838360
\(124\) −9.09988 + 0.957538i −0.817193 + 0.0859894i
\(125\) 9.20706 0.823504
\(126\) 2.00831 + 2.13823i 0.178915 + 0.190489i
\(127\) 11.5046i 1.02087i −0.859917 0.510434i \(-0.829485\pi\)
0.859917 0.510434i \(-0.170515\pi\)
\(128\) 10.5606 4.05890i 0.933430 0.358759i
\(129\) 4.91024i 0.432322i
\(130\) −1.45459 + 0.0763194i −0.127576 + 0.00669366i
\(131\) 10.8481i 0.947800i −0.880579 0.473900i \(-0.842846\pi\)
0.880579 0.473900i \(-0.157154\pi\)
\(132\) −0.189441 1.80034i −0.0164887 0.156699i
\(133\) 3.93664 3.32695i 0.341350 0.288483i
\(134\) −5.90565 + 0.309857i −0.510170 + 0.0267675i
\(135\) 5.80176i 0.499336i
\(136\) 0.233180 + 1.47053i 0.0199950 + 0.126097i
\(137\) −3.67475 −0.313955 −0.156977 0.987602i \(-0.550175\pi\)
−0.156977 + 0.987602i \(0.550175\pi\)
\(138\) −0.0321954 + 0.00168922i −0.00274065 + 0.000143796i
\(139\) 14.5439i 1.23360i 0.787121 + 0.616798i \(0.211571\pi\)
−0.787121 + 0.616798i \(0.788429\pi\)
\(140\) −3.93423 3.77163i −0.332503 0.318761i
\(141\) 3.87272i 0.326142i
\(142\) −1.10847 21.1267i −0.0930209 1.77291i
\(143\) 0.608038 0.0508467
\(144\) 3.06734 0.652752i 0.255612 0.0543960i
\(145\) 4.78374i 0.397268i
\(146\) 0.680396 + 12.9679i 0.0563100 + 1.07323i
\(147\) 10.2745 + 1.73708i 0.847430 + 0.143272i
\(148\) 0.450988 + 4.28592i 0.0370710 + 0.352301i
\(149\) 15.7637i 1.29142i −0.763584 0.645708i \(-0.776562\pi\)
0.763584 0.645708i \(-0.223438\pi\)
\(150\) 0.434510 + 8.28145i 0.0354776 + 0.676178i
\(151\) 8.76049i 0.712919i −0.934311 0.356459i \(-0.883984\pi\)
0.934311 0.356459i \(-0.116016\pi\)
\(152\) −0.862943 5.44208i −0.0699939 0.441411i
\(153\) 0.412706i 0.0333653i
\(154\) 1.55755 + 1.65831i 0.125511 + 0.133630i
\(155\) 4.71216 0.378490
\(156\) −0.311561 2.96090i −0.0249449 0.237061i
\(157\) −13.6353 −1.08821 −0.544106 0.839016i \(-0.683131\pi\)
−0.544106 + 0.839016i \(0.683131\pi\)
\(158\) 0.688427 + 13.1209i 0.0547683 + 1.04385i
\(159\) 1.74071 0.138048
\(160\) −5.62740 + 1.50966i −0.444885 + 0.119349i
\(161\) 0.0309460 0.0261533i 0.00243889 0.00206117i
\(162\) −8.52067 + 0.447061i −0.669447 + 0.0351244i
\(163\) −5.71060 −0.447288 −0.223644 0.974671i \(-0.571795\pi\)
−0.223644 + 0.974671i \(0.571795\pi\)
\(164\) 1.30725 + 12.4233i 0.102079 + 0.970099i
\(165\) 0.932263i 0.0725766i
\(166\) −0.107547 2.04976i −0.00834724 0.159092i
\(167\) 16.0117 1.23902 0.619512 0.784987i \(-0.287331\pi\)
0.619512 + 0.784987i \(0.287331\pi\)
\(168\) 7.27718 8.43435i 0.561447 0.650724i
\(169\) 1.00000 0.0769231
\(170\) −0.0401750 0.765707i −0.00308128 0.0587271i
\(171\) 1.52733i 0.116798i
\(172\) −6.56080 + 0.690363i −0.500257 + 0.0526397i
\(173\) −13.1654 −1.00095 −0.500475 0.865751i \(-0.666841\pi\)
−0.500475 + 0.865751i \(0.666841\pi\)
\(174\) −9.76440 + 0.512317i −0.740238 + 0.0388387i
\(175\) −6.72727 7.96009i −0.508534 0.601726i
\(176\) 2.37888 0.506243i 0.179315 0.0381595i
\(177\) −1.16574 −0.0876223
\(178\) 0.893607 + 17.0315i 0.0669787 + 1.27657i
\(179\) 3.27796 0.245006 0.122503 0.992468i \(-0.460908\pi\)
0.122503 + 0.992468i \(0.460908\pi\)
\(180\) −1.60614 + 0.169006i −0.119714 + 0.0125970i
\(181\) 13.4214 0.997606 0.498803 0.866715i \(-0.333773\pi\)
0.498803 + 0.866715i \(0.333773\pi\)
\(182\) 2.56160 + 2.72731i 0.189878 + 0.202162i
\(183\) 7.92498i 0.585831i
\(184\) −0.00678361 0.0427803i −0.000500095 0.00315381i
\(185\) 2.21937i 0.163171i
\(186\) 0.504652 + 9.61831i 0.0370029 + 0.705249i
\(187\) 0.320075i 0.0234062i
\(188\) 5.17453 0.544492i 0.377391 0.0397111i
\(189\) 11.3828 9.61990i 0.827978 0.699745i
\(190\) 0.148678 + 2.83370i 0.0107862 + 0.205578i
\(191\) 13.3702i 0.967437i 0.875224 + 0.483719i \(0.160714\pi\)
−0.875224 + 0.483719i \(0.839286\pi\)
\(192\) −3.68414 11.3248i −0.265880 0.817296i
\(193\) −14.0635 −1.01231 −0.506157 0.862441i \(-0.668934\pi\)
−0.506157 + 0.862441i \(0.668934\pi\)
\(194\) 0.627372 + 11.9573i 0.0450427 + 0.858482i
\(195\) 1.53323i 0.109797i
\(196\) −0.876432 + 13.9725i −0.0626023 + 0.998039i
\(197\) 7.40334i 0.527466i 0.964596 + 0.263733i \(0.0849538\pi\)
−0.964596 + 0.263733i \(0.915046\pi\)
\(198\) 0.673238 0.0353233i 0.0478449 0.00251032i
\(199\) −21.2213 −1.50434 −0.752170 0.658969i \(-0.770993\pi\)
−0.752170 + 0.658969i \(0.770993\pi\)
\(200\) −11.0042 + 1.74491i −0.778111 + 0.123384i
\(201\) 6.22492i 0.439072i
\(202\) −10.8763 + 0.570655i −0.765253 + 0.0401512i
\(203\) 9.38550 7.93191i 0.658733 0.556711i
\(204\) 1.55863 0.164008i 0.109126 0.0114828i
\(205\) 6.43314i 0.449310i
\(206\) 6.26664 0.328797i 0.436617 0.0229084i
\(207\) 0.0120064i 0.000834499i
\(208\) 3.91239 0.832584i 0.271276 0.0577293i
\(209\) 1.18452i 0.0819350i
\(210\) −4.18160 + 3.92753i −0.288558 + 0.271025i
\(211\) −9.27855 −0.638762 −0.319381 0.947626i \(-0.603475\pi\)
−0.319381 + 0.947626i \(0.603475\pi\)
\(212\) 0.244739 + 2.32585i 0.0168087 + 0.159740i
\(213\) −22.2688 −1.52584
\(214\) 8.73008 0.458048i 0.596776 0.0313115i
\(215\) 3.39736 0.231698
\(216\) −2.49520 15.7358i −0.169777 1.07069i
\(217\) −7.81324 9.24507i −0.530397 0.627597i
\(218\) 1.19596 + 22.7942i 0.0810009 + 1.54382i
\(219\) 13.6689 0.923661
\(220\) −1.24564 + 0.131073i −0.0839812 + 0.00883695i
\(221\) 0.526406i 0.0354099i
\(222\) 4.53010 0.237684i 0.304040 0.0159523i
\(223\) 0.650804 0.0435811 0.0217905 0.999763i \(-0.493063\pi\)
0.0217905 + 0.999763i \(0.493063\pi\)
\(224\) 12.2927 + 8.53756i 0.821340 + 0.570439i
\(225\) −3.08833 −0.205889
\(226\) −3.90712 + 0.204998i −0.259898 + 0.0136363i
\(227\) 22.9227i 1.52143i −0.649084 0.760717i \(-0.724848\pi\)
0.649084 0.760717i \(-0.275152\pi\)
\(228\) −5.76813 + 0.606954i −0.382004 + 0.0401965i
\(229\) 9.33589 0.616933 0.308467 0.951235i \(-0.400184\pi\)
0.308467 + 0.951235i \(0.400184\pi\)
\(230\) 0.00116876 + 0.0222758i 7.70659e−5 + 0.00146882i
\(231\) 1.82906 1.54579i 0.120343 0.101705i
\(232\) −2.05737 12.9747i −0.135073 0.851828i
\(233\) −9.56308 −0.626498 −0.313249 0.949671i \(-0.601417\pi\)
−0.313249 + 0.949671i \(0.601417\pi\)
\(234\) 1.10723 0.0580940i 0.0723819 0.00379772i
\(235\) −2.67951 −0.174792
\(236\) −0.163899 1.55760i −0.0106689 0.101391i
\(237\) 13.8303 0.898373
\(238\) −1.43567 + 1.34844i −0.0930608 + 0.0874064i
\(239\) 16.2651i 1.05210i 0.850453 + 0.526051i \(0.176328\pi\)
−0.850453 + 0.526051i \(0.823672\pi\)
\(240\) 1.27655 + 5.99861i 0.0824006 + 0.387208i
\(241\) 17.9771i 1.15800i −0.815326 0.579002i \(-0.803442\pi\)
0.815326 0.579002i \(-0.196558\pi\)
\(242\) −15.0129 + 0.787692i −0.965063 + 0.0506347i
\(243\) 7.91754i 0.507911i
\(244\) −10.5889 + 1.11423i −0.677888 + 0.0713310i
\(245\) 1.20188 7.10890i 0.0767851 0.454171i
\(246\) 13.1311 0.688961i 0.837209 0.0439265i
\(247\) 1.94810i 0.123955i
\(248\) −12.7805 + 2.02659i −0.811565 + 0.128689i
\(249\) −2.16058 −0.136921
\(250\) 13.0029 0.682232i 0.822373 0.0431481i
\(251\) 16.3892i 1.03447i −0.855842 0.517237i \(-0.826961\pi\)
0.855842 0.517237i \(-0.173039\pi\)
\(252\) 2.99472 + 2.87095i 0.188650 + 0.180853i
\(253\) 0.00931155i 0.000585412i
\(254\) −0.852477 16.2476i −0.0534892 1.01947i
\(255\) −0.807103 −0.0505428
\(256\) 14.6136 6.51479i 0.913350 0.407174i
\(257\) 27.4462i 1.71205i −0.516937 0.856023i \(-0.672928\pi\)
0.516937 0.856023i \(-0.327072\pi\)
\(258\) 0.363843 + 6.93459i 0.0226519 + 0.431728i
\(259\) −4.35431 + 3.67993i −0.270564 + 0.228660i
\(260\) −2.04863 + 0.215567i −0.127050 + 0.0133689i
\(261\) 3.64136i 0.225394i
\(262\) −0.803829 15.3204i −0.0496607 0.946498i
\(263\) 4.35567i 0.268582i −0.990942 0.134291i \(-0.957124\pi\)
0.990942 0.134291i \(-0.0428757\pi\)
\(264\) −0.400945 2.52853i −0.0246764 0.155620i
\(265\) 1.20439i 0.0739851i
\(266\) 5.31308 4.99026i 0.325766 0.305972i
\(267\) 17.9523 1.09866
\(268\) −8.31742 + 0.875203i −0.508067 + 0.0534615i
\(269\) −20.3914 −1.24328 −0.621642 0.783302i \(-0.713534\pi\)
−0.621642 + 0.783302i \(0.713534\pi\)
\(270\) 0.429904 + 8.19366i 0.0261631 + 0.498650i
\(271\) 31.3447 1.90405 0.952027 0.306015i \(-0.0989957\pi\)
0.952027 + 0.306015i \(0.0989957\pi\)
\(272\) 0.438277 + 2.05951i 0.0265745 + 0.124876i
\(273\) 3.00814 2.54225i 0.182061 0.153864i
\(274\) −5.18974 + 0.272294i −0.313524 + 0.0164499i
\(275\) −2.39516 −0.144434
\(276\) −0.0453434 + 0.00477128i −0.00272935 + 0.000287197i
\(277\) 5.40265i 0.324614i 0.986740 + 0.162307i \(0.0518934\pi\)
−0.986740 + 0.162307i \(0.948107\pi\)
\(278\) 1.07768 + 20.5399i 0.0646352 + 1.23190i
\(279\) −3.58688 −0.214741
\(280\) −5.83568 5.03504i −0.348748 0.300901i
\(281\) 0.635876 0.0379332 0.0189666 0.999820i \(-0.493962\pi\)
0.0189666 + 0.999820i \(0.493962\pi\)
\(282\) −0.286964 5.46933i −0.0170885 0.325694i
\(283\) 6.06925i 0.360779i 0.983595 + 0.180390i \(0.0577359\pi\)
−0.983595 + 0.180390i \(0.942264\pi\)
\(284\) −3.13092 29.7545i −0.185786 1.76560i
\(285\) 2.98690 0.176928
\(286\) 0.858714 0.0450549i 0.0507768 0.00266415i
\(287\) −12.6216 + 10.6668i −0.745027 + 0.629640i
\(288\) 4.28355 1.14915i 0.252411 0.0677142i
\(289\) 16.7229 0.983700
\(290\) 0.354469 + 6.75593i 0.0208152 + 0.396722i
\(291\) 12.6037 0.738842
\(292\) 1.92181 + 18.2637i 0.112465 + 1.06880i
\(293\) 29.8751 1.74532 0.872660 0.488328i \(-0.162393\pi\)
0.872660 + 0.488328i \(0.162393\pi\)
\(294\) 14.6392 + 1.69190i 0.853773 + 0.0986735i
\(295\) 0.806568i 0.0469602i
\(296\) 0.954498 + 6.01947i 0.0554791 + 0.349874i
\(297\) 3.42505i 0.198741i
\(298\) −1.16807 22.2627i −0.0676647 1.28964i
\(299\) 0.0153141i 0.000885637i
\(300\) 1.22729 + 11.6635i 0.0708577 + 0.673390i
\(301\) −5.63317 6.66549i −0.324690 0.384192i
\(302\) −0.649142 12.3722i −0.0373539 0.711940i
\(303\) 11.4643i 0.658606i
\(304\) −1.62196 7.62174i −0.0930258 0.437137i
\(305\) 5.48325 0.313970
\(306\) 0.0305810 + 0.582853i 0.00174820 + 0.0333195i
\(307\) 22.3570i 1.27598i −0.770044 0.637991i \(-0.779766\pi\)
0.770044 0.637991i \(-0.220234\pi\)
\(308\) 2.32256 + 2.22657i 0.132340 + 0.126870i
\(309\) 6.60543i 0.375770i
\(310\) 6.65485 0.349166i 0.377970 0.0198313i
\(311\) −21.5289 −1.22079 −0.610396 0.792096i \(-0.708990\pi\)
−0.610396 + 0.792096i \(0.708990\pi\)
\(312\) −0.659408 4.15850i −0.0373316 0.235429i
\(313\) 2.06304i 0.116610i 0.998299 + 0.0583050i \(0.0185696\pi\)
−0.998299 + 0.0583050i \(0.981430\pi\)
\(314\) −19.2567 + 1.01036i −1.08672 + 0.0570177i
\(315\) −1.37904 1.63176i −0.0777003 0.0919395i
\(316\) 1.94449 + 18.4793i 0.109386 + 1.03954i
\(317\) 32.5712i 1.82938i 0.404156 + 0.914690i \(0.367565\pi\)
−0.404156 + 0.914690i \(0.632435\pi\)
\(318\) 2.45836 0.128985i 0.137858 0.00723311i
\(319\) 2.82406i 0.158117i
\(320\) −7.83555 + 2.54904i −0.438021 + 0.142496i
\(321\) 9.20205i 0.513608i
\(322\) 0.0417663 0.0392285i 0.00232754 0.00218612i
\(323\) 1.02549 0.0570600
\(324\) −12.0004 + 1.26274i −0.666687 + 0.0701524i
\(325\) −3.93917 −0.218506
\(326\) −8.06491 + 0.423148i −0.446674 + 0.0234360i
\(327\) 24.0265 1.32867
\(328\) 2.76674 + 17.4482i 0.152768 + 0.963418i
\(329\) 4.44290 + 5.25709i 0.244945 + 0.289833i
\(330\) 0.0690796 + 1.31661i 0.00380271 + 0.0724769i
\(331\) −14.1674 −0.778710 −0.389355 0.921088i \(-0.627302\pi\)
−0.389355 + 0.921088i \(0.627302\pi\)
\(332\) −0.303770 2.88685i −0.0166715 0.158437i
\(333\) 1.68937i 0.0925770i
\(334\) 22.6129 1.18645i 1.23732 0.0649196i
\(335\) 4.30699 0.235316
\(336\) 9.65238 12.4508i 0.526581 0.679248i
\(337\) 23.0042 1.25312 0.626561 0.779373i \(-0.284462\pi\)
0.626561 + 0.779373i \(0.284462\pi\)
\(338\) 1.41227 0.0740988i 0.0768174 0.00403044i
\(339\) 4.11834i 0.223678i
\(340\) −0.113476 1.07841i −0.00615410 0.0584850i
\(341\) −2.78181 −0.150643
\(342\) −0.113173 2.15700i −0.00611970 0.116637i
\(343\) −15.9402 + 9.42922i −0.860689 + 0.509130i
\(344\) −9.21448 + 1.46113i −0.496811 + 0.0787787i
\(345\) 0.0234801 0.00126412
\(346\) −18.5932 + 0.975544i −0.999576 + 0.0524456i
\(347\) 17.8224 0.956756 0.478378 0.878154i \(-0.341225\pi\)
0.478378 + 0.878154i \(0.341225\pi\)
\(348\) −13.7520 + 1.44706i −0.737186 + 0.0775706i
\(349\) −0.0209269 −0.00112019 −0.000560096 1.00000i \(-0.500178\pi\)
−0.000560096 1.00000i \(0.500178\pi\)
\(350\) −10.0906 10.7433i −0.539363 0.574255i
\(351\) 5.63295i 0.300665i
\(352\) 3.32211 0.891224i 0.177069 0.0475024i
\(353\) 8.02237i 0.426988i −0.976944 0.213494i \(-0.931516\pi\)
0.976944 0.213494i \(-0.0684844\pi\)
\(354\) −1.64634 + 0.0863798i −0.0875019 + 0.00459104i
\(355\) 15.4077i 0.817755i
\(356\) 2.52403 + 23.9869i 0.133773 + 1.27130i
\(357\) 1.33826 + 1.58350i 0.0708281 + 0.0838079i
\(358\) 4.62937 0.242893i 0.244670 0.0128373i
\(359\) 14.8589i 0.784223i −0.919918 0.392112i \(-0.871745\pi\)
0.919918 0.392112i \(-0.128255\pi\)
\(360\) −2.25578 + 0.357696i −0.118890 + 0.0188522i
\(361\) 15.2049 0.800257
\(362\) 18.9547 0.994511i 0.996236 0.0522703i
\(363\) 15.8245i 0.830570i
\(364\) 3.81976 + 3.66189i 0.200210 + 0.191935i
\(365\) 9.45746i 0.495026i
\(366\) 0.587232 + 11.1922i 0.0306951 + 0.585027i
\(367\) −20.8036 −1.08594 −0.542970 0.839752i \(-0.682700\pi\)
−0.542970 + 0.839752i \(0.682700\pi\)
\(368\) −0.0127503 0.0599147i −0.000664654 0.00312327i
\(369\) 4.89687i 0.254921i
\(370\) −0.164452 3.13435i −0.00854948 0.162947i
\(371\) −2.36296 + 1.99700i −0.122679 + 0.103679i
\(372\) 1.42541 + 13.5463i 0.0739041 + 0.702341i
\(373\) 19.1563i 0.991875i −0.868358 0.495937i \(-0.834825\pi\)
0.868358 0.495937i \(-0.165175\pi\)
\(374\) 0.0237172 + 0.452032i 0.00122638 + 0.0233740i
\(375\) 13.7058i 0.707766i
\(376\) 7.26749 1.15240i 0.374792 0.0594303i
\(377\) 4.64455i 0.239206i
\(378\) 15.3628 14.4294i 0.790177 0.742166i
\(379\) 1.31524 0.0675596 0.0337798 0.999429i \(-0.489246\pi\)
0.0337798 + 0.999429i \(0.489246\pi\)
\(380\) 0.419948 + 3.99094i 0.0215429 + 0.204731i
\(381\) −17.1260 −0.877392
\(382\) 0.990719 + 18.8824i 0.0506896 + 0.966108i
\(383\) 8.37026 0.427700 0.213850 0.976866i \(-0.431400\pi\)
0.213850 + 0.976866i \(0.431400\pi\)
\(384\) −6.04216 15.7207i −0.308338 0.802242i
\(385\) −1.06952 1.26552i −0.0545078 0.0644968i
\(386\) −19.8615 + 1.04209i −1.01092 + 0.0530410i
\(387\) −2.58606 −0.131457
\(388\) 1.77204 + 16.8404i 0.0899616 + 0.854943i
\(389\) 29.5123i 1.49634i 0.663510 + 0.748168i \(0.269066\pi\)
−0.663510 + 0.748168i \(0.730934\pi\)
\(390\) 0.113611 + 2.16534i 0.00575290 + 0.109646i
\(391\) 0.00806143 0.000407684
\(392\) −0.202412 + 19.7980i −0.0102233 + 0.999948i
\(393\) −16.1487 −0.814592
\(394\) 0.548578 + 10.4555i 0.0276370 + 0.526741i
\(395\) 9.56909i 0.481473i
\(396\) 0.948177 0.0997722i 0.0476477 0.00501374i
\(397\) 18.5170 0.929339 0.464670 0.885484i \(-0.346173\pi\)
0.464670 + 0.885484i \(0.346173\pi\)
\(398\) −29.9703 + 1.57247i −1.50227 + 0.0788210i
\(399\) −4.95257 5.86017i −0.247939 0.293375i
\(400\) −15.4116 + 3.27969i −0.770578 + 0.163984i
\(401\) 23.4394 1.17051 0.585253 0.810850i \(-0.300995\pi\)
0.585253 + 0.810850i \(0.300995\pi\)
\(402\) 0.461259 + 8.79128i 0.0230055 + 0.438469i
\(403\) −4.57506 −0.227900
\(404\) −15.3180 + 1.61184i −0.762098 + 0.0801920i
\(405\) 6.21412 0.308782
\(406\) 12.6671 11.8975i 0.628659 0.590461i
\(407\) 1.31019i 0.0649440i
\(408\) 2.18906 0.347116i 0.108375 0.0171848i
\(409\) 1.04236i 0.0515414i 0.999668 + 0.0257707i \(0.00820398\pi\)
−0.999668 + 0.0257707i \(0.991796\pi\)
\(410\) −0.476688 9.08534i −0.0235419 0.448693i
\(411\) 5.47031i 0.269830i
\(412\) 8.82583 0.928701i 0.434817 0.0457538i
\(413\) 1.58245 1.33737i 0.0778674 0.0658076i
\(414\) −0.000889656 0.0169562i −4.37242e−5 0.000833353i
\(415\) 1.49489i 0.0733813i
\(416\) 5.46366 1.46574i 0.267878 0.0718637i
\(417\) 21.6503 1.06022
\(418\) −0.0877716 1.67286i −0.00429305 0.0818225i
\(419\) 5.33068i 0.260421i 0.991486 + 0.130210i \(0.0415653\pi\)
−0.991486 + 0.130210i \(0.958435\pi\)
\(420\) −5.61453 + 5.85658i −0.273961 + 0.285772i
\(421\) 35.9690i 1.75302i 0.481381 + 0.876511i \(0.340135\pi\)
−0.481381 + 0.876511i \(0.659865\pi\)
\(422\) −13.1038 + 0.687530i −0.637884 + 0.0334684i
\(423\) 2.03963 0.0991703
\(424\) 0.517980 + 3.26660i 0.0251553 + 0.158640i
\(425\) 2.07360i 0.100584i
\(426\) −31.4496 + 1.65009i −1.52374 + 0.0799473i
\(427\) −9.09177 10.7579i −0.439982 0.520612i
\(428\) 12.2953 1.29378i 0.594316 0.0625371i
\(429\) 0.905138i 0.0437005i
\(430\) 4.79800 0.251741i 0.231380 0.0121400i
\(431\) 22.1177i 1.06537i −0.846312 0.532687i \(-0.821182\pi\)
0.846312 0.532687i \(-0.178818\pi\)
\(432\) −4.68991 22.0383i −0.225643 1.06032i
\(433\) 11.5805i 0.556523i −0.960505 0.278261i \(-0.910242\pi\)
0.960505 0.278261i \(-0.0897581\pi\)
\(434\) −11.7195 12.4776i −0.562552 0.598944i
\(435\) 7.12117 0.341434
\(436\) 3.37805 + 32.1030i 0.161779 + 1.53745i
\(437\) −0.0298334 −0.00142713
\(438\) 19.3042 1.01285i 0.922393 0.0483959i
\(439\) 38.2244 1.82435 0.912175 0.409801i \(-0.134402\pi\)
0.912175 + 0.409801i \(0.134402\pi\)
\(440\) −1.74947 + 0.277411i −0.0834028 + 0.0132251i
\(441\) −0.914863 + 5.41126i −0.0435649 + 0.257679i
\(442\) 0.0390061 + 0.743428i 0.00185533 + 0.0353613i
\(443\) 15.3359 0.728629 0.364315 0.931276i \(-0.381303\pi\)
0.364315 + 0.931276i \(0.381303\pi\)
\(444\) 6.38011 0.671350i 0.302787 0.0318608i
\(445\) 12.4211i 0.588816i
\(446\) 0.919111 0.0482238i 0.0435212 0.00228346i
\(447\) −23.4662 −1.10992
\(448\) 17.9932 + 11.1465i 0.850100 + 0.526621i
\(449\) 23.3025 1.09971 0.549857 0.835259i \(-0.314682\pi\)
0.549857 + 0.835259i \(0.314682\pi\)
\(450\) −4.36156 + 0.228842i −0.205606 + 0.0107877i
\(451\) 3.79778i 0.178830i
\(452\) −5.50272 + 0.579025i −0.258826 + 0.0272351i
\(453\) −13.0411 −0.612722
\(454\) −1.69854 32.3731i −0.0797167 1.51934i
\(455\) −1.75897 2.08131i −0.0824618 0.0975735i
\(456\) −8.10119 + 1.28459i −0.379373 + 0.0601567i
\(457\) 7.74554 0.362321 0.181161 0.983454i \(-0.442015\pi\)
0.181161 + 0.983454i \(0.442015\pi\)
\(458\) 13.1848 0.691778i 0.616086 0.0323247i
\(459\) 2.96522 0.138405
\(460\) 0.00330122 + 0.0313729i 0.000153920 + 0.00146277i
\(461\) 22.6982 1.05716 0.528581 0.848883i \(-0.322724\pi\)
0.528581 + 0.848883i \(0.322724\pi\)
\(462\) 2.46859 2.31860i 0.114849 0.107871i
\(463\) 15.2556i 0.708988i −0.935058 0.354494i \(-0.884653\pi\)
0.935058 0.354494i \(-0.115347\pi\)
\(464\) −3.86698 18.1713i −0.179520 0.843581i
\(465\) 7.01463i 0.325296i
\(466\) −13.5057 + 0.708613i −0.625637 + 0.0328258i
\(467\) 33.7119i 1.56000i −0.625779 0.780000i \(-0.715219\pi\)
0.625779 0.780000i \(-0.284781\pi\)
\(468\) 1.55940 0.164089i 0.0720835 0.00758501i
\(469\) −7.14141 8.45013i −0.329760 0.390191i
\(470\) −3.78420 + 0.198549i −0.174552 + 0.00915837i
\(471\) 20.2977i 0.935271i
\(472\) −0.346886 2.18761i −0.0159667 0.100693i
\(473\) −2.00562 −0.0922185
\(474\) 19.5321 1.02481i 0.897139 0.0470709i
\(475\) 7.67390i 0.352103i
\(476\) −1.92764 + 2.01075i −0.0883533 + 0.0921624i
\(477\) 0.916776i 0.0419763i
\(478\) 1.20522 + 22.9707i 0.0551257 + 1.05066i
\(479\) 27.5473 1.25867 0.629333 0.777136i \(-0.283328\pi\)
0.629333 + 0.777136i \(0.283328\pi\)
\(480\) 2.24732 + 8.37707i 0.102576 + 0.382359i
\(481\) 2.15479i 0.0982501i
\(482\) −1.33208 25.3885i −0.0606745 1.15641i
\(483\) −0.0389323 0.0460669i −0.00177148 0.00209612i
\(484\) −21.1438 + 2.22487i −0.961084 + 0.101130i
\(485\) 8.72043i 0.395974i
\(486\) −0.586680 11.1817i −0.0266124 0.507213i
\(487\) 13.1983i 0.598073i −0.954242 0.299037i \(-0.903335\pi\)
0.954242 0.299037i \(-0.0966653\pi\)
\(488\) −14.8719 + 2.35822i −0.673219 + 0.106751i
\(489\) 8.50091i 0.384425i
\(490\) 1.17061 10.1287i 0.0528830 0.457570i
\(491\) −8.07921 −0.364609 −0.182305 0.983242i \(-0.558356\pi\)
−0.182305 + 0.983242i \(0.558356\pi\)
\(492\) 18.4936 1.94600i 0.833757 0.0877324i
\(493\) 2.44492 0.110114
\(494\) −0.144352 2.75125i −0.00649471 0.123785i
\(495\) −0.490992 −0.0220684
\(496\) −17.8994 + 3.80912i −0.803707 + 0.171035i
\(497\) 30.2292 25.5475i 1.35597 1.14596i
\(498\) −3.05132 + 0.160096i −0.136733 + 0.00717408i
\(499\) −26.0339 −1.16544 −0.582720 0.812673i \(-0.698011\pi\)
−0.582720 + 0.812673i \(0.698011\pi\)
\(500\) 18.3130 1.92699i 0.818983 0.0861777i
\(501\) 23.8354i 1.06489i
\(502\) −1.21442 23.1459i −0.0542021 1.03305i
\(503\) 5.46230 0.243552 0.121776 0.992558i \(-0.461141\pi\)
0.121776 + 0.992558i \(0.461141\pi\)
\(504\) 4.44209 + 3.83265i 0.197866 + 0.170720i
\(505\) 7.93207 0.352972
\(506\) −0.000689974 0.0131504i −3.06731e−5 0.000584608i
\(507\) 1.48862i 0.0661120i
\(508\) −2.40786 22.8829i −0.106831 1.01526i
\(509\) −18.6505 −0.826670 −0.413335 0.910579i \(-0.635636\pi\)
−0.413335 + 0.910579i \(0.635636\pi\)
\(510\) −1.13985 + 0.0598054i −0.0504733 + 0.00264823i
\(511\) −18.5551 + 15.6814i −0.820831 + 0.693705i
\(512\) 20.1556 10.2835i 0.890762 0.454471i
\(513\) −10.9736 −0.484495
\(514\) −2.03373 38.7615i −0.0897040 1.70970i
\(515\) −4.57026 −0.201390
\(516\) 1.02769 + 9.76655i 0.0452415 + 0.429949i
\(517\) 1.58184 0.0695692
\(518\) −5.87678 + 5.51971i −0.258211 + 0.242522i
\(519\) 19.5984i 0.860273i
\(520\) −2.87724 + 0.456240i −0.126175 + 0.0200075i
\(521\) 16.3034i 0.714267i 0.934053 + 0.357134i \(0.116246\pi\)
−0.934053 + 0.357134i \(0.883754\pi\)
\(522\) −0.269820 5.14258i −0.0118097 0.225085i
\(523\) 19.4624i 0.851031i 0.904951 + 0.425516i \(0.139907\pi\)
−0.904951 + 0.425516i \(0.860093\pi\)
\(524\) −2.27045 21.5770i −0.0991850 0.942596i
\(525\) −11.8496 + 10.0144i −0.517157 + 0.437062i
\(526\) −0.322750 6.15139i −0.0140726 0.268213i
\(527\) 2.40834i 0.104909i
\(528\) −0.753603 3.54125i −0.0327964 0.154113i
\(529\) 22.9998 0.999990
\(530\) −0.0892439 1.70093i −0.00387651 0.0738835i
\(531\) 0.613955i 0.0266434i
\(532\) 7.13374 7.44129i 0.309287 0.322621i
\(533\) 6.24596i 0.270543i
\(534\) 25.3535 1.33024i 1.09715 0.0575652i
\(535\) −6.36684 −0.275263
\(536\) −11.6816 + 1.85233i −0.504568 + 0.0800087i
\(537\) 4.87964i 0.210572i
\(538\) −28.7981 + 1.51098i −1.24158 + 0.0651428i
\(539\) −0.709523 + 4.19671i −0.0305613 + 0.180765i
\(540\) 1.21428 + 11.5398i 0.0522543 + 0.496595i
\(541\) 10.8033i 0.464471i −0.972660 0.232236i \(-0.925396\pi\)
0.972660 0.232236i \(-0.0746040\pi\)
\(542\) 44.2672 2.32260i 1.90144 0.0997643i
\(543\) 19.9794i 0.857398i
\(544\) 0.771573 + 2.87611i 0.0330809 + 0.123312i
\(545\) 16.6238i 0.712086i
\(546\) 4.05993 3.81325i 0.173749 0.163192i
\(547\) −32.4266 −1.38646 −0.693230 0.720717i \(-0.743813\pi\)
−0.693230 + 0.720717i \(0.743813\pi\)
\(548\) −7.30914 + 0.769107i −0.312231 + 0.0328546i
\(549\) −4.17382 −0.178134
\(550\) −3.38262 + 0.177479i −0.144235 + 0.00756771i
\(551\) −9.04806 −0.385460
\(552\) −0.0636837 + 0.0100982i −0.00271056 + 0.000429809i
\(553\) −18.7742 + 15.8665i −0.798358 + 0.674712i
\(554\) 0.400330 + 7.63000i 0.0170084 + 0.324168i
\(555\) −3.30380 −0.140238
\(556\) 3.04397 + 28.9281i 0.129093 + 1.22682i
\(557\) 4.44482i 0.188333i −0.995556 0.0941666i \(-0.969981\pi\)
0.995556 0.0941666i \(-0.0300186\pi\)
\(558\) −5.06564 + 0.265783i −0.214446 + 0.0112515i
\(559\) −3.29851 −0.139512
\(560\) −8.61465 6.67843i −0.364035 0.282215i
\(561\) 0.476470 0.0201166
\(562\) 0.898030 0.0471177i 0.0378811 0.00198754i
\(563\) 9.65256i 0.406807i −0.979095 0.203403i \(-0.934800\pi\)
0.979095 0.203403i \(-0.0652003\pi\)
\(564\) −0.810542 7.70291i −0.0341300 0.324351i
\(565\) 2.84946 0.119878
\(566\) 0.449724 + 8.57142i 0.0189033 + 0.360284i
\(567\) −10.3036 12.1919i −0.432712 0.512010i
\(568\) −6.62648 41.7894i −0.278041 1.75344i
\(569\) 12.1247 0.508296 0.254148 0.967165i \(-0.418205\pi\)
0.254148 + 0.967165i \(0.418205\pi\)
\(570\) 4.21831 0.221325i 0.176685 0.00927030i
\(571\) −33.2882 −1.39307 −0.696534 0.717524i \(-0.745276\pi\)
−0.696534 + 0.717524i \(0.745276\pi\)
\(572\) 1.20940 0.127259i 0.0505675 0.00532098i
\(573\) 19.9032 0.831469
\(574\) −17.0347 + 15.9996i −0.711013 + 0.667812i
\(575\) 0.0603247i 0.00251572i
\(576\) 5.96438 1.94031i 0.248516 0.0808465i
\(577\) 27.7175i 1.15390i −0.816781 0.576948i \(-0.804243\pi\)
0.816781 0.576948i \(-0.195757\pi\)
\(578\) 23.6173 1.23915i 0.982349 0.0515417i
\(579\) 20.9353i 0.870039i
\(580\) 1.00121 + 9.51494i 0.0415731 + 0.395087i
\(581\) 2.93291 2.47868i 0.121678 0.102833i
\(582\) 17.7998 0.933919i 0.737827 0.0387122i
\(583\) 0.711007i 0.0294469i
\(584\) 4.06743 + 25.6509i 0.168312 + 1.06144i
\(585\) −0.807502 −0.0333861
\(586\) 42.1917 2.21371i 1.74292 0.0914474i
\(587\) 21.9684i 0.906732i −0.891324 0.453366i \(-0.850223\pi\)
0.891324 0.453366i \(-0.149777\pi\)
\(588\) 20.7998 + 1.30468i 0.857770 + 0.0538039i
\(589\) 8.91269i 0.367241i
\(590\) 0.0597657 + 1.13909i 0.00246051 + 0.0468957i
\(591\) 11.0208 0.453334
\(592\) 1.79405 + 8.43039i 0.0737348 + 0.346487i
\(593\) 16.3479i 0.671327i −0.941982 0.335663i \(-0.891040\pi\)
0.941982 0.335663i \(-0.108960\pi\)
\(594\) −0.253792 4.83710i −0.0104132 0.198468i
\(595\) 1.09562 0.925932i 0.0449159 0.0379595i
\(596\) −3.29928 31.3544i −0.135144 1.28433i
\(597\) 31.5905i 1.29291i
\(598\) −0.00113476 0.0216276i −4.64036e−5 0.000884420i
\(599\) 36.2459i 1.48097i 0.672075 + 0.740483i \(0.265403\pi\)
−0.672075 + 0.740483i \(0.734597\pi\)
\(600\) 2.59752 + 16.3810i 0.106043 + 0.668752i
\(601\) 31.2461i 1.27455i 0.770635 + 0.637277i \(0.219939\pi\)
−0.770635 + 0.637277i \(0.780061\pi\)
\(602\) −8.44946 8.99607i −0.344374 0.366652i
\(603\) −3.27846 −0.133509
\(604\) −1.83353 17.4248i −0.0746052 0.709004i
\(605\) 10.9489 0.445135
\(606\) 0.849489 + 16.1907i 0.0345081 + 0.657701i
\(607\) 41.8217 1.69749 0.848745 0.528803i \(-0.177359\pi\)
0.848745 + 0.528803i \(0.177359\pi\)
\(608\) −2.85541 10.6438i −0.115802 0.431662i
\(609\) −11.8076 13.9715i −0.478469 0.566152i
\(610\) 7.74383 0.406302i 0.313539 0.0164507i
\(611\) 2.60155 0.105247
\(612\) 0.0863774 + 0.820880i 0.00349160 + 0.0331821i
\(613\) 4.71554i 0.190459i 0.995455 + 0.0952293i \(0.0303584\pi\)
−0.995455 + 0.0952293i \(0.969642\pi\)
\(614\) −1.65663 31.5741i −0.0668560 1.27423i
\(615\) −9.57651 −0.386162
\(616\) 3.44507 + 2.97242i 0.138806 + 0.119762i
\(617\) 7.74058 0.311624 0.155812 0.987787i \(-0.450201\pi\)
0.155812 + 0.987787i \(0.450201\pi\)
\(618\) −0.489454 9.32865i −0.0196887 0.375253i
\(619\) 44.8288i 1.80182i 0.434004 + 0.900911i \(0.357100\pi\)
−0.434004 + 0.900911i \(0.642900\pi\)
\(620\) 9.37258 0.986233i 0.376412 0.0396081i
\(621\) −0.0862636 −0.00346164
\(622\) −30.4046 + 1.59527i −1.21912 + 0.0639643i
\(623\) −24.3697 + 20.5954i −0.976350 + 0.825137i
\(624\) −1.23940 5.82407i −0.0496158 0.233149i
\(625\) 10.2128 0.408514
\(626\) 0.152869 + 2.91357i 0.00610987 + 0.116450i
\(627\) −1.76330 −0.0704195
\(628\) −27.1208 + 2.85379i −1.08224 + 0.113879i
\(629\) −1.13430 −0.0452273
\(630\) −2.06850 2.20231i −0.0824109 0.0877421i
\(631\) 17.8015i 0.708666i 0.935119 + 0.354333i \(0.115292\pi\)
−0.935119 + 0.354333i \(0.884708\pi\)
\(632\) 4.11544 + 25.9537i 0.163703 + 1.03238i
\(633\) 13.8122i 0.548988i
\(634\) 2.41349 + 45.9994i 0.0958518 + 1.82687i
\(635\) 11.8494i 0.470228i
\(636\) 3.46231 0.364323i 0.137290 0.0144464i
\(637\) −1.16691 + 6.90205i −0.0462345 + 0.273469i
\(638\) −0.209260 3.98834i −0.00828466 0.157900i
\(639\) 11.7282i 0.463962i
\(640\) −10.8770 + 4.18054i −0.429953 + 0.165250i
\(641\) 13.9549 0.551187 0.275594 0.961274i \(-0.411126\pi\)
0.275594 + 0.961274i \(0.411126\pi\)
\(642\) −0.681861 12.9958i −0.0269109 0.512903i
\(643\) 42.3514i 1.67017i 0.550117 + 0.835087i \(0.314583\pi\)
−0.550117 + 0.835087i \(0.685417\pi\)
\(644\) 0.0560785 0.0584962i 0.00220980 0.00230507i
\(645\) 5.05739i 0.199134i
\(646\) 1.44828 0.0759879i 0.0569816 0.00298970i
\(647\) 28.5451 1.12222 0.561111 0.827741i \(-0.310374\pi\)
0.561111 + 0.827741i \(0.310374\pi\)
\(648\) −16.8542 + 2.67255i −0.662096 + 0.104988i
\(649\) 0.476154i 0.0186907i
\(650\) −5.56317 + 0.291887i −0.218205 + 0.0114488i
\(651\) −13.7624 + 11.6310i −0.539392 + 0.455853i
\(652\) −11.3585 + 1.19520i −0.444832 + 0.0468076i
\(653\) 35.7866i 1.40044i −0.713927 0.700220i \(-0.753085\pi\)
0.713927 0.700220i \(-0.246915\pi\)
\(654\) 33.9320 1.78034i 1.32684 0.0696167i
\(655\) 11.1732i 0.436572i
\(656\) 5.20029 + 24.4366i 0.203037 + 0.954090i
\(657\) 7.19897i 0.280859i
\(658\) 6.66412 + 7.09523i 0.259795 + 0.276601i
\(659\) −9.09685 −0.354363 −0.177182 0.984178i \(-0.556698\pi\)
−0.177182 + 0.984178i \(0.556698\pi\)
\(660\) 0.195118 + 1.85429i 0.00759497 + 0.0721781i
\(661\) −31.3058 −1.21765 −0.608827 0.793303i \(-0.708360\pi\)
−0.608827 + 0.793303i \(0.708360\pi\)
\(662\) −20.0082 + 1.04979i −0.777640 + 0.0408011i
\(663\) 0.783619 0.0304332
\(664\) −0.642918 4.05451i −0.0249500 0.157345i
\(665\) −4.05462 + 3.42666i −0.157231 + 0.132880i
\(666\) 0.125180 + 2.38585i 0.00485064 + 0.0924498i
\(667\) −0.0711270 −0.00275405
\(668\) 31.8476 3.35117i 1.23222 0.129661i
\(669\) 0.968800i 0.0374560i
\(670\) 6.08263 0.319143i 0.234993 0.0123296i
\(671\) −3.23701 −0.124964
\(672\) 12.7092 18.2992i 0.490267 0.705905i
\(673\) −35.1110 −1.35343 −0.676715 0.736245i \(-0.736597\pi\)
−0.676715 + 0.736245i \(0.736597\pi\)
\(674\) 32.4882 1.70459i 1.25140 0.0656582i
\(675\) 22.1891i 0.854060i
\(676\) 1.98902 0.209295i 0.0765007 0.00804981i
\(677\) −37.3515 −1.43554 −0.717768 0.696283i \(-0.754836\pi\)
−0.717768 + 0.696283i \(0.754836\pi\)
\(678\) 0.305164 + 5.81622i 0.0117198 + 0.223370i
\(679\) −17.1091 + 14.4593i −0.656588 + 0.554899i
\(680\) −0.240168 1.51460i −0.00921001 0.0580822i
\(681\) −34.1232 −1.30760
\(682\) −3.92867 + 0.206129i −0.150436 + 0.00789307i
\(683\) −18.2389 −0.697893 −0.348947 0.937143i \(-0.613461\pi\)
−0.348947 + 0.937143i \(0.613461\pi\)
\(684\) −0.319662 3.03788i −0.0122226 0.116156i
\(685\) 3.78487 0.144613
\(686\) −21.8132 + 14.4978i −0.832831 + 0.553527i
\(687\) 13.8976i 0.530227i
\(688\) −12.9051 + 2.74629i −0.492001 + 0.104701i
\(689\) 1.16935i 0.0445486i
\(690\) 0.0331602 0.00173984i 0.00126239 6.62348e-5i
\(691\) 30.2469i 1.15065i 0.817926 + 0.575323i \(0.195124\pi\)
−0.817926 + 0.575323i \(0.804876\pi\)
\(692\) −26.1863 + 2.75546i −0.995455 + 0.104747i
\(693\) 0.814113 + 0.963306i 0.0309256 + 0.0365930i
\(694\) 25.1700 1.32062i 0.955442 0.0501300i
\(695\) 14.9797i 0.568214i
\(696\) −19.3144 + 3.06265i −0.732109 + 0.116089i
\(697\) −3.28791 −0.124538
\(698\) −0.0295545 + 0.00155066i −0.00111865 + 5.86933e-5i
\(699\) 14.2358i 0.538447i
\(700\) −15.0467 14.4248i −0.568711 0.545206i
\(701\) 34.8391i 1.31586i 0.753081 + 0.657928i \(0.228567\pi\)
−0.753081 + 0.657928i \(0.771433\pi\)
\(702\) −0.417395 7.95526i −0.0157536 0.300252i
\(703\) 4.19776 0.158321
\(704\) 4.62569 1.50481i 0.174337 0.0567148i
\(705\) 3.98878i 0.150226i
\(706\) −0.594448 11.3298i −0.0223724 0.426401i
\(707\) −13.1522 15.5624i −0.494638 0.585284i
\(708\) −2.31868 + 0.243983i −0.0871412 + 0.00916946i
\(709\) 39.3740i 1.47872i −0.673309 0.739361i \(-0.735128\pi\)
0.673309 0.739361i \(-0.264872\pi\)
\(710\) 1.14169 + 21.7598i 0.0428469 + 0.816631i
\(711\) 7.28394i 0.273169i
\(712\) 5.34202 + 33.6890i 0.200201 + 1.26255i
\(713\) 0.0700629i 0.00262387i
\(714\) 2.00732 + 2.13717i 0.0751220 + 0.0799817i
\(715\) −0.626260 −0.0234208
\(716\) 6.51993 0.686061i 0.243661 0.0256393i
\(717\) 24.2126 0.904235
\(718\) −1.10103 20.9848i −0.0410900 0.783146i
\(719\) 4.48168 0.167139 0.0835693 0.996502i \(-0.473368\pi\)
0.0835693 + 0.996502i \(0.473368\pi\)
\(720\) −3.15926 + 0.672313i −0.117739 + 0.0250556i
\(721\) 7.57794 + 8.96665i 0.282217 + 0.333936i
\(722\) 21.4734 1.12666i 0.799158 0.0419301i
\(723\) −26.7610 −0.995253
\(724\) 26.6954 2.80904i 0.992128 0.104397i
\(725\) 18.2956i 0.679483i
\(726\) 1.17257 + 22.3484i 0.0435183 + 0.829429i
\(727\) −16.5368 −0.613315 −0.306657 0.951820i \(-0.599211\pi\)
−0.306657 + 0.951820i \(0.599211\pi\)
\(728\) 5.66588 + 4.88854i 0.209991 + 0.181181i
\(729\) −29.8862 −1.10689
\(730\) −0.700786 13.3565i −0.0259373 0.494346i
\(731\) 1.73636i 0.0642215i
\(732\) 1.65866 + 15.7629i 0.0613058 + 0.582615i
\(733\) −30.2572 −1.11757 −0.558787 0.829311i \(-0.688733\pi\)
−0.558787 + 0.829311i \(0.688733\pi\)
\(734\) −29.3803 + 1.54152i −1.08445 + 0.0568986i
\(735\) −10.5825 1.78914i −0.390340 0.0659934i
\(736\) −0.0224464 0.0836710i −0.000827387 0.00308416i
\(737\) −2.54261 −0.0936583
\(738\) 0.362853 + 6.91571i 0.0133568 + 0.254571i
\(739\) −32.9352 −1.21154 −0.605771 0.795639i \(-0.707135\pi\)
−0.605771 + 0.795639i \(0.707135\pi\)
\(740\) −0.464503 4.41436i −0.0170755 0.162275i
\(741\) −2.89999 −0.106534
\(742\) −3.18917 + 2.99540i −0.117078 + 0.109964i
\(743\) 26.2593i 0.963360i −0.876347 0.481680i \(-0.840027\pi\)
0.876347 0.481680i \(-0.159973\pi\)
\(744\) 3.01683 + 19.0254i 0.110602 + 0.697504i
\(745\) 16.2362i 0.594847i
\(746\) −1.41946 27.0539i −0.0519700 0.990512i
\(747\) 1.13790i 0.0416337i
\(748\) 0.0669901 + 0.636635i 0.00244940 + 0.0232777i
\(749\) 10.5569 + 12.4915i 0.385739 + 0.456429i
\(750\) −1.01558 19.3563i −0.0370839 0.706793i
\(751\) 43.7992i 1.59826i −0.601161 0.799128i \(-0.705295\pi\)
0.601161 0.799128i \(-0.294705\pi\)
\(752\) 10.1783 2.16601i 0.371164 0.0789862i
\(753\) −24.3972 −0.889085
\(754\) −0.344155 6.55936i −0.0125334 0.238878i
\(755\) 9.02303i 0.328382i
\(756\) 20.6272 21.5165i 0.750206 0.782549i
\(757\) 18.1033i 0.657974i −0.944334 0.328987i \(-0.893293\pi\)
0.944334 0.328987i \(-0.106707\pi\)
\(758\) 1.85748 0.0974580i 0.0674668 0.00353983i
\(759\) −0.0138614 −0.000503136
\(760\) 0.888804 + 5.60517i 0.0322403 + 0.203321i
\(761\) 23.9490i 0.868152i 0.900876 + 0.434076i \(0.142925\pi\)
−0.900876 + 0.434076i \(0.857075\pi\)
\(762\) −24.1866 + 1.26902i −0.876186 + 0.0459716i
\(763\) −32.6152 + 27.5639i −1.18075 + 0.997881i
\(764\) 2.79833 + 26.5937i 0.101240 + 0.962125i
\(765\) 0.425074i 0.0153686i
\(766\) 11.8211 0.620226i 0.427113 0.0224097i
\(767\) 0.783099i 0.0282761i
\(768\) −9.69805 21.7541i −0.349948 0.784984i
\(769\) 39.8803i 1.43812i −0.694948 0.719060i \(-0.744573\pi\)
0.694948 0.719060i \(-0.255427\pi\)
\(770\) −1.60423 1.70800i −0.0578123 0.0615522i
\(771\) −40.8570 −1.47143
\(772\) −27.9726 + 2.94343i −1.00676 + 0.105936i
\(773\) 17.7022 0.636704 0.318352 0.947973i \(-0.396871\pi\)
0.318352 + 0.947973i \(0.396871\pi\)
\(774\) −3.65221 + 0.191624i −0.131276 + 0.00688777i
\(775\) 18.0219 0.647366
\(776\) 3.75045 + 23.6519i 0.134633 + 0.849055i
\(777\) 5.47803 + 6.48192i 0.196523 + 0.232537i
\(778\) 2.18683 + 41.6794i 0.0784016 + 1.49428i
\(779\) 12.1678 0.435956
\(780\) 0.320898 + 3.04963i 0.0114900 + 0.109194i
\(781\) 9.09586i 0.325476i
\(782\) 0.0113849 0.000597342i 0.000407124 2.13609e-5i
\(783\) −26.1625 −0.934972
\(784\) 1.18114 + 27.9751i 0.0421837 + 0.999110i
\(785\) 14.0439 0.501248
\(786\) −22.8063 + 1.19660i −0.813473 + 0.0426812i
\(787\) 20.7451i 0.739482i 0.929135 + 0.369741i \(0.120554\pi\)
−0.929135 + 0.369741i \(0.879446\pi\)
\(788\) 1.54948 + 14.7254i 0.0551980 + 0.524570i
\(789\) −6.48394 −0.230835
\(790\) −0.709058 13.5141i −0.0252271 0.480812i
\(791\) −4.72468 5.59052i −0.167990 0.198776i
\(792\) 1.33169 0.211164i 0.0473195 0.00750339i
\(793\) −5.32371 −0.189050
\(794\) 26.1510 1.37208i 0.928063 0.0486934i
\(795\) −1.79288 −0.0635869
\(796\) −42.2096 + 4.44152i −1.49608 + 0.157426i
\(797\) 11.6215 0.411654 0.205827 0.978588i \(-0.434012\pi\)
0.205827 + 0.978588i \(0.434012\pi\)
\(798\) −7.42861 7.90917i −0.262970 0.279981i
\(799\) 1.36947i 0.0484484i
\(800\) −21.5223 + 5.77378i −0.760927 + 0.204134i
\(801\) 9.45487i 0.334071i
\(802\) 33.1028 1.73683i 1.16890 0.0613296i
\(803\) 5.58317i 0.197026i
\(804\) 1.30285 + 12.3815i 0.0459478 + 0.436661i
\(805\) −0.0318734 + 0.0269370i −0.00112339 + 0.000949405i
\(806\) −6.46122 + 0.339006i −0.227587 + 0.0119410i
\(807\) 30.3550i 1.06855i
\(808\) −21.5137 + 3.41140i −0.756849 + 0.120013i
\(809\) −26.3459 −0.926271 −0.463136 0.886287i \(-0.653276\pi\)
−0.463136 + 0.886287i \(0.653276\pi\)
\(810\) 8.77602 0.460459i 0.308358 0.0161789i
\(811\) 31.7543i 1.11504i 0.830163 + 0.557521i \(0.188248\pi\)
−0.830163 + 0.557521i \(0.811752\pi\)
\(812\) 17.0078 17.7411i 0.596857 0.622589i
\(813\) 46.6604i 1.63645i
\(814\) 0.0970839 + 1.85035i 0.00340279 + 0.0648547i
\(815\) 5.88173 0.206028
\(816\) 3.06582 0.652429i 0.107325 0.0228396i
\(817\) 6.42585i 0.224812i
\(818\) 0.0772377 + 1.47210i 0.00270055 + 0.0514706i
\(819\) 1.33892 + 1.58429i 0.0467856 + 0.0553594i
\(820\) −1.34643 12.7956i −0.0470192 0.446843i
\(821\) 32.1508i 1.12207i −0.827791 0.561036i \(-0.810403\pi\)
0.827791 0.561036i \(-0.189597\pi\)
\(822\) 0.405343 + 7.72556i 0.0141380 + 0.269460i
\(823\) 26.3374i 0.918065i 0.888419 + 0.459033i \(0.151804\pi\)
−0.888419 + 0.459033i \(0.848196\pi\)
\(824\) 12.3956 1.96556i 0.431823 0.0684735i
\(825\) 3.56549i 0.124134i
\(826\) 2.13575 2.00599i 0.0743124 0.0697972i
\(827\) 28.2351 0.981832 0.490916 0.871207i \(-0.336662\pi\)
0.490916 + 0.871207i \(0.336662\pi\)
\(828\) −0.00251287 0.0238809i −8.73283e−5 0.000829917i
\(829\) −7.20127 −0.250110 −0.125055 0.992150i \(-0.539911\pi\)
−0.125055 + 0.992150i \(0.539911\pi\)
\(830\) 0.110770 + 2.11119i 0.00384487 + 0.0732805i
\(831\) 8.04249 0.278991
\(832\) 7.60756 2.47487i 0.263745 0.0858007i
\(833\) −3.63328 0.614267i −0.125886 0.0212831i
\(834\) 30.5762 1.60426i 1.05877 0.0555511i
\(835\) −16.4916 −0.570714
\(836\) −0.247914 2.35603i −0.00857430 0.0814851i
\(837\) 25.7711i 0.890779i
\(838\) 0.394997 + 7.52836i 0.0136449 + 0.260063i
\(839\) −14.9034 −0.514524 −0.257262 0.966342i \(-0.582820\pi\)
−0.257262 + 0.966342i \(0.582820\pi\)
\(840\) −7.49527 + 8.68711i −0.258611 + 0.299734i
\(841\) 7.42817 0.256144
\(842\) 2.66526 + 50.7980i 0.0918510 + 1.75062i
\(843\) 0.946579i 0.0326019i
\(844\) −18.4552 + 1.94196i −0.635255 + 0.0668449i
\(845\) −1.02997 −0.0354320
\(846\) 2.88051 0.151134i 0.0990341 0.00519610i
\(847\) −18.1543 21.4812i −0.623789 0.738103i
\(848\) 0.973580 + 4.57494i 0.0334329 + 0.157104i
\(849\) 9.03481 0.310074
\(850\) −0.153651 2.92849i −0.00527020 0.100446i
\(851\) 0.0329987 0.00113118
\(852\) −44.2931 + 4.66076i −1.51746 + 0.159675i
\(853\) 49.1718 1.68361 0.841804 0.539783i \(-0.181494\pi\)
0.841804 + 0.539783i \(0.181494\pi\)
\(854\) −13.6372 14.5194i −0.466655 0.496843i
\(855\) 1.57310i 0.0537988i
\(856\) 17.2684 2.73823i 0.590223 0.0935908i
\(857\) 20.6632i 0.705843i −0.935653 0.352922i \(-0.885188\pi\)
0.935653 0.352922i \(-0.114812\pi\)
\(858\) −0.0670696 1.27830i −0.00228972 0.0436404i
\(859\) 20.8182i 0.710309i 0.934808 + 0.355154i \(0.115572\pi\)
−0.934808 + 0.355154i \(0.884428\pi\)
\(860\) 6.75742 0.711052i 0.230426 0.0242467i
\(861\) 15.8788 + 18.7887i 0.541148 + 0.640318i
\(862\) −1.63890 31.2362i −0.0558211 1.06391i
\(863\) 30.4131i 1.03527i −0.855601 0.517637i \(-0.826812\pi\)
0.855601 0.517637i \(-0.173188\pi\)
\(864\) −8.25643 30.7766i −0.280890 1.04704i
\(865\) 13.5600 0.461054
\(866\) −0.858100 16.3548i −0.0291594 0.555758i
\(867\) 24.8941i 0.845447i
\(868\) −17.4756 16.7534i −0.593161 0.568646i
\(869\) 5.64907i 0.191632i
\(870\) 10.0570 0.527670i 0.340965 0.0178897i
\(871\) −4.18167 −0.141690
\(872\) 7.14951 + 45.0878i 0.242113 + 1.52687i
\(873\) 6.63795i 0.224661i
\(874\) −0.0421329 + 0.00221062i −0.00142517 + 7.47754e-5i
\(875\) 15.7237 + 18.6052i 0.531559 + 0.628971i
\(876\) 27.1878 2.86084i 0.918590 0.0966589i
\(877\) 8.60597i 0.290603i 0.989387 + 0.145301i \(0.0464152\pi\)
−0.989387 + 0.145301i \(0.953585\pi\)
\(878\) 53.9832 2.83238i 1.82184 0.0955882i
\(879\) 44.4727i 1.50003i
\(880\) −2.45017 + 0.521414i −0.0825953 + 0.0175769i
\(881\) 22.7259i 0.765657i 0.923820 + 0.382828i \(0.125050\pi\)
−0.923820 + 0.382828i \(0.874950\pi\)
\(882\) −0.891066 + 7.70995i −0.0300038 + 0.259608i
\(883\) 26.0737 0.877449 0.438724 0.898622i \(-0.355430\pi\)
0.438724 + 0.898622i \(0.355430\pi\)
\(884\) 0.110174 + 1.04703i 0.00370556 + 0.0352155i
\(885\) 1.20067 0.0403602
\(886\) 21.6584 1.13637i 0.727628 0.0381771i
\(887\) −18.7828 −0.630664 −0.315332 0.948981i \(-0.602116\pi\)
−0.315332 + 0.948981i \(0.602116\pi\)
\(888\) 8.96070 1.42089i 0.300702 0.0476818i
\(889\) 23.2480 19.6475i 0.779713 0.658954i
\(890\) −0.920387 17.5419i −0.0308515 0.588007i
\(891\) −3.66848 −0.122899
\(892\) 1.29446 0.136210i 0.0433418 0.00456065i
\(893\) 5.06809i 0.169597i
\(894\) −33.1407 + 1.73882i −1.10839 + 0.0581549i
\(895\) −3.37620 −0.112854
\(896\) 26.2373 + 14.4086i 0.876525 + 0.481356i
\(897\) −0.0227969 −0.000761166
\(898\) 32.9095 1.72669i 1.09820 0.0576204i
\(899\) 21.2491i 0.708696i
\(900\) −6.14275 + 0.646373i −0.204758 + 0.0215458i
\(901\) −0.615551 −0.0205070
\(902\) 0.281411 + 5.36349i 0.00936996 + 0.178585i
\(903\) −9.92239 + 8.38565i −0.330196 + 0.279057i
\(904\) −7.72842 + 1.22549i −0.257044 + 0.0407590i
\(905\) −13.8236 −0.459513
\(906\) −18.4175 + 0.966327i −0.611881 + 0.0321041i
\(907\) −2.93997 −0.0976201 −0.0488101 0.998808i \(-0.515543\pi\)
−0.0488101 + 0.998808i \(0.515543\pi\)
\(908\) −4.79761 45.5937i −0.159214 1.51308i
\(909\) −6.03785 −0.200263
\(910\) −2.63836 2.80904i −0.0874609 0.0931188i
\(911\) 37.3247i 1.23662i 0.785934 + 0.618311i \(0.212183\pi\)
−0.785934 + 0.618311i \(0.787817\pi\)
\(912\) −11.3459 + 2.41448i −0.375700 + 0.0799516i
\(913\) 0.882503i 0.0292066i
\(914\) 10.9388 0.573935i 0.361824 0.0189841i
\(915\) 8.16248i 0.269843i
\(916\) 18.5693 1.95396i 0.613546 0.0645606i
\(917\) 21.9213 18.5262i 0.723905 0.611790i
\(918\) 4.18770 0.219719i 0.138215 0.00725182i
\(919\) 8.61037i 0.284030i −0.989865 0.142015i \(-0.954642\pi\)
0.989865 0.142015i \(-0.0453581\pi\)
\(920\) 0.00698691 + 0.0440624i 0.000230351 + 0.00145269i
\(921\) −33.2811 −1.09665
\(922\) 32.0561 1.68191i 1.05571 0.0553908i
\(923\) 14.9594i 0.492394i
\(924\) 3.31451 3.45741i 0.109040 0.113740i
\(925\) 8.48808i 0.279086i
\(926\) −1.13042 21.5451i −0.0371480 0.708015i
\(927\) 3.47886 0.114261
\(928\) −6.80769 25.3762i −0.223473 0.833016i
\(929\) 55.5422i 1.82228i −0.412096 0.911140i \(-0.635203\pi\)
0.412096 0.911140i \(-0.364797\pi\)
\(930\) −0.519776 9.90656i −0.0170441 0.324849i
\(931\) 13.4459 + 2.27326i 0.440672 + 0.0745029i
\(932\) −19.0211 + 2.00151i −0.623058 + 0.0655615i
\(933\) 32.0484i 1.04922i
\(934\) −2.49801 47.6103i −0.0817374 1.55786i
\(935\) 0.329667i 0.0107813i
\(936\) 2.19014 0.347288i 0.0715871 0.0113515i
\(937\) 29.4465i 0.961974i −0.876728 0.480987i \(-0.840278\pi\)
0.876728 0.480987i \(-0.159722\pi\)
\(938\) −10.7118 11.4047i −0.349751 0.372377i
\(939\) 3.07109 0.100221
\(940\) −5.32960 + 0.560809i −0.173832 + 0.0182916i
\(941\) −14.0302 −0.457371 −0.228686 0.973500i \(-0.573443\pi\)
−0.228686 + 0.973500i \(0.573443\pi\)
\(942\) 1.50404 + 28.6659i 0.0490042 + 0.933986i
\(943\) 0.0956512 0.00311483
\(944\) −0.651996 3.06379i −0.0212207 0.0997179i
\(945\) −11.7239 + 9.90819i −0.381380 + 0.322314i
\(946\) −2.83248 + 0.148614i −0.0920919 + 0.00483186i
\(947\) 46.5895 1.51396 0.756978 0.653440i \(-0.226675\pi\)
0.756978 + 0.653440i \(0.226675\pi\)
\(948\) 27.5087 2.89461i 0.893440 0.0940126i
\(949\) 9.18228i 0.298069i
\(950\) 0.568627 + 10.8376i 0.0184487 + 0.351619i
\(951\) 48.4862 1.57227
\(952\) −2.57336 + 2.98255i −0.0834030 + 0.0966651i
\(953\) −42.9548 −1.39144 −0.695721 0.718312i \(-0.744915\pi\)
−0.695721 + 0.718312i \(0.744915\pi\)
\(954\) 0.0679320 + 1.29474i 0.00219938 + 0.0419186i
\(955\) 13.7709i 0.445617i
\(956\) 3.40421 + 32.3516i 0.110100 + 1.04633i
\(957\) −4.20396 −0.135895
\(958\) 38.9042 2.04122i 1.25694 0.0659488i
\(959\) −6.27570 7.42577i −0.202653 0.239790i
\(960\) 3.79455 + 11.6642i 0.122469 + 0.376459i
\(961\) −10.0688 −0.324801
\(962\) 0.159668 + 3.04315i 0.00514789 + 0.0981151i
\(963\) 4.84641 0.156173
\(964\) −3.76251 35.7567i −0.121182 1.15165i
\(965\) 14.4850 0.466288
\(966\) −0.0583964 0.0621741i −0.00187887 0.00200042i
\(967\) 13.9605i 0.448940i −0.974481 0.224470i \(-0.927935\pi\)
0.974481 0.224470i \(-0.0720652\pi\)
\(968\) −29.6960 + 4.70885i −0.954465 + 0.151348i
\(969\) 1.52657i 0.0490406i
\(970\) −0.646173 12.3156i −0.0207474 0.395430i
\(971\) 12.7064i 0.407767i −0.978995 0.203884i \(-0.934644\pi\)
0.978995 0.203884i \(-0.0653564\pi\)
\(972\) −1.65710 15.7481i −0.0531516 0.505122i
\(973\) −29.3896 + 24.8379i −0.942189 + 0.796267i
\(974\) −0.977980 18.6396i −0.0313365 0.597252i
\(975\) 5.86392i 0.187796i
\(976\) −20.8284 + 4.43243i −0.666701 + 0.141879i
\(977\) 45.8920 1.46821 0.734107 0.679034i \(-0.237601\pi\)
0.734107 + 0.679034i \(0.237601\pi\)
\(978\) 0.629907 + 12.0056i 0.0201422 + 0.383897i
\(979\) 7.33274i 0.234355i
\(980\) 0.902698 14.3913i 0.0288356 0.459712i
\(981\) 12.6540i 0.404010i
\(982\) −11.4100 + 0.598659i −0.364109 + 0.0191040i
\(983\) 34.2113 1.09117 0.545586 0.838055i \(-0.316307\pi\)
0.545586 + 0.838055i \(0.316307\pi\)
\(984\) 25.9738 4.11863i 0.828015 0.131297i
\(985\) 7.62520i 0.242959i
\(986\) 3.45289 0.181166i 0.109962 0.00576949i
\(987\) 7.82582 6.61379i 0.249099 0.210519i
\(988\) −0.407729 3.87482i −0.0129716 0.123274i
\(989\) 0.0505137i 0.00160624i
\(990\) −0.693414 + 0.0363819i −0.0220381 + 0.00115629i
\(991\) 51.9670i 1.65079i 0.564559 + 0.825393i \(0.309046\pi\)
−0.564559 + 0.825393i \(0.690954\pi\)
\(992\) −24.9966 + 6.70584i −0.793642 + 0.212910i
\(993\) 21.0899i 0.669266i
\(994\) 40.7988 38.3199i 1.29406 1.21543i
\(995\) 21.8573 0.692923
\(996\) −4.29743 + 0.452198i −0.136169 + 0.0143285i
\(997\) −6.95041 −0.220122 −0.110061 0.993925i \(-0.535105\pi\)
−0.110061 + 0.993925i \(0.535105\pi\)
\(998\) −36.7670 + 1.92908i −1.16384 + 0.0610641i
\(999\) 12.1378 0.384024
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.47 yes 48
4.3 odd 2 2912.2.h.b.2575.35 48
7.6 odd 2 728.2.h.a.27.47 48
8.3 odd 2 728.2.h.a.27.48 yes 48
8.5 even 2 2912.2.h.a.2575.35 48
28.27 even 2 2912.2.h.a.2575.14 48
56.13 odd 2 2912.2.h.b.2575.14 48
56.27 even 2 inner 728.2.h.b.27.48 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.47 48 7.6 odd 2
728.2.h.a.27.48 yes 48 8.3 odd 2
728.2.h.b.27.47 yes 48 1.1 even 1 trivial
728.2.h.b.27.48 yes 48 56.27 even 2 inner
2912.2.h.a.2575.14 48 28.27 even 2
2912.2.h.a.2575.35 48 8.5 even 2
2912.2.h.b.2575.14 48 56.13 odd 2
2912.2.h.b.2575.35 48 4.3 odd 2