Properties

Label 2912.2.h.a.2575.15
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.15
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.40360i q^{3} -3.11493 q^{5} +(2.64532 - 0.0479799i) q^{7} +1.02989 q^{9} +0.711549 q^{11} -1.00000 q^{13} +4.37213i q^{15} -0.128191i q^{17} +5.49116i q^{19} +(-0.0673448 - 3.71298i) q^{21} +5.12058i q^{23} +4.70280 q^{25} -5.65638i q^{27} +7.07307i q^{29} -10.3051 q^{31} -0.998733i q^{33} +(-8.23998 + 0.149454i) q^{35} -8.15798i q^{37} +1.40360i q^{39} -0.100841i q^{41} -8.73959 q^{43} -3.20805 q^{45} -2.81273 q^{47} +(6.99540 - 0.253844i) q^{49} -0.179929 q^{51} +8.53210i q^{53} -2.21643 q^{55} +7.70742 q^{57} +7.38024i q^{59} -11.3324 q^{61} +(2.72440 - 0.0494143i) q^{63} +3.11493 q^{65} +14.5057 q^{67} +7.18727 q^{69} +8.43273i q^{71} -8.62895i q^{73} -6.60088i q^{75} +(1.88227 - 0.0341401i) q^{77} +16.3766i q^{79} -4.84963 q^{81} +4.06811i q^{83} +0.399306i q^{85} +9.92780 q^{87} +2.25678i q^{89} +(-2.64532 + 0.0479799i) q^{91} +14.4643i q^{93} -17.1046i q^{95} +5.13148i q^{97} +0.732821 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40360i 0.810371i −0.914234 0.405186i \(-0.867207\pi\)
0.914234 0.405186i \(-0.132793\pi\)
\(4\) 0 0
\(5\) −3.11493 −1.39304 −0.696520 0.717537i \(-0.745269\pi\)
−0.696520 + 0.717537i \(0.745269\pi\)
\(6\) 0 0
\(7\) 2.64532 0.0479799i 0.999836 0.0181347i
\(8\) 0 0
\(9\) 1.02989 0.343298
\(10\) 0 0
\(11\) 0.711549 0.214540 0.107270 0.994230i \(-0.465789\pi\)
0.107270 + 0.994230i \(0.465789\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 4.37213i 1.12888i
\(16\) 0 0
\(17\) 0.128191i 0.0310908i −0.999879 0.0155454i \(-0.995052\pi\)
0.999879 0.0155454i \(-0.00494846\pi\)
\(18\) 0 0
\(19\) 5.49116i 1.25976i 0.776693 + 0.629879i \(0.216896\pi\)
−0.776693 + 0.629879i \(0.783104\pi\)
\(20\) 0 0
\(21\) −0.0673448 3.71298i −0.0146958 0.810238i
\(22\) 0 0
\(23\) 5.12058i 1.06771i 0.845574 + 0.533857i \(0.179258\pi\)
−0.845574 + 0.533857i \(0.820742\pi\)
\(24\) 0 0
\(25\) 4.70280 0.940561
\(26\) 0 0
\(27\) 5.65638i 1.08857i
\(28\) 0 0
\(29\) 7.07307i 1.31344i 0.754136 + 0.656718i \(0.228056\pi\)
−0.754136 + 0.656718i \(0.771944\pi\)
\(30\) 0 0
\(31\) −10.3051 −1.85085 −0.925424 0.378934i \(-0.876291\pi\)
−0.925424 + 0.378934i \(0.876291\pi\)
\(32\) 0 0
\(33\) 0.998733i 0.173857i
\(34\) 0 0
\(35\) −8.23998 + 0.149454i −1.39281 + 0.0252624i
\(36\) 0 0
\(37\) 8.15798i 1.34116i −0.741836 0.670582i \(-0.766045\pi\)
0.741836 0.670582i \(-0.233955\pi\)
\(38\) 0 0
\(39\) 1.40360i 0.224757i
\(40\) 0 0
\(41\) 0.100841i 0.0157488i −0.999969 0.00787439i \(-0.997493\pi\)
0.999969 0.00787439i \(-0.00250652\pi\)
\(42\) 0 0
\(43\) −8.73959 −1.33278 −0.666388 0.745605i \(-0.732160\pi\)
−0.666388 + 0.745605i \(0.732160\pi\)
\(44\) 0 0
\(45\) −3.20805 −0.478228
\(46\) 0 0
\(47\) −2.81273 −0.410278 −0.205139 0.978733i \(-0.565765\pi\)
−0.205139 + 0.978733i \(0.565765\pi\)
\(48\) 0 0
\(49\) 6.99540 0.253844i 0.999342 0.0362635i
\(50\) 0 0
\(51\) −0.179929 −0.0251951
\(52\) 0 0
\(53\) 8.53210i 1.17197i 0.810321 + 0.585987i \(0.199293\pi\)
−0.810321 + 0.585987i \(0.800707\pi\)
\(54\) 0 0
\(55\) −2.21643 −0.298863
\(56\) 0 0
\(57\) 7.70742 1.02087
\(58\) 0 0
\(59\) 7.38024i 0.960825i 0.877043 + 0.480413i \(0.159513\pi\)
−0.877043 + 0.480413i \(0.840487\pi\)
\(60\) 0 0
\(61\) −11.3324 −1.45097 −0.725485 0.688238i \(-0.758384\pi\)
−0.725485 + 0.688238i \(0.758384\pi\)
\(62\) 0 0
\(63\) 2.72440 0.0494143i 0.343242 0.00622562i
\(64\) 0 0
\(65\) 3.11493 0.386360
\(66\) 0 0
\(67\) 14.5057 1.77215 0.886077 0.463539i \(-0.153420\pi\)
0.886077 + 0.463539i \(0.153420\pi\)
\(68\) 0 0
\(69\) 7.18727 0.865246
\(70\) 0 0
\(71\) 8.43273i 1.00078i 0.865800 + 0.500390i \(0.166810\pi\)
−0.865800 + 0.500390i \(0.833190\pi\)
\(72\) 0 0
\(73\) 8.62895i 1.00994i −0.863136 0.504971i \(-0.831503\pi\)
0.863136 0.504971i \(-0.168497\pi\)
\(74\) 0 0
\(75\) 6.60088i 0.762204i
\(76\) 0 0
\(77\) 1.88227 0.0341401i 0.214505 0.00389062i
\(78\) 0 0
\(79\) 16.3766i 1.84251i 0.388957 + 0.921256i \(0.372835\pi\)
−0.388957 + 0.921256i \(0.627165\pi\)
\(80\) 0 0
\(81\) −4.84963 −0.538848
\(82\) 0 0
\(83\) 4.06811i 0.446533i 0.974757 + 0.223266i \(0.0716720\pi\)
−0.974757 + 0.223266i \(0.928328\pi\)
\(84\) 0 0
\(85\) 0.399306i 0.0433108i
\(86\) 0 0
\(87\) 9.92780 1.06437
\(88\) 0 0
\(89\) 2.25678i 0.239218i 0.992821 + 0.119609i \(0.0381641\pi\)
−0.992821 + 0.119609i \(0.961836\pi\)
\(90\) 0 0
\(91\) −2.64532 + 0.0479799i −0.277304 + 0.00502966i
\(92\) 0 0
\(93\) 14.4643i 1.49987i
\(94\) 0 0
\(95\) 17.1046i 1.75489i
\(96\) 0 0
\(97\) 5.13148i 0.521023i 0.965471 + 0.260511i \(0.0838912\pi\)
−0.965471 + 0.260511i \(0.916109\pi\)
\(98\) 0 0
\(99\) 0.732821 0.0736513
\(100\) 0 0
\(101\) 16.0644 1.59846 0.799231 0.601023i \(-0.205240\pi\)
0.799231 + 0.601023i \(0.205240\pi\)
\(102\) 0 0
\(103\) −4.38089 −0.431662 −0.215831 0.976431i \(-0.569246\pi\)
−0.215831 + 0.976431i \(0.569246\pi\)
\(104\) 0 0
\(105\) 0.209775 + 11.5657i 0.0204719 + 1.12869i
\(106\) 0 0
\(107\) 2.75910 0.266732 0.133366 0.991067i \(-0.457421\pi\)
0.133366 + 0.991067i \(0.457421\pi\)
\(108\) 0 0
\(109\) 14.4976i 1.38861i −0.719679 0.694307i \(-0.755711\pi\)
0.719679 0.694307i \(-0.244289\pi\)
\(110\) 0 0
\(111\) −11.4506 −1.08684
\(112\) 0 0
\(113\) 9.63185 0.906088 0.453044 0.891488i \(-0.350338\pi\)
0.453044 + 0.891488i \(0.350338\pi\)
\(114\) 0 0
\(115\) 15.9503i 1.48737i
\(116\) 0 0
\(117\) −1.02989 −0.0952138
\(118\) 0 0
\(119\) −0.00615058 0.339105i −0.000563823 0.0310857i
\(120\) 0 0
\(121\) −10.4937 −0.953973
\(122\) 0 0
\(123\) −0.141541 −0.0127624
\(124\) 0 0
\(125\) 0.925743 0.0828010
\(126\) 0 0
\(127\) 12.5244i 1.11136i 0.831396 + 0.555681i \(0.187542\pi\)
−0.831396 + 0.555681i \(0.812458\pi\)
\(128\) 0 0
\(129\) 12.2669i 1.08004i
\(130\) 0 0
\(131\) 9.32611i 0.814826i 0.913244 + 0.407413i \(0.133569\pi\)
−0.913244 + 0.407413i \(0.866431\pi\)
\(132\) 0 0
\(133\) 0.263466 + 14.5259i 0.0228454 + 1.25955i
\(134\) 0 0
\(135\) 17.6192i 1.51642i
\(136\) 0 0
\(137\) 3.48572 0.297806 0.148903 0.988852i \(-0.452426\pi\)
0.148903 + 0.988852i \(0.452426\pi\)
\(138\) 0 0
\(139\) 13.7408i 1.16548i 0.812659 + 0.582740i \(0.198019\pi\)
−0.812659 + 0.582740i \(0.801981\pi\)
\(140\) 0 0
\(141\) 3.94795i 0.332478i
\(142\) 0 0
\(143\) −0.711549 −0.0595027
\(144\) 0 0
\(145\) 22.0321i 1.82967i
\(146\) 0 0
\(147\) −0.356297 9.81877i −0.0293869 0.809838i
\(148\) 0 0
\(149\) 0.0763024i 0.00625094i −0.999995 0.00312547i \(-0.999005\pi\)
0.999995 0.00312547i \(-0.000994869\pi\)
\(150\) 0 0
\(151\) 1.78506i 0.145266i 0.997359 + 0.0726329i \(0.0231402\pi\)
−0.997359 + 0.0726329i \(0.976860\pi\)
\(152\) 0 0
\(153\) 0.132023i 0.0106734i
\(154\) 0 0
\(155\) 32.0996 2.57831
\(156\) 0 0
\(157\) −7.52175 −0.600301 −0.300151 0.953892i \(-0.597037\pi\)
−0.300151 + 0.953892i \(0.597037\pi\)
\(158\) 0 0
\(159\) 11.9757 0.949734
\(160\) 0 0
\(161\) 0.245685 + 13.5456i 0.0193627 + 1.06754i
\(162\) 0 0
\(163\) 5.68209 0.445056 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(164\) 0 0
\(165\) 3.11099i 0.242190i
\(166\) 0 0
\(167\) 9.75242 0.754665 0.377332 0.926078i \(-0.376841\pi\)
0.377332 + 0.926078i \(0.376841\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 5.65532i 0.432473i
\(172\) 0 0
\(173\) −2.54932 −0.193821 −0.0969106 0.995293i \(-0.530896\pi\)
−0.0969106 + 0.995293i \(0.530896\pi\)
\(174\) 0 0
\(175\) 12.4404 0.225640i 0.940406 0.0170568i
\(176\) 0 0
\(177\) 10.3589 0.778625
\(178\) 0 0
\(179\) −6.78232 −0.506934 −0.253467 0.967344i \(-0.581571\pi\)
−0.253467 + 0.967344i \(0.581571\pi\)
\(180\) 0 0
\(181\) 2.16014 0.160562 0.0802810 0.996772i \(-0.474418\pi\)
0.0802810 + 0.996772i \(0.474418\pi\)
\(182\) 0 0
\(183\) 15.9063i 1.17582i
\(184\) 0 0
\(185\) 25.4116i 1.86829i
\(186\) 0 0
\(187\) 0.0912140i 0.00667023i
\(188\) 0 0
\(189\) −0.271393 14.9629i −0.0197409 1.08839i
\(190\) 0 0
\(191\) 9.22106i 0.667212i 0.942713 + 0.333606i \(0.108266\pi\)
−0.942713 + 0.333606i \(0.891734\pi\)
\(192\) 0 0
\(193\) −13.3511 −0.961036 −0.480518 0.876985i \(-0.659551\pi\)
−0.480518 + 0.876985i \(0.659551\pi\)
\(194\) 0 0
\(195\) 4.37213i 0.313095i
\(196\) 0 0
\(197\) 24.6758i 1.75808i 0.476751 + 0.879038i \(0.341814\pi\)
−0.476751 + 0.879038i \(0.658186\pi\)
\(198\) 0 0
\(199\) −16.0513 −1.13785 −0.568924 0.822390i \(-0.692640\pi\)
−0.568924 + 0.822390i \(0.692640\pi\)
\(200\) 0 0
\(201\) 20.3603i 1.43610i
\(202\) 0 0
\(203\) 0.339366 + 18.7105i 0.0238188 + 1.31322i
\(204\) 0 0
\(205\) 0.314114i 0.0219387i
\(206\) 0 0
\(207\) 5.27366i 0.366545i
\(208\) 0 0
\(209\) 3.90723i 0.270269i
\(210\) 0 0
\(211\) 8.24694 0.567743 0.283871 0.958862i \(-0.408381\pi\)
0.283871 + 0.958862i \(0.408381\pi\)
\(212\) 0 0
\(213\) 11.8362 0.811004
\(214\) 0 0
\(215\) 27.2232 1.85661
\(216\) 0 0
\(217\) −27.2602 + 0.494437i −1.85054 + 0.0335646i
\(218\) 0 0
\(219\) −12.1116 −0.818429
\(220\) 0 0
\(221\) 0.128191i 0.00862304i
\(222\) 0 0
\(223\) 11.0819 0.742096 0.371048 0.928614i \(-0.378999\pi\)
0.371048 + 0.928614i \(0.378999\pi\)
\(224\) 0 0
\(225\) 4.84339 0.322893
\(226\) 0 0
\(227\) 13.0912i 0.868896i −0.900697 0.434448i \(-0.856944\pi\)
0.900697 0.434448i \(-0.143056\pi\)
\(228\) 0 0
\(229\) 26.7429 1.76722 0.883610 0.468224i \(-0.155106\pi\)
0.883610 + 0.468224i \(0.155106\pi\)
\(230\) 0 0
\(231\) −0.0479192 2.64197i −0.00315285 0.173829i
\(232\) 0 0
\(233\) −20.2305 −1.32535 −0.662673 0.748909i \(-0.730578\pi\)
−0.662673 + 0.748909i \(0.730578\pi\)
\(234\) 0 0
\(235\) 8.76145 0.571534
\(236\) 0 0
\(237\) 22.9863 1.49312
\(238\) 0 0
\(239\) 13.7831i 0.891554i −0.895144 0.445777i \(-0.852927\pi\)
0.895144 0.445777i \(-0.147073\pi\)
\(240\) 0 0
\(241\) 12.7451i 0.820981i −0.911865 0.410490i \(-0.865358\pi\)
0.911865 0.410490i \(-0.134642\pi\)
\(242\) 0 0
\(243\) 10.1622i 0.651903i
\(244\) 0 0
\(245\) −21.7902 + 0.790708i −1.39212 + 0.0505165i
\(246\) 0 0
\(247\) 5.49116i 0.349394i
\(248\) 0 0
\(249\) 5.71001 0.361857
\(250\) 0 0
\(251\) 22.4676i 1.41814i 0.705137 + 0.709071i \(0.250886\pi\)
−0.705137 + 0.709071i \(0.749114\pi\)
\(252\) 0 0
\(253\) 3.64354i 0.229068i
\(254\) 0 0
\(255\) 0.560467 0.0350978
\(256\) 0 0
\(257\) 14.3250i 0.893568i −0.894642 0.446784i \(-0.852569\pi\)
0.894642 0.446784i \(-0.147431\pi\)
\(258\) 0 0
\(259\) −0.391419 21.5804i −0.0243216 1.34094i
\(260\) 0 0
\(261\) 7.28452i 0.450901i
\(262\) 0 0
\(263\) 13.3682i 0.824317i −0.911112 0.412158i \(-0.864775\pi\)
0.911112 0.412158i \(-0.135225\pi\)
\(264\) 0 0
\(265\) 26.5769i 1.63261i
\(266\) 0 0
\(267\) 3.16762 0.193855
\(268\) 0 0
\(269\) −13.2650 −0.808782 −0.404391 0.914586i \(-0.632517\pi\)
−0.404391 + 0.914586i \(0.632517\pi\)
\(270\) 0 0
\(271\) −14.9368 −0.907348 −0.453674 0.891168i \(-0.649887\pi\)
−0.453674 + 0.891168i \(0.649887\pi\)
\(272\) 0 0
\(273\) 0.0673448 + 3.71298i 0.00407590 + 0.224720i
\(274\) 0 0
\(275\) 3.34628 0.201788
\(276\) 0 0
\(277\) 2.07792i 0.124850i −0.998050 0.0624251i \(-0.980117\pi\)
0.998050 0.0624251i \(-0.0198834\pi\)
\(278\) 0 0
\(279\) −10.6132 −0.635393
\(280\) 0 0
\(281\) 7.66033 0.456977 0.228488 0.973547i \(-0.426622\pi\)
0.228488 + 0.973547i \(0.426622\pi\)
\(282\) 0 0
\(283\) 4.75444i 0.282622i 0.989965 + 0.141311i \(0.0451318\pi\)
−0.989965 + 0.141311i \(0.954868\pi\)
\(284\) 0 0
\(285\) −24.0081 −1.42212
\(286\) 0 0
\(287\) −0.00483836 0.266757i −0.000285599 0.0157462i
\(288\) 0 0
\(289\) 16.9836 0.999033
\(290\) 0 0
\(291\) 7.20257 0.422222
\(292\) 0 0
\(293\) 20.4685 1.19578 0.597890 0.801578i \(-0.296006\pi\)
0.597890 + 0.801578i \(0.296006\pi\)
\(294\) 0 0
\(295\) 22.9889i 1.33847i
\(296\) 0 0
\(297\) 4.02479i 0.233542i
\(298\) 0 0
\(299\) 5.12058i 0.296131i
\(300\) 0 0
\(301\) −23.1190 + 0.419325i −1.33256 + 0.0241695i
\(302\) 0 0
\(303\) 22.5480i 1.29535i
\(304\) 0 0
\(305\) 35.2998 2.02126
\(306\) 0 0
\(307\) 0.696807i 0.0397689i −0.999802 0.0198844i \(-0.993670\pi\)
0.999802 0.0198844i \(-0.00632983\pi\)
\(308\) 0 0
\(309\) 6.14903i 0.349806i
\(310\) 0 0
\(311\) 21.4020 1.21360 0.606798 0.794856i \(-0.292454\pi\)
0.606798 + 0.794856i \(0.292454\pi\)
\(312\) 0 0
\(313\) 3.05480i 0.172667i −0.996266 0.0863337i \(-0.972485\pi\)
0.996266 0.0863337i \(-0.0275151\pi\)
\(314\) 0 0
\(315\) −8.48632 + 0.153922i −0.478150 + 0.00867253i
\(316\) 0 0
\(317\) 26.8368i 1.50730i 0.657274 + 0.753652i \(0.271709\pi\)
−0.657274 + 0.753652i \(0.728291\pi\)
\(318\) 0 0
\(319\) 5.03284i 0.281785i
\(320\) 0 0
\(321\) 3.87268i 0.216152i
\(322\) 0 0
\(323\) 0.703916 0.0391669
\(324\) 0 0
\(325\) −4.70280 −0.260865
\(326\) 0 0
\(327\) −20.3488 −1.12529
\(328\) 0 0
\(329\) −7.44055 + 0.134954i −0.410211 + 0.00744028i
\(330\) 0 0
\(331\) 17.6603 0.970696 0.485348 0.874321i \(-0.338693\pi\)
0.485348 + 0.874321i \(0.338693\pi\)
\(332\) 0 0
\(333\) 8.40186i 0.460419i
\(334\) 0 0
\(335\) −45.1843 −2.46868
\(336\) 0 0
\(337\) 1.87767 0.102283 0.0511416 0.998691i \(-0.483714\pi\)
0.0511416 + 0.998691i \(0.483714\pi\)
\(338\) 0 0
\(339\) 13.5193i 0.734268i
\(340\) 0 0
\(341\) −7.33257 −0.397081
\(342\) 0 0
\(343\) 18.4929 1.00714i 0.998520 0.0543803i
\(344\) 0 0
\(345\) −22.3879 −1.20532
\(346\) 0 0
\(347\) −14.7147 −0.789924 −0.394962 0.918697i \(-0.629242\pi\)
−0.394962 + 0.918697i \(0.629242\pi\)
\(348\) 0 0
\(349\) −1.50124 −0.0803598 −0.0401799 0.999192i \(-0.512793\pi\)
−0.0401799 + 0.999192i \(0.512793\pi\)
\(350\) 0 0
\(351\) 5.65638i 0.301915i
\(352\) 0 0
\(353\) 2.52907i 0.134609i 0.997732 + 0.0673043i \(0.0214398\pi\)
−0.997732 + 0.0673043i \(0.978560\pi\)
\(354\) 0 0
\(355\) 26.2674i 1.39413i
\(356\) 0 0
\(357\) −0.475969 + 0.00863299i −0.0251910 + 0.000456906i
\(358\) 0 0
\(359\) 27.9988i 1.47772i −0.673858 0.738861i \(-0.735364\pi\)
0.673858 0.738861i \(-0.264636\pi\)
\(360\) 0 0
\(361\) −11.1528 −0.586992
\(362\) 0 0
\(363\) 14.7290i 0.773072i
\(364\) 0 0
\(365\) 26.8786i 1.40689i
\(366\) 0 0
\(367\) −13.6580 −0.712944 −0.356472 0.934306i \(-0.616020\pi\)
−0.356472 + 0.934306i \(0.616020\pi\)
\(368\) 0 0
\(369\) 0.103856i 0.00540653i
\(370\) 0 0
\(371\) 0.409369 + 22.5701i 0.0212534 + 1.17178i
\(372\) 0 0
\(373\) 12.4286i 0.643528i −0.946820 0.321764i \(-0.895724\pi\)
0.946820 0.321764i \(-0.104276\pi\)
\(374\) 0 0
\(375\) 1.29938i 0.0670995i
\(376\) 0 0
\(377\) 7.07307i 0.364282i
\(378\) 0 0
\(379\) −10.5288 −0.540826 −0.270413 0.962744i \(-0.587160\pi\)
−0.270413 + 0.962744i \(0.587160\pi\)
\(380\) 0 0
\(381\) 17.5793 0.900616
\(382\) 0 0
\(383\) 7.90669 0.404013 0.202007 0.979384i \(-0.435254\pi\)
0.202007 + 0.979384i \(0.435254\pi\)
\(384\) 0 0
\(385\) −5.86315 + 0.106344i −0.298814 + 0.00541979i
\(386\) 0 0
\(387\) −9.00086 −0.457540
\(388\) 0 0
\(389\) 9.18004i 0.465446i −0.972543 0.232723i \(-0.925236\pi\)
0.972543 0.232723i \(-0.0747636\pi\)
\(390\) 0 0
\(391\) 0.656411 0.0331961
\(392\) 0 0
\(393\) 13.0902 0.660312
\(394\) 0 0
\(395\) 51.0120i 2.56669i
\(396\) 0 0
\(397\) −24.0822 −1.20865 −0.604325 0.796738i \(-0.706557\pi\)
−0.604325 + 0.796738i \(0.706557\pi\)
\(398\) 0 0
\(399\) 20.3886 0.369801i 1.02070 0.0185132i
\(400\) 0 0
\(401\) −28.7217 −1.43429 −0.717146 0.696923i \(-0.754552\pi\)
−0.717146 + 0.696923i \(0.754552\pi\)
\(402\) 0 0
\(403\) 10.3051 0.513333
\(404\) 0 0
\(405\) 15.1063 0.750637
\(406\) 0 0
\(407\) 5.80480i 0.287733i
\(408\) 0 0
\(409\) 17.5653i 0.868550i 0.900780 + 0.434275i \(0.142995\pi\)
−0.900780 + 0.434275i \(0.857005\pi\)
\(410\) 0 0
\(411\) 4.89258i 0.241333i
\(412\) 0 0
\(413\) 0.354103 + 19.5231i 0.0174243 + 0.960667i
\(414\) 0 0
\(415\) 12.6719i 0.622038i
\(416\) 0 0
\(417\) 19.2867 0.944471
\(418\) 0 0
\(419\) 30.2826i 1.47940i 0.672935 + 0.739702i \(0.265033\pi\)
−0.672935 + 0.739702i \(0.734967\pi\)
\(420\) 0 0
\(421\) 29.1955i 1.42290i −0.702736 0.711450i \(-0.748039\pi\)
0.702736 0.711450i \(-0.251961\pi\)
\(422\) 0 0
\(423\) −2.89681 −0.140848
\(424\) 0 0
\(425\) 0.602856i 0.0292428i
\(426\) 0 0
\(427\) −29.9779 + 0.543730i −1.45073 + 0.0263129i
\(428\) 0 0
\(429\) 0.998733i 0.0482193i
\(430\) 0 0
\(431\) 25.5623i 1.23129i 0.788023 + 0.615645i \(0.211105\pi\)
−0.788023 + 0.615645i \(0.788895\pi\)
\(432\) 0 0
\(433\) 22.4517i 1.07896i 0.841998 + 0.539481i \(0.181379\pi\)
−0.841998 + 0.539481i \(0.818621\pi\)
\(434\) 0 0
\(435\) −30.9244 −1.48271
\(436\) 0 0
\(437\) −28.1179 −1.34506
\(438\) 0 0
\(439\) −22.3455 −1.06649 −0.533245 0.845961i \(-0.679028\pi\)
−0.533245 + 0.845961i \(0.679028\pi\)
\(440\) 0 0
\(441\) 7.20452 0.261433i 0.343073 0.0124492i
\(442\) 0 0
\(443\) −21.6237 −1.02737 −0.513686 0.857978i \(-0.671721\pi\)
−0.513686 + 0.857978i \(0.671721\pi\)
\(444\) 0 0
\(445\) 7.02971i 0.333240i
\(446\) 0 0
\(447\) −0.107098 −0.00506558
\(448\) 0 0
\(449\) −2.89960 −0.136840 −0.0684202 0.997657i \(-0.521796\pi\)
−0.0684202 + 0.997657i \(0.521796\pi\)
\(450\) 0 0
\(451\) 0.0717536i 0.00337874i
\(452\) 0 0
\(453\) 2.50551 0.117719
\(454\) 0 0
\(455\) 8.23998 0.149454i 0.386296 0.00700652i
\(456\) 0 0
\(457\) 10.5445 0.493253 0.246626 0.969111i \(-0.420678\pi\)
0.246626 + 0.969111i \(0.420678\pi\)
\(458\) 0 0
\(459\) −0.725095 −0.0338445
\(460\) 0 0
\(461\) −14.9774 −0.697566 −0.348783 0.937203i \(-0.613405\pi\)
−0.348783 + 0.937203i \(0.613405\pi\)
\(462\) 0 0
\(463\) 7.38989i 0.343438i −0.985146 0.171719i \(-0.945068\pi\)
0.985146 0.171719i \(-0.0549320\pi\)
\(464\) 0 0
\(465\) 45.0552i 2.08938i
\(466\) 0 0
\(467\) 19.0398i 0.881058i −0.897738 0.440529i \(-0.854791\pi\)
0.897738 0.440529i \(-0.145209\pi\)
\(468\) 0 0
\(469\) 38.3722 0.695983i 1.77186 0.0321375i
\(470\) 0 0
\(471\) 10.5576i 0.486467i
\(472\) 0 0
\(473\) −6.21865 −0.285934
\(474\) 0 0
\(475\) 25.8239i 1.18488i
\(476\) 0 0
\(477\) 8.78716i 0.402336i
\(478\) 0 0
\(479\) −6.93161 −0.316713 −0.158357 0.987382i \(-0.550620\pi\)
−0.158357 + 0.987382i \(0.550620\pi\)
\(480\) 0 0
\(481\) 8.15798i 0.371972i
\(482\) 0 0
\(483\) 19.0126 0.344845i 0.865103 0.0156910i
\(484\) 0 0
\(485\) 15.9842i 0.725806i
\(486\) 0 0
\(487\) 36.0554i 1.63383i −0.576760 0.816914i \(-0.695683\pi\)
0.576760 0.816914i \(-0.304317\pi\)
\(488\) 0 0
\(489\) 7.97540i 0.360660i
\(490\) 0 0
\(491\) 28.4173 1.28245 0.641227 0.767352i \(-0.278426\pi\)
0.641227 + 0.767352i \(0.278426\pi\)
\(492\) 0 0
\(493\) 0.906702 0.0408358
\(494\) 0 0
\(495\) −2.28269 −0.102599
\(496\) 0 0
\(497\) 0.404602 + 22.3072i 0.0181489 + 1.00062i
\(498\) 0 0
\(499\) −16.1378 −0.722429 −0.361214 0.932483i \(-0.617638\pi\)
−0.361214 + 0.932483i \(0.617638\pi\)
\(500\) 0 0
\(501\) 13.6885i 0.611559i
\(502\) 0 0
\(503\) 15.8090 0.704888 0.352444 0.935833i \(-0.385351\pi\)
0.352444 + 0.935833i \(0.385351\pi\)
\(504\) 0 0
\(505\) −50.0394 −2.22672
\(506\) 0 0
\(507\) 1.40360i 0.0623363i
\(508\) 0 0
\(509\) 12.3255 0.546320 0.273160 0.961969i \(-0.411931\pi\)
0.273160 + 0.961969i \(0.411931\pi\)
\(510\) 0 0
\(511\) −0.414017 22.8263i −0.0183150 1.00978i
\(512\) 0 0
\(513\) 31.0601 1.37134
\(514\) 0 0
\(515\) 13.6462 0.601322
\(516\) 0 0
\(517\) −2.00139 −0.0880211
\(518\) 0 0
\(519\) 3.57824i 0.157067i
\(520\) 0 0
\(521\) 32.9577i 1.44390i 0.691945 + 0.721950i \(0.256754\pi\)
−0.691945 + 0.721950i \(0.743246\pi\)
\(522\) 0 0
\(523\) 2.21195i 0.0967220i 0.998830 + 0.0483610i \(0.0153998\pi\)
−0.998830 + 0.0483610i \(0.984600\pi\)
\(524\) 0 0
\(525\) −0.316710 17.4614i −0.0138223 0.762078i
\(526\) 0 0
\(527\) 1.32102i 0.0575444i
\(528\) 0 0
\(529\) −3.22035 −0.140015
\(530\) 0 0
\(531\) 7.60087i 0.329850i
\(532\) 0 0
\(533\) 0.100841i 0.00436792i
\(534\) 0 0
\(535\) −8.59440 −0.371568
\(536\) 0 0
\(537\) 9.51969i 0.410805i
\(538\) 0 0
\(539\) 4.97757 0.180623i 0.214399 0.00777997i
\(540\) 0 0
\(541\) 11.3965i 0.489976i −0.969526 0.244988i \(-0.921216\pi\)
0.969526 0.244988i \(-0.0787840\pi\)
\(542\) 0 0
\(543\) 3.03198i 0.130115i
\(544\) 0 0
\(545\) 45.1589i 1.93440i
\(546\) 0 0
\(547\) −20.8868 −0.893053 −0.446527 0.894770i \(-0.647339\pi\)
−0.446527 + 0.894770i \(0.647339\pi\)
\(548\) 0 0
\(549\) −11.6712 −0.498115
\(550\) 0 0
\(551\) −38.8394 −1.65461
\(552\) 0 0
\(553\) 0.785748 + 43.3213i 0.0334134 + 1.84221i
\(554\) 0 0
\(555\) 35.6678 1.51401
\(556\) 0 0
\(557\) 36.5235i 1.54755i −0.633460 0.773776i \(-0.718366\pi\)
0.633460 0.773776i \(-0.281634\pi\)
\(558\) 0 0
\(559\) 8.73959 0.369645
\(560\) 0 0
\(561\) −0.128028 −0.00540536
\(562\) 0 0
\(563\) 21.2293i 0.894707i 0.894357 + 0.447354i \(0.147633\pi\)
−0.894357 + 0.447354i \(0.852367\pi\)
\(564\) 0 0
\(565\) −30.0025 −1.26222
\(566\) 0 0
\(567\) −12.8288 + 0.232685i −0.538759 + 0.00977185i
\(568\) 0 0
\(569\) −18.2538 −0.765239 −0.382619 0.923906i \(-0.624978\pi\)
−0.382619 + 0.923906i \(0.624978\pi\)
\(570\) 0 0
\(571\) −4.06655 −0.170180 −0.0850899 0.996373i \(-0.527118\pi\)
−0.0850899 + 0.996373i \(0.527118\pi\)
\(572\) 0 0
\(573\) 12.9427 0.540690
\(574\) 0 0
\(575\) 24.0811i 1.00425i
\(576\) 0 0
\(577\) 32.8326i 1.36684i 0.730025 + 0.683420i \(0.239508\pi\)
−0.730025 + 0.683420i \(0.760492\pi\)
\(578\) 0 0
\(579\) 18.7397i 0.778796i
\(580\) 0 0
\(581\) 0.195187 + 10.7614i 0.00809774 + 0.446459i
\(582\) 0 0
\(583\) 6.07100i 0.251435i
\(584\) 0 0
\(585\) 3.20805 0.132637
\(586\) 0 0
\(587\) 34.6043i 1.42827i 0.700008 + 0.714135i \(0.253180\pi\)
−0.700008 + 0.714135i \(0.746820\pi\)
\(588\) 0 0
\(589\) 56.5869i 2.33162i
\(590\) 0 0
\(591\) 34.6350 1.42469
\(592\) 0 0
\(593\) 30.7831i 1.26411i −0.774923 0.632056i \(-0.782211\pi\)
0.774923 0.632056i \(-0.217789\pi\)
\(594\) 0 0
\(595\) 0.0191587 + 1.05629i 0.000785428 + 0.0433036i
\(596\) 0 0
\(597\) 22.5297i 0.922080i
\(598\) 0 0
\(599\) 18.1200i 0.740363i 0.928959 + 0.370181i \(0.120704\pi\)
−0.928959 + 0.370181i \(0.879296\pi\)
\(600\) 0 0
\(601\) 2.44947i 0.0999158i 0.998751 + 0.0499579i \(0.0159087\pi\)
−0.998751 + 0.0499579i \(0.984091\pi\)
\(602\) 0 0
\(603\) 14.9393 0.608377
\(604\) 0 0
\(605\) 32.6872 1.32892
\(606\) 0 0
\(607\) 17.5171 0.710998 0.355499 0.934677i \(-0.384311\pi\)
0.355499 + 0.934677i \(0.384311\pi\)
\(608\) 0 0
\(609\) 26.2622 0.476335i 1.06420 0.0193021i
\(610\) 0 0
\(611\) 2.81273 0.113791
\(612\) 0 0
\(613\) 12.6633i 0.511465i −0.966748 0.255732i \(-0.917683\pi\)
0.966748 0.255732i \(-0.0823166\pi\)
\(614\) 0 0
\(615\) 0.440892 0.0177785
\(616\) 0 0
\(617\) −39.5883 −1.59376 −0.796882 0.604135i \(-0.793519\pi\)
−0.796882 + 0.604135i \(0.793519\pi\)
\(618\) 0 0
\(619\) 14.7549i 0.593049i 0.955025 + 0.296525i \(0.0958277\pi\)
−0.955025 + 0.296525i \(0.904172\pi\)
\(620\) 0 0
\(621\) 28.9639 1.16228
\(622\) 0 0
\(623\) 0.108280 + 5.96989i 0.00433815 + 0.239179i
\(624\) 0 0
\(625\) −26.3977 −1.05591
\(626\) 0 0
\(627\) 5.48420 0.219018
\(628\) 0 0
\(629\) −1.04578 −0.0416979
\(630\) 0 0
\(631\) 24.2732i 0.966303i −0.875537 0.483151i \(-0.839492\pi\)
0.875537 0.483151i \(-0.160508\pi\)
\(632\) 0 0
\(633\) 11.5754i 0.460082i
\(634\) 0 0
\(635\) 39.0127i 1.54817i
\(636\) 0 0
\(637\) −6.99540 + 0.253844i −0.277168 + 0.0100577i
\(638\) 0 0
\(639\) 8.68482i 0.343566i
\(640\) 0 0
\(641\) −7.40358 −0.292424 −0.146212 0.989253i \(-0.546708\pi\)
−0.146212 + 0.989253i \(0.546708\pi\)
\(642\) 0 0
\(643\) 33.4236i 1.31810i 0.752101 + 0.659048i \(0.229041\pi\)
−0.752101 + 0.659048i \(0.770959\pi\)
\(644\) 0 0
\(645\) 38.2107i 1.50454i
\(646\) 0 0
\(647\) −34.4335 −1.35372 −0.676861 0.736111i \(-0.736660\pi\)
−0.676861 + 0.736111i \(0.736660\pi\)
\(648\) 0 0
\(649\) 5.25140i 0.206136i
\(650\) 0 0
\(651\) 0.693994 + 38.2625i 0.0271998 + 1.49963i
\(652\) 0 0
\(653\) 3.01244i 0.117886i 0.998261 + 0.0589430i \(0.0187730\pi\)
−0.998261 + 0.0589430i \(0.981227\pi\)
\(654\) 0 0
\(655\) 29.0502i 1.13509i
\(656\) 0 0
\(657\) 8.88692i 0.346712i
\(658\) 0 0
\(659\) −49.8643 −1.94244 −0.971218 0.238191i \(-0.923446\pi\)
−0.971218 + 0.238191i \(0.923446\pi\)
\(660\) 0 0
\(661\) −13.2329 −0.514701 −0.257350 0.966318i \(-0.582849\pi\)
−0.257350 + 0.966318i \(0.582849\pi\)
\(662\) 0 0
\(663\) 0.179929 0.00698787
\(664\) 0 0
\(665\) −0.820677 45.2471i −0.0318245 1.75461i
\(666\) 0 0
\(667\) −36.2182 −1.40238
\(668\) 0 0
\(669\) 15.5545i 0.601373i
\(670\) 0 0
\(671\) −8.06358 −0.311291
\(672\) 0 0
\(673\) 44.0069 1.69634 0.848170 0.529724i \(-0.177704\pi\)
0.848170 + 0.529724i \(0.177704\pi\)
\(674\) 0 0
\(675\) 26.6008i 1.02387i
\(676\) 0 0
\(677\) −5.69662 −0.218939 −0.109470 0.993990i \(-0.534915\pi\)
−0.109470 + 0.993990i \(0.534915\pi\)
\(678\) 0 0
\(679\) 0.246208 + 13.5744i 0.00944860 + 0.520937i
\(680\) 0 0
\(681\) −18.3749 −0.704128
\(682\) 0 0
\(683\) −21.1458 −0.809121 −0.404560 0.914511i \(-0.632575\pi\)
−0.404560 + 0.914511i \(0.632575\pi\)
\(684\) 0 0
\(685\) −10.8578 −0.414855
\(686\) 0 0
\(687\) 37.5364i 1.43210i
\(688\) 0 0
\(689\) 8.53210i 0.325047i
\(690\) 0 0
\(691\) 32.1264i 1.22215i −0.791575 0.611073i \(-0.790738\pi\)
0.791575 0.611073i \(-0.209262\pi\)
\(692\) 0 0
\(693\) 1.93854 0.0351607i 0.0736391 0.00133564i
\(694\) 0 0
\(695\) 42.8017i 1.62356i
\(696\) 0 0
\(697\) −0.0129269 −0.000489642
\(698\) 0 0
\(699\) 28.3956i 1.07402i
\(700\) 0 0
\(701\) 27.9007i 1.05379i −0.849929 0.526897i \(-0.823355\pi\)
0.849929 0.526897i \(-0.176645\pi\)
\(702\) 0 0
\(703\) 44.7968 1.68954
\(704\) 0 0
\(705\) 12.2976i 0.463155i
\(706\) 0 0
\(707\) 42.4953 0.770767i 1.59820 0.0289877i
\(708\) 0 0
\(709\) 9.64782i 0.362331i −0.983453 0.181166i \(-0.942013\pi\)
0.983453 0.181166i \(-0.0579870\pi\)
\(710\) 0 0
\(711\) 16.8662i 0.632531i
\(712\) 0 0
\(713\) 52.7680i 1.97618i
\(714\) 0 0
\(715\) 2.21643 0.0828897
\(716\) 0 0
\(717\) −19.3460 −0.722490
\(718\) 0 0
\(719\) 7.10932 0.265133 0.132566 0.991174i \(-0.457678\pi\)
0.132566 + 0.991174i \(0.457678\pi\)
\(720\) 0 0
\(721\) −11.5888 + 0.210195i −0.431591 + 0.00782806i
\(722\) 0 0
\(723\) −17.8890 −0.665299
\(724\) 0 0
\(725\) 33.2633i 1.23537i
\(726\) 0 0
\(727\) 31.7118 1.17613 0.588063 0.808815i \(-0.299891\pi\)
0.588063 + 0.808815i \(0.299891\pi\)
\(728\) 0 0
\(729\) −28.8126 −1.06713
\(730\) 0 0
\(731\) 1.12033i 0.0414371i
\(732\) 0 0
\(733\) 3.95576 0.146109 0.0730546 0.997328i \(-0.476725\pi\)
0.0730546 + 0.997328i \(0.476725\pi\)
\(734\) 0 0
\(735\) 1.10984 + 30.5848i 0.0409371 + 1.12814i
\(736\) 0 0
\(737\) 10.3215 0.380198
\(738\) 0 0
\(739\) −4.79871 −0.176523 −0.0882617 0.996097i \(-0.528131\pi\)
−0.0882617 + 0.996097i \(0.528131\pi\)
\(740\) 0 0
\(741\) −7.70742 −0.283139
\(742\) 0 0
\(743\) 11.6943i 0.429021i 0.976722 + 0.214511i \(0.0688157\pi\)
−0.976722 + 0.214511i \(0.931184\pi\)
\(744\) 0 0
\(745\) 0.237677i 0.00870781i
\(746\) 0 0
\(747\) 4.18972i 0.153294i
\(748\) 0 0
\(749\) 7.29868 0.132381i 0.266688 0.00483710i
\(750\) 0 0
\(751\) 4.77337i 0.174183i 0.996200 + 0.0870914i \(0.0277572\pi\)
−0.996200 + 0.0870914i \(0.972243\pi\)
\(752\) 0 0
\(753\) 31.5356 1.14922
\(754\) 0 0
\(755\) 5.56033i 0.202361i
\(756\) 0 0
\(757\) 44.2310i 1.60760i −0.594898 0.803801i \(-0.702808\pi\)
0.594898 0.803801i \(-0.297192\pi\)
\(758\) 0 0
\(759\) 5.11409 0.185630
\(760\) 0 0
\(761\) 19.9559i 0.723401i 0.932294 + 0.361700i \(0.117804\pi\)
−0.932294 + 0.361700i \(0.882196\pi\)
\(762\) 0 0
\(763\) −0.695592 38.3506i −0.0251821 1.38839i
\(764\) 0 0
\(765\) 0.411243i 0.0148685i
\(766\) 0 0
\(767\) 7.38024i 0.266485i
\(768\) 0 0
\(769\) 12.6775i 0.457162i 0.973525 + 0.228581i \(0.0734086\pi\)
−0.973525 + 0.228581i \(0.926591\pi\)
\(770\) 0 0
\(771\) −20.1066 −0.724122
\(772\) 0 0
\(773\) −7.32173 −0.263344 −0.131672 0.991293i \(-0.542035\pi\)
−0.131672 + 0.991293i \(0.542035\pi\)
\(774\) 0 0
\(775\) −48.4628 −1.74084
\(776\) 0 0
\(777\) −30.2904 + 0.549398i −1.08666 + 0.0197095i
\(778\) 0 0
\(779\) 0.553736 0.0198397
\(780\) 0 0
\(781\) 6.00030i 0.214708i
\(782\) 0 0
\(783\) 40.0080 1.42977
\(784\) 0 0
\(785\) 23.4297 0.836244
\(786\) 0 0
\(787\) 50.2628i 1.79168i 0.444381 + 0.895838i \(0.353424\pi\)
−0.444381 + 0.895838i \(0.646576\pi\)
\(788\) 0 0
\(789\) −18.7636 −0.668003
\(790\) 0 0
\(791\) 25.4793 0.462135i 0.905939 0.0164316i
\(792\) 0 0
\(793\) 11.3324 0.402427
\(794\) 0 0
\(795\) −37.3035 −1.32302
\(796\) 0 0
\(797\) 50.0051 1.77127 0.885636 0.464381i \(-0.153723\pi\)
0.885636 + 0.464381i \(0.153723\pi\)
\(798\) 0 0
\(799\) 0.360565i 0.0127559i
\(800\) 0 0
\(801\) 2.32424i 0.0821231i
\(802\) 0 0
\(803\) 6.13992i 0.216673i
\(804\) 0 0
\(805\) −0.765293 42.1935i −0.0269730 1.48713i
\(806\) 0 0
\(807\) 18.6188i 0.655414i
\(808\) 0 0
\(809\) −18.2457 −0.641483 −0.320742 0.947167i \(-0.603932\pi\)
−0.320742 + 0.947167i \(0.603932\pi\)
\(810\) 0 0
\(811\) 49.8112i 1.74911i −0.484929 0.874554i \(-0.661154\pi\)
0.484929 0.874554i \(-0.338846\pi\)
\(812\) 0 0
\(813\) 20.9654i 0.735289i
\(814\) 0 0
\(815\) −17.6993 −0.619980
\(816\) 0 0
\(817\) 47.9905i 1.67898i
\(818\) 0 0
\(819\) −2.72440 + 0.0494143i −0.0951982 + 0.00172668i
\(820\) 0 0
\(821\) 23.2872i 0.812727i −0.913711 0.406364i \(-0.866797\pi\)
0.913711 0.406364i \(-0.133203\pi\)
\(822\) 0 0
\(823\) 46.7989i 1.63131i 0.578540 + 0.815654i \(0.303623\pi\)
−0.578540 + 0.815654i \(0.696377\pi\)
\(824\) 0 0
\(825\) 4.69685i 0.163523i
\(826\) 0 0
\(827\) 33.8764 1.17800 0.588998 0.808134i \(-0.299522\pi\)
0.588998 + 0.808134i \(0.299522\pi\)
\(828\) 0 0
\(829\) 1.54700 0.0537296 0.0268648 0.999639i \(-0.491448\pi\)
0.0268648 + 0.999639i \(0.491448\pi\)
\(830\) 0 0
\(831\) −2.91658 −0.101175
\(832\) 0 0
\(833\) −0.0325405 0.896745i −0.00112746 0.0310704i
\(834\) 0 0
\(835\) −30.3781 −1.05128
\(836\) 0 0
\(837\) 58.2895i 2.01478i
\(838\) 0 0
\(839\) −12.5119 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(840\) 0 0
\(841\) −21.0284 −0.725116
\(842\) 0 0
\(843\) 10.7521i 0.370321i
\(844\) 0 0
\(845\) −3.11493 −0.107157
\(846\) 0 0
\(847\) −27.7591 + 0.503487i −0.953816 + 0.0173000i
\(848\) 0 0
\(849\) 6.67336 0.229029
\(850\) 0 0
\(851\) 41.7736 1.43198
\(852\) 0 0
\(853\) −3.10292 −0.106242 −0.0531210 0.998588i \(-0.516917\pi\)
−0.0531210 + 0.998588i \(0.516917\pi\)
\(854\) 0 0
\(855\) 17.6159i 0.602452i
\(856\) 0 0
\(857\) 35.6654i 1.21831i −0.793052 0.609154i \(-0.791509\pi\)
0.793052 0.609154i \(-0.208491\pi\)
\(858\) 0 0
\(859\) 0.510482i 0.0174174i −0.999962 0.00870870i \(-0.997228\pi\)
0.999962 0.00870870i \(-0.00277210\pi\)
\(860\) 0 0
\(861\) −0.374422 + 0.00679115i −0.0127603 + 0.000231442i
\(862\) 0 0
\(863\) 36.6222i 1.24663i −0.781969 0.623317i \(-0.785785\pi\)
0.781969 0.623317i \(-0.214215\pi\)
\(864\) 0 0
\(865\) 7.94096 0.270001
\(866\) 0 0
\(867\) 23.8382i 0.809588i
\(868\) 0 0
\(869\) 11.6528i 0.395293i
\(870\) 0 0
\(871\) −14.5057 −0.491507
\(872\) 0 0
\(873\) 5.28489i 0.178866i
\(874\) 0 0
\(875\) 2.44888 0.0444171i 0.0827874 0.00150157i
\(876\) 0 0
\(877\) 1.65400i 0.0558515i −0.999610 0.0279257i \(-0.991110\pi\)
0.999610 0.0279257i \(-0.00889020\pi\)
\(878\) 0 0
\(879\) 28.7296i 0.969026i
\(880\) 0 0
\(881\) 17.3400i 0.584199i −0.956388 0.292099i \(-0.905646\pi\)
0.956388 0.292099i \(-0.0943538\pi\)
\(882\) 0 0
\(883\) −18.7952 −0.632510 −0.316255 0.948674i \(-0.602426\pi\)
−0.316255 + 0.948674i \(0.602426\pi\)
\(884\) 0 0
\(885\) −32.2674 −1.08466
\(886\) 0 0
\(887\) −1.74179 −0.0584836 −0.0292418 0.999572i \(-0.509309\pi\)
−0.0292418 + 0.999572i \(0.509309\pi\)
\(888\) 0 0
\(889\) 0.600921 + 33.1310i 0.0201542 + 1.11118i
\(890\) 0 0
\(891\) −3.45075 −0.115604
\(892\) 0 0
\(893\) 15.4451i 0.516851i
\(894\) 0 0
\(895\) 21.1265 0.706180
\(896\) 0 0
\(897\) −7.18727 −0.239976
\(898\) 0 0
\(899\) 72.8886i 2.43097i
\(900\) 0 0
\(901\) 1.09374 0.0364376
\(902\) 0 0
\(903\) 0.588567 + 32.4499i 0.0195863 + 1.07987i
\(904\) 0 0
\(905\) −6.72869 −0.223669
\(906\) 0 0
\(907\) 6.46569 0.214690 0.107345 0.994222i \(-0.465765\pi\)
0.107345 + 0.994222i \(0.465765\pi\)
\(908\) 0 0
\(909\) 16.5446 0.548750
\(910\) 0 0
\(911\) 39.3511i 1.30376i −0.758321 0.651881i \(-0.773980\pi\)
0.758321 0.651881i \(-0.226020\pi\)
\(912\) 0 0
\(913\) 2.89466i 0.0957991i
\(914\) 0 0
\(915\) 49.5469i 1.63797i
\(916\) 0 0
\(917\) 0.447466 + 24.6705i 0.0147766 + 0.814692i
\(918\) 0 0
\(919\) 1.51489i 0.0499716i −0.999688 0.0249858i \(-0.992046\pi\)
0.999688 0.0249858i \(-0.00795405\pi\)
\(920\) 0 0
\(921\) −0.978041 −0.0322275
\(922\) 0 0
\(923\) 8.43273i 0.277567i
\(924\) 0 0
\(925\) 38.3654i 1.26145i
\(926\) 0 0
\(927\) −4.51185 −0.148189
\(928\) 0 0
\(929\) 29.8691i 0.979975i −0.871729 0.489987i \(-0.837001\pi\)
0.871729 0.489987i \(-0.162999\pi\)
\(930\) 0 0
\(931\) 1.39390 + 38.4128i 0.0456832 + 1.25893i
\(932\) 0 0
\(933\) 30.0400i 0.983464i
\(934\) 0 0
\(935\) 0.284125i 0.00929190i
\(936\) 0 0
\(937\) 35.3032i 1.15330i 0.816990 + 0.576652i \(0.195641\pi\)
−0.816990 + 0.576652i \(0.804359\pi\)
\(938\) 0 0
\(939\) −4.28773 −0.139925
\(940\) 0 0
\(941\) −40.5751 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(942\) 0 0
\(943\) 0.516366 0.0168152
\(944\) 0 0
\(945\) 0.845370 + 46.6084i 0.0274999 + 1.51617i
\(946\) 0 0
\(947\) −2.97693 −0.0967373 −0.0483687 0.998830i \(-0.515402\pi\)
−0.0483687 + 0.998830i \(0.515402\pi\)
\(948\) 0 0
\(949\) 8.62895i 0.280108i
\(950\) 0 0
\(951\) 37.6682 1.22148
\(952\) 0 0
\(953\) 31.5607 1.02235 0.511175 0.859477i \(-0.329210\pi\)
0.511175 + 0.859477i \(0.329210\pi\)
\(954\) 0 0
\(955\) 28.7230i 0.929453i
\(956\) 0 0
\(957\) 7.06411 0.228350
\(958\) 0 0
\(959\) 9.22084 0.167245i 0.297757 0.00540062i
\(960\) 0 0
\(961\) 75.1948 2.42564
\(962\) 0 0
\(963\) 2.84158 0.0915686
\(964\) 0 0
\(965\) 41.5879 1.33876
\(966\) 0 0
\(967\) 16.6169i 0.534365i 0.963646 + 0.267182i \(0.0860926\pi\)
−0.963646 + 0.267182i \(0.913907\pi\)
\(968\) 0 0
\(969\) 0.988019i 0.0317398i
\(970\) 0 0
\(971\) 22.3652i 0.717733i −0.933389 0.358866i \(-0.883163\pi\)
0.933389 0.358866i \(-0.116837\pi\)
\(972\) 0 0
\(973\) 0.659283 + 36.3488i 0.0211356 + 1.16529i
\(974\) 0 0
\(975\) 6.60088i 0.211397i
\(976\) 0 0
\(977\) 46.7904 1.49696 0.748480 0.663158i \(-0.230784\pi\)
0.748480 + 0.663158i \(0.230784\pi\)
\(978\) 0 0
\(979\) 1.60581i 0.0513218i
\(980\) 0 0
\(981\) 14.9310i 0.476709i
\(982\) 0 0
\(983\) 9.87533 0.314974 0.157487 0.987521i \(-0.449661\pi\)
0.157487 + 0.987521i \(0.449661\pi\)
\(984\) 0 0
\(985\) 76.8634i 2.44907i
\(986\) 0 0
\(987\) 0.189423 + 10.4436i 0.00602939 + 0.332423i
\(988\) 0 0
\(989\) 44.7518i 1.42302i
\(990\) 0 0
\(991\) 6.15361i 0.195476i 0.995212 + 0.0977379i \(0.0311607\pi\)
−0.995212 + 0.0977379i \(0.968839\pi\)
\(992\) 0 0
\(993\) 24.7880i 0.786624i
\(994\) 0 0
\(995\) 49.9988 1.58507
\(996\) 0 0
\(997\) −5.86468 −0.185736 −0.0928682 0.995678i \(-0.529604\pi\)
−0.0928682 + 0.995678i \(0.529604\pi\)
\(998\) 0 0
\(999\) −46.1446 −1.45995
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.15 48
4.3 odd 2 728.2.h.a.27.16 yes 48
7.6 odd 2 2912.2.h.b.2575.34 48
8.3 odd 2 2912.2.h.b.2575.15 48
8.5 even 2 728.2.h.b.27.15 yes 48
28.27 even 2 728.2.h.b.27.16 yes 48
56.13 odd 2 728.2.h.a.27.15 48
56.27 even 2 inner 2912.2.h.a.2575.34 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.15 48 56.13 odd 2
728.2.h.a.27.16 yes 48 4.3 odd 2
728.2.h.b.27.15 yes 48 8.5 even 2
728.2.h.b.27.16 yes 48 28.27 even 2
2912.2.h.a.2575.15 48 1.1 even 1 trivial
2912.2.h.a.2575.34 48 56.27 even 2 inner
2912.2.h.b.2575.15 48 8.3 odd 2
2912.2.h.b.2575.34 48 7.6 odd 2