Properties

Label 728.2.h.a.27.15
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.15
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.a.27.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.635480 - 1.26339i) q^{2} -1.40360i q^{3} +(-1.19233 + 1.60572i) q^{4} -3.11493 q^{5} +(-1.77331 + 0.891962i) q^{6} +(-2.64532 - 0.0479799i) q^{7} +(2.78636 + 0.485980i) q^{8} +1.02989 q^{9} +(1.97948 + 3.93539i) q^{10} -0.711549 q^{11} +(2.25380 + 1.67356i) q^{12} -1.00000 q^{13} +(1.62043 + 3.37257i) q^{14} +4.37213i q^{15} +(-1.15669 - 3.82911i) q^{16} +0.128191i q^{17} +(-0.654477 - 1.30116i) q^{18} +5.49116i q^{19} +(3.71403 - 5.00172i) q^{20} +(-0.0673448 + 3.71298i) q^{21} +(0.452175 + 0.898967i) q^{22} +5.12058i q^{23} +(0.682124 - 3.91095i) q^{24} +4.70280 q^{25} +(0.635480 + 1.26339i) q^{26} -5.65638i q^{27} +(3.23114 - 4.19044i) q^{28} -7.07307i q^{29} +(5.52373 - 2.77840i) q^{30} +10.3051 q^{31} +(-4.10262 + 3.89468i) q^{32} +0.998733i q^{33} +(0.161955 - 0.0814626i) q^{34} +(8.23998 + 0.149454i) q^{35} +(-1.22798 + 1.65373i) q^{36} +8.15798i q^{37} +(6.93750 - 3.48952i) q^{38} +1.40360i q^{39} +(-8.67934 - 1.51379i) q^{40} +0.100841i q^{41} +(4.73375 - 2.27444i) q^{42} +8.73959 q^{43} +(0.848402 - 1.14255i) q^{44} -3.20805 q^{45} +(6.46931 - 3.25403i) q^{46} +2.81273 q^{47} +(-5.37455 + 1.62354i) q^{48} +(6.99540 + 0.253844i) q^{49} +(-2.98854 - 5.94150i) q^{50} +0.179929 q^{51} +(1.19233 - 1.60572i) q^{52} -8.53210i q^{53} +(-7.14624 + 3.59451i) q^{54} +2.21643 q^{55} +(-7.34750 - 1.41926i) q^{56} +7.70742 q^{57} +(-8.93608 + 4.49479i) q^{58} +7.38024i q^{59} +(-7.02043 - 5.21303i) q^{60} -11.3324 q^{61} +(-6.54867 - 13.0194i) q^{62} +(-2.72440 - 0.0494143i) q^{63} +(7.52765 + 2.70823i) q^{64} +3.11493 q^{65} +(1.26179 - 0.634675i) q^{66} -14.5057 q^{67} +(-0.205839 - 0.152846i) q^{68} +7.18727 q^{69} +(-5.04752 - 10.5053i) q^{70} +8.43273i q^{71} +(2.86966 + 0.500508i) q^{72} +8.62895i q^{73} +(10.3067 - 5.18423i) q^{74} -6.60088i q^{75} +(-8.81728 - 6.54728i) q^{76} +(1.88227 + 0.0341401i) q^{77} +(1.77331 - 0.891962i) q^{78} +16.3766i q^{79} +(3.60302 + 11.9274i) q^{80} -4.84963 q^{81} +(0.127402 - 0.0640826i) q^{82} +4.06811i q^{83} +(-5.88172 - 4.53524i) q^{84} -0.399306i q^{85} +(-5.55383 - 11.0416i) q^{86} -9.92780 q^{87} +(-1.98263 - 0.345799i) q^{88} -2.25678i q^{89} +(2.03865 + 4.05304i) q^{90} +(2.64532 + 0.0479799i) q^{91} +(-8.22223 - 6.10543i) q^{92} -14.4643i q^{93} +(-1.78743 - 3.55358i) q^{94} -17.1046i q^{95} +(5.46659 + 5.75845i) q^{96} -5.13148i q^{97} +(-4.12473 - 8.99926i) q^{98} -0.732821 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} - 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} + 10 q^{12} - 48 q^{13} + 10 q^{14} + 5 q^{16} - 15 q^{18} - 22 q^{20} - 6 q^{22} + 48 q^{25} - q^{26} + 4 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.635480 1.26339i −0.449352 0.893355i
\(3\) 1.40360i 0.810371i −0.914234 0.405186i \(-0.867207\pi\)
0.914234 0.405186i \(-0.132793\pi\)
\(4\) −1.19233 + 1.60572i −0.596166 + 0.802862i
\(5\) −3.11493 −1.39304 −0.696520 0.717537i \(-0.745269\pi\)
−0.696520 + 0.717537i \(0.745269\pi\)
\(6\) −1.77331 + 0.891962i −0.723949 + 0.364142i
\(7\) −2.64532 0.0479799i −0.999836 0.0181347i
\(8\) 2.78636 + 0.485980i 0.985128 + 0.171820i
\(9\) 1.02989 0.343298
\(10\) 1.97948 + 3.93539i 0.625965 + 1.24448i
\(11\) −0.711549 −0.214540 −0.107270 0.994230i \(-0.534211\pi\)
−0.107270 + 0.994230i \(0.534211\pi\)
\(12\) 2.25380 + 1.67356i 0.650616 + 0.483115i
\(13\) −1.00000 −0.277350
\(14\) 1.62043 + 3.37257i 0.433077 + 0.901357i
\(15\) 4.37213i 1.12888i
\(16\) −1.15669 3.82911i −0.289173 0.957277i
\(17\) 0.128191i 0.0310908i 0.999879 + 0.0155454i \(0.00494846\pi\)
−0.999879 + 0.0155454i \(0.995052\pi\)
\(18\) −0.654477 1.30116i −0.154262 0.306687i
\(19\) 5.49116i 1.25976i 0.776693 + 0.629879i \(0.216896\pi\)
−0.776693 + 0.629879i \(0.783104\pi\)
\(20\) 3.71403 5.00172i 0.830483 1.11842i
\(21\) −0.0673448 + 3.71298i −0.0146958 + 0.810238i
\(22\) 0.452175 + 0.898967i 0.0964040 + 0.191660i
\(23\) 5.12058i 1.06771i 0.845574 + 0.533857i \(0.179258\pi\)
−0.845574 + 0.533857i \(0.820742\pi\)
\(24\) 0.682124 3.91095i 0.139238 0.798320i
\(25\) 4.70280 0.940561
\(26\) 0.635480 + 1.26339i 0.124628 + 0.247772i
\(27\) 5.65638i 1.08857i
\(28\) 3.23114 4.19044i 0.610627 0.791918i
\(29\) 7.07307i 1.31344i −0.754136 0.656718i \(-0.771944\pi\)
0.754136 0.656718i \(-0.228056\pi\)
\(30\) 5.52373 2.77840i 1.00849 0.507264i
\(31\) 10.3051 1.85085 0.925424 0.378934i \(-0.123709\pi\)
0.925424 + 0.378934i \(0.123709\pi\)
\(32\) −4.10262 + 3.89468i −0.725247 + 0.688489i
\(33\) 0.998733i 0.173857i
\(34\) 0.161955 0.0814626i 0.0277751 0.0139707i
\(35\) 8.23998 + 0.149454i 1.39281 + 0.0252624i
\(36\) −1.22798 + 1.65373i −0.204663 + 0.275621i
\(37\) 8.15798i 1.34116i 0.741836 + 0.670582i \(0.233955\pi\)
−0.741836 + 0.670582i \(0.766045\pi\)
\(38\) 6.93750 3.48952i 1.12541 0.566075i
\(39\) 1.40360i 0.224757i
\(40\) −8.67934 1.51379i −1.37232 0.239352i
\(41\) 0.100841i 0.0157488i 0.999969 + 0.00787439i \(0.00250652\pi\)
−0.999969 + 0.00787439i \(0.997493\pi\)
\(42\) 4.73375 2.27444i 0.730434 0.350954i
\(43\) 8.73959 1.33278 0.666388 0.745605i \(-0.267840\pi\)
0.666388 + 0.745605i \(0.267840\pi\)
\(44\) 0.848402 1.14255i 0.127901 0.172246i
\(45\) −3.20805 −0.478228
\(46\) 6.46931 3.25403i 0.953848 0.479780i
\(47\) 2.81273 0.410278 0.205139 0.978733i \(-0.434235\pi\)
0.205139 + 0.978733i \(0.434235\pi\)
\(48\) −5.37455 + 1.62354i −0.775750 + 0.234338i
\(49\) 6.99540 + 0.253844i 0.999342 + 0.0362635i
\(50\) −2.98854 5.94150i −0.422643 0.840255i
\(51\) 0.179929 0.0251951
\(52\) 1.19233 1.60572i 0.165347 0.222674i
\(53\) 8.53210i 1.17197i −0.810321 0.585987i \(-0.800707\pi\)
0.810321 0.585987i \(-0.199293\pi\)
\(54\) −7.14624 + 3.59451i −0.972480 + 0.489151i
\(55\) 2.21643 0.298863
\(56\) −7.34750 1.41926i −0.981850 0.189657i
\(57\) 7.70742 1.02087
\(58\) −8.93608 + 4.49479i −1.17336 + 0.590195i
\(59\) 7.38024i 0.960825i 0.877043 + 0.480413i \(0.159513\pi\)
−0.877043 + 0.480413i \(0.840487\pi\)
\(60\) −7.02043 5.21303i −0.906334 0.672999i
\(61\) −11.3324 −1.45097 −0.725485 0.688238i \(-0.758384\pi\)
−0.725485 + 0.688238i \(0.758384\pi\)
\(62\) −6.54867 13.0194i −0.831682 1.65346i
\(63\) −2.72440 0.0494143i −0.343242 0.00622562i
\(64\) 7.52765 + 2.70823i 0.940956 + 0.338529i
\(65\) 3.11493 0.386360
\(66\) 1.26179 0.634675i 0.155316 0.0781231i
\(67\) −14.5057 −1.77215 −0.886077 0.463539i \(-0.846580\pi\)
−0.886077 + 0.463539i \(0.846580\pi\)
\(68\) −0.205839 0.152846i −0.0249616 0.0185353i
\(69\) 7.18727 0.865246
\(70\) −5.04752 10.5053i −0.603294 1.25563i
\(71\) 8.43273i 1.00078i 0.865800 + 0.500390i \(0.166810\pi\)
−0.865800 + 0.500390i \(0.833190\pi\)
\(72\) 2.86966 + 0.500508i 0.338193 + 0.0589855i
\(73\) 8.62895i 1.00994i 0.863136 + 0.504971i \(0.168497\pi\)
−0.863136 + 0.504971i \(0.831503\pi\)
\(74\) 10.3067 5.18423i 1.19813 0.602654i
\(75\) 6.60088i 0.762204i
\(76\) −8.81728 6.54728i −1.01141 0.751025i
\(77\) 1.88227 + 0.0341401i 0.214505 + 0.00389062i
\(78\) 1.77331 0.891962i 0.200787 0.100995i
\(79\) 16.3766i 1.84251i 0.388957 + 0.921256i \(0.372835\pi\)
−0.388957 + 0.921256i \(0.627165\pi\)
\(80\) 3.60302 + 11.9274i 0.402830 + 1.33352i
\(81\) −4.84963 −0.538848
\(82\) 0.127402 0.0640826i 0.0140692 0.00707674i
\(83\) 4.06811i 0.446533i 0.974757 + 0.223266i \(0.0716720\pi\)
−0.974757 + 0.223266i \(0.928328\pi\)
\(84\) −5.88172 4.53524i −0.641748 0.494835i
\(85\) 0.399306i 0.0433108i
\(86\) −5.55383 11.0416i −0.598885 1.19064i
\(87\) −9.92780 −1.06437
\(88\) −1.98263 0.345799i −0.211350 0.0368623i
\(89\) 2.25678i 0.239218i −0.992821 0.119609i \(-0.961836\pi\)
0.992821 0.119609i \(-0.0381641\pi\)
\(90\) 2.03865 + 4.05304i 0.214893 + 0.427228i
\(91\) 2.64532 + 0.0479799i 0.277304 + 0.00502966i
\(92\) −8.22223 6.10543i −0.857227 0.636535i
\(93\) 14.4643i 1.49987i
\(94\) −1.78743 3.55358i −0.184359 0.366524i
\(95\) 17.1046i 1.75489i
\(96\) 5.46659 + 5.75845i 0.557931 + 0.587720i
\(97\) 5.13148i 0.521023i −0.965471 0.260511i \(-0.916109\pi\)
0.965471 0.260511i \(-0.0838912\pi\)
\(98\) −4.12473 8.99926i −0.416660 0.909062i
\(99\) −0.732821 −0.0736513
\(100\) −5.60730 + 7.55140i −0.560730 + 0.755140i
\(101\) 16.0644 1.59846 0.799231 0.601023i \(-0.205240\pi\)
0.799231 + 0.601023i \(0.205240\pi\)
\(102\) −0.114341 0.227321i −0.0113215 0.0225082i
\(103\) 4.38089 0.431662 0.215831 0.976431i \(-0.430754\pi\)
0.215831 + 0.976431i \(0.430754\pi\)
\(104\) −2.78636 0.485980i −0.273225 0.0476543i
\(105\) 0.209775 11.5657i 0.0204719 1.12869i
\(106\) −10.7794 + 5.42197i −1.04699 + 0.526629i
\(107\) −2.75910 −0.266732 −0.133366 0.991067i \(-0.542579\pi\)
−0.133366 + 0.991067i \(0.542579\pi\)
\(108\) 9.08258 + 6.74428i 0.873971 + 0.648968i
\(109\) 14.4976i 1.38861i 0.719679 + 0.694307i \(0.244289\pi\)
−0.719679 + 0.694307i \(0.755711\pi\)
\(110\) −1.40849 2.80022i −0.134295 0.266991i
\(111\) 11.4506 1.08684
\(112\) 2.87610 + 10.1847i 0.271766 + 0.962363i
\(113\) 9.63185 0.906088 0.453044 0.891488i \(-0.350338\pi\)
0.453044 + 0.891488i \(0.350338\pi\)
\(114\) −4.89791 9.73751i −0.458731 0.912001i
\(115\) 15.9503i 1.48737i
\(116\) 11.3574 + 8.43344i 1.05451 + 0.783026i
\(117\) −1.02989 −0.0952138
\(118\) 9.32415 4.68999i 0.858358 0.431749i
\(119\) 0.00615058 0.339105i 0.000563823 0.0310857i
\(120\) −2.12477 + 12.1824i −0.193964 + 1.11209i
\(121\) −10.4937 −0.953973
\(122\) 7.20153 + 14.3173i 0.651996 + 1.29623i
\(123\) 0.141541 0.0127624
\(124\) −12.2871 + 16.5471i −1.10341 + 1.48597i
\(125\) 0.925743 0.0828010
\(126\) 1.66887 + 3.47339i 0.148675 + 0.309434i
\(127\) 12.5244i 1.11136i 0.831396 + 0.555681i \(0.187542\pi\)
−0.831396 + 0.555681i \(0.812458\pi\)
\(128\) −1.36210 11.2314i −0.120394 0.992726i
\(129\) 12.2669i 1.08004i
\(130\) −1.97948 3.93539i −0.173612 0.345156i
\(131\) 9.32611i 0.814826i 0.913244 + 0.407413i \(0.133569\pi\)
−0.913244 + 0.407413i \(0.866431\pi\)
\(132\) −1.60369 1.19082i −0.139583 0.103648i
\(133\) 0.263466 14.5259i 0.0228454 1.25955i
\(134\) 9.21808 + 18.3264i 0.796321 + 1.58316i
\(135\) 17.6192i 1.51642i
\(136\) −0.0622981 + 0.357186i −0.00534202 + 0.0306284i
\(137\) 3.48572 0.297806 0.148903 0.988852i \(-0.452426\pi\)
0.148903 + 0.988852i \(0.452426\pi\)
\(138\) −4.56736 9.08036i −0.388800 0.772971i
\(139\) 13.7408i 1.16548i 0.812659 + 0.582740i \(0.198019\pi\)
−0.812659 + 0.582740i \(0.801981\pi\)
\(140\) −10.0648 + 13.0529i −0.850628 + 1.10317i
\(141\) 3.94795i 0.332478i
\(142\) 10.6539 5.35883i 0.894052 0.449703i
\(143\) 0.711549 0.0595027
\(144\) −1.19127 3.94358i −0.0992727 0.328631i
\(145\) 22.0321i 1.82967i
\(146\) 10.9018 5.48353i 0.902237 0.453820i
\(147\) 0.356297 9.81877i 0.0293869 0.809838i
\(148\) −13.0995 9.72701i −1.07677 0.799555i
\(149\) 0.0763024i 0.00625094i 0.999995 + 0.00312547i \(0.000994869\pi\)
−0.999995 + 0.00312547i \(0.999005\pi\)
\(150\) −8.33951 + 4.19472i −0.680918 + 0.342498i
\(151\) 1.78506i 0.145266i 0.997359 + 0.0726329i \(0.0231402\pi\)
−0.997359 + 0.0726329i \(0.976860\pi\)
\(152\) −2.66859 + 15.3004i −0.216452 + 1.24102i
\(153\) 0.132023i 0.0106734i
\(154\) −1.15301 2.39975i −0.0929125 0.193377i
\(155\) −32.0996 −2.57831
\(156\) −2.25380 1.67356i −0.180448 0.133992i
\(157\) −7.52175 −0.600301 −0.300151 0.953892i \(-0.597037\pi\)
−0.300151 + 0.953892i \(0.597037\pi\)
\(158\) 20.6901 10.4070i 1.64602 0.827936i
\(159\) −11.9757 −0.949734
\(160\) 12.7794 12.1317i 1.01030 0.959092i
\(161\) 0.245685 13.5456i 0.0193627 1.06754i
\(162\) 3.08184 + 6.12700i 0.242132 + 0.481382i
\(163\) −5.68209 −0.445056 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(164\) −0.161923 0.120236i −0.0126441 0.00938888i
\(165\) 3.11099i 0.242190i
\(166\) 5.13962 2.58520i 0.398912 0.200650i
\(167\) −9.75242 −0.754665 −0.377332 0.926078i \(-0.623159\pi\)
−0.377332 + 0.926078i \(0.623159\pi\)
\(168\) −1.99208 + 10.3130i −0.153692 + 0.795663i
\(169\) 1.00000 0.0769231
\(170\) −0.504480 + 0.253751i −0.0386919 + 0.0194618i
\(171\) 5.65532i 0.432473i
\(172\) −10.4205 + 14.0334i −0.794555 + 1.07003i
\(173\) −2.54932 −0.193821 −0.0969106 0.995293i \(-0.530896\pi\)
−0.0969106 + 0.995293i \(0.530896\pi\)
\(174\) 6.30891 + 12.5427i 0.478277 + 0.950861i
\(175\) −12.4404 0.225640i −0.940406 0.0170568i
\(176\) 0.823044 + 2.72460i 0.0620393 + 0.205374i
\(177\) 10.3589 0.778625
\(178\) −2.85120 + 1.43414i −0.213706 + 0.107493i
\(179\) 6.78232 0.506934 0.253467 0.967344i \(-0.418429\pi\)
0.253467 + 0.967344i \(0.418429\pi\)
\(180\) 3.82506 5.15125i 0.285103 0.383951i
\(181\) 2.16014 0.160562 0.0802810 0.996772i \(-0.474418\pi\)
0.0802810 + 0.996772i \(0.474418\pi\)
\(182\) −1.62043 3.37257i −0.120114 0.249991i
\(183\) 15.9063i 1.17582i
\(184\) −2.48850 + 14.2678i −0.183455 + 1.05184i
\(185\) 25.4116i 1.86829i
\(186\) −18.2741 + 9.19174i −1.33992 + 0.673971i
\(187\) 0.0912140i 0.00667023i
\(188\) −3.35370 + 4.51646i −0.244594 + 0.329397i
\(189\) −0.271393 + 14.9629i −0.0197409 + 1.08839i
\(190\) −21.6098 + 10.8696i −1.56774 + 0.788565i
\(191\) 9.22106i 0.667212i 0.942713 + 0.333606i \(0.108266\pi\)
−0.942713 + 0.333606i \(0.891734\pi\)
\(192\) 3.80129 10.5658i 0.274334 0.762524i
\(193\) −13.3511 −0.961036 −0.480518 0.876985i \(-0.659551\pi\)
−0.480518 + 0.876985i \(0.659551\pi\)
\(194\) −6.48308 + 3.26095i −0.465458 + 0.234123i
\(195\) 4.37213i 0.313095i
\(196\) −8.74843 + 10.9300i −0.624888 + 0.780714i
\(197\) 24.6758i 1.75808i −0.476751 0.879038i \(-0.658186\pi\)
0.476751 0.879038i \(-0.341814\pi\)
\(198\) 0.465693 + 0.925842i 0.0330953 + 0.0657967i
\(199\) 16.0513 1.13785 0.568924 0.822390i \(-0.307360\pi\)
0.568924 + 0.822390i \(0.307360\pi\)
\(200\) 13.1037 + 2.28547i 0.926573 + 0.161607i
\(201\) 20.3603i 1.43610i
\(202\) −10.2086 20.2956i −0.718273 1.42799i
\(203\) −0.339366 + 18.7105i −0.0238188 + 1.31322i
\(204\) −0.214535 + 0.288916i −0.0150205 + 0.0202282i
\(205\) 0.314114i 0.0219387i
\(206\) −2.78397 5.53479i −0.193968 0.385627i
\(207\) 5.27366i 0.366545i
\(208\) 1.15669 + 3.82911i 0.0802022 + 0.265501i
\(209\) 3.90723i 0.270269i
\(210\) −14.7453 + 7.08472i −1.01752 + 0.488892i
\(211\) −8.24694 −0.567743 −0.283871 0.958862i \(-0.591619\pi\)
−0.283871 + 0.958862i \(0.591619\pi\)
\(212\) 13.7002 + 10.1731i 0.940932 + 0.698690i
\(213\) 11.8362 0.811004
\(214\) 1.75335 + 3.48583i 0.119856 + 0.238286i
\(215\) −27.2232 −1.85661
\(216\) 2.74889 15.7607i 0.187038 1.07238i
\(217\) −27.2602 0.494437i −1.85054 0.0335646i
\(218\) 18.3161 9.21290i 1.24052 0.623977i
\(219\) 12.1116 0.818429
\(220\) −2.64271 + 3.55897i −0.178172 + 0.239946i
\(221\) 0.128191i 0.00862304i
\(222\) −7.27661 14.4666i −0.488374 0.970934i
\(223\) −11.0819 −0.742096 −0.371048 0.928614i \(-0.621001\pi\)
−0.371048 + 0.928614i \(0.621001\pi\)
\(224\) 11.0396 10.1058i 0.737613 0.675223i
\(225\) 4.84339 0.322893
\(226\) −6.12084 12.1688i −0.407152 0.809458i
\(227\) 13.0912i 0.868896i −0.900697 0.434448i \(-0.856944\pi\)
0.900697 0.434448i \(-0.143056\pi\)
\(228\) −9.18979 + 12.3760i −0.608609 + 0.819619i
\(229\) 26.7429 1.76722 0.883610 0.468224i \(-0.155106\pi\)
0.883610 + 0.468224i \(0.155106\pi\)
\(230\) −20.1515 + 10.1361i −1.32875 + 0.668353i
\(231\) 0.0479192 2.64197i 0.00315285 0.173829i
\(232\) 3.43737 19.7082i 0.225675 1.29390i
\(233\) −20.2305 −1.32535 −0.662673 0.748909i \(-0.730578\pi\)
−0.662673 + 0.748909i \(0.730578\pi\)
\(234\) 0.654477 + 1.30116i 0.0427845 + 0.0850597i
\(235\) −8.76145 −0.571534
\(236\) −11.8506 8.79969i −0.771410 0.572811i
\(237\) 22.9863 1.49312
\(238\) −0.432332 + 0.207724i −0.0280239 + 0.0134647i
\(239\) 13.7831i 0.891554i −0.895144 0.445777i \(-0.852927\pi\)
0.895144 0.445777i \(-0.147073\pi\)
\(240\) 16.7414 5.05722i 1.08065 0.326442i
\(241\) 12.7451i 0.820981i 0.911865 + 0.410490i \(0.134642\pi\)
−0.911865 + 0.410490i \(0.865358\pi\)
\(242\) 6.66853 + 13.2577i 0.428669 + 0.852236i
\(243\) 10.1622i 0.651903i
\(244\) 13.5120 18.1968i 0.865018 1.16493i
\(245\) −21.7902 0.790708i −1.39212 0.0505165i
\(246\) −0.0899467 0.178823i −0.00573479 0.0114013i
\(247\) 5.49116i 0.349394i
\(248\) 28.7137 + 5.00806i 1.82332 + 0.318012i
\(249\) 5.71001 0.361857
\(250\) −0.588291 1.16958i −0.0372068 0.0739707i
\(251\) 22.4676i 1.41814i 0.705137 + 0.709071i \(0.250886\pi\)
−0.705137 + 0.709071i \(0.749114\pi\)
\(252\) 3.32773 4.31571i 0.209627 0.271864i
\(253\) 3.64354i 0.229068i
\(254\) 15.8233 7.95901i 0.992841 0.499393i
\(255\) −0.560467 −0.0350978
\(256\) −13.3241 + 8.85820i −0.832758 + 0.553638i
\(257\) 14.3250i 0.893568i 0.894642 + 0.446784i \(0.147431\pi\)
−0.894642 + 0.446784i \(0.852569\pi\)
\(258\) −15.4980 + 7.79539i −0.964862 + 0.485320i
\(259\) 0.391419 21.5804i 0.0243216 1.34094i
\(260\) −3.71403 + 5.00172i −0.230334 + 0.310193i
\(261\) 7.28452i 0.450901i
\(262\) 11.7826 5.92656i 0.727929 0.366144i
\(263\) 13.3682i 0.824317i −0.911112 0.412158i \(-0.864775\pi\)
0.911112 0.412158i \(-0.135225\pi\)
\(264\) −0.485364 + 2.78283i −0.0298721 + 0.171272i
\(265\) 26.5769i 1.63261i
\(266\) −18.5193 + 8.89803i −1.13549 + 0.545573i
\(267\) −3.16762 −0.193855
\(268\) 17.2956 23.2921i 1.05650 1.42279i
\(269\) −13.2650 −0.808782 −0.404391 0.914586i \(-0.632517\pi\)
−0.404391 + 0.914586i \(0.632517\pi\)
\(270\) 22.2600 11.1967i 1.35470 0.681407i
\(271\) 14.9368 0.907348 0.453674 0.891168i \(-0.350113\pi\)
0.453674 + 0.891168i \(0.350113\pi\)
\(272\) 0.490856 0.148277i 0.0297625 0.00899064i
\(273\) 0.0673448 3.71298i 0.00407590 0.224720i
\(274\) −2.21511 4.40384i −0.133820 0.266046i
\(275\) −3.34628 −0.201788
\(276\) −8.56960 + 11.5408i −0.515830 + 0.694672i
\(277\) 2.07792i 0.124850i 0.998050 + 0.0624251i \(0.0198834\pi\)
−0.998050 + 0.0624251i \(0.980117\pi\)
\(278\) 17.3601 8.73200i 1.04119 0.523711i
\(279\) 10.6132 0.635393
\(280\) 22.8870 + 4.42090i 1.36776 + 0.264199i
\(281\) 7.66033 0.456977 0.228488 0.973547i \(-0.426622\pi\)
0.228488 + 0.973547i \(0.426622\pi\)
\(282\) −4.98782 + 2.50884i −0.297020 + 0.149399i
\(283\) 4.75444i 0.282622i 0.989965 + 0.141311i \(0.0451318\pi\)
−0.989965 + 0.141311i \(0.954868\pi\)
\(284\) −13.5406 10.0546i −0.803488 0.596631i
\(285\) −24.0081 −1.42212
\(286\) −0.452175 0.898967i −0.0267377 0.0531570i
\(287\) 0.00483836 0.266757i 0.000285599 0.0157462i
\(288\) −4.22526 + 4.01111i −0.248976 + 0.236357i
\(289\) 16.9836 0.999033
\(290\) 27.8353 14.0010i 1.63454 0.822166i
\(291\) −7.20257 −0.422222
\(292\) −13.8557 10.2886i −0.810844 0.602093i
\(293\) 20.4685 1.19578 0.597890 0.801578i \(-0.296006\pi\)
0.597890 + 0.801578i \(0.296006\pi\)
\(294\) −12.6314 + 5.78948i −0.736678 + 0.337650i
\(295\) 22.9889i 1.33847i
\(296\) −3.96461 + 22.7311i −0.230439 + 1.32122i
\(297\) 4.02479i 0.233542i
\(298\) 0.0964001 0.0484886i 0.00558431 0.00280887i
\(299\) 5.12058i 0.296131i
\(300\) 10.5992 + 7.87043i 0.611944 + 0.454400i
\(301\) −23.1190 0.419325i −1.33256 0.0241695i
\(302\) 2.25523 1.13437i 0.129774 0.0652755i
\(303\) 22.5480i 1.29535i
\(304\) 21.0262 6.35159i 1.20594 0.364289i
\(305\) 35.2998 2.02126
\(306\) 0.166797 0.0838979i 0.00953516 0.00479613i
\(307\) 0.696807i 0.0397689i −0.999802 0.0198844i \(-0.993670\pi\)
0.999802 0.0198844i \(-0.00632983\pi\)
\(308\) −2.29911 + 2.98170i −0.131004 + 0.169898i
\(309\) 6.14903i 0.349806i
\(310\) 20.3987 + 40.5545i 1.15857 + 2.30334i
\(311\) −21.4020 −1.21360 −0.606798 0.794856i \(-0.707546\pi\)
−0.606798 + 0.794856i \(0.707546\pi\)
\(312\) −0.682124 + 3.91095i −0.0386176 + 0.221414i
\(313\) 3.05480i 0.172667i 0.996266 + 0.0863337i \(0.0275151\pi\)
−0.996266 + 0.0863337i \(0.972485\pi\)
\(314\) 4.77992 + 9.50294i 0.269746 + 0.536282i
\(315\) 8.48632 + 0.153922i 0.478150 + 0.00867253i
\(316\) −26.2963 19.5263i −1.47928 1.09844i
\(317\) 26.8368i 1.50730i −0.657274 0.753652i \(-0.728291\pi\)
0.657274 0.753652i \(-0.271709\pi\)
\(318\) 7.61031 + 15.1300i 0.426765 + 0.848449i
\(319\) 5.03284i 0.281785i
\(320\) −23.4481 8.43597i −1.31079 0.471585i
\(321\) 3.87268i 0.216152i
\(322\) −17.2695 + 8.29753i −0.962392 + 0.462403i
\(323\) −0.703916 −0.0391669
\(324\) 5.78237 7.78717i 0.321243 0.432620i
\(325\) −4.70280 −0.260865
\(326\) 3.61085 + 7.17872i 0.199987 + 0.397592i
\(327\) 20.3488 1.12529
\(328\) −0.0490069 + 0.280981i −0.00270595 + 0.0155146i
\(329\) −7.44055 0.134954i −0.410211 0.00744028i
\(330\) −3.93040 + 1.97697i −0.216362 + 0.108829i
\(331\) −17.6603 −0.970696 −0.485348 0.874321i \(-0.661307\pi\)
−0.485348 + 0.874321i \(0.661307\pi\)
\(332\) −6.53225 4.85053i −0.358504 0.266207i
\(333\) 8.40186i 0.460419i
\(334\) 6.19746 + 12.3211i 0.339110 + 0.674183i
\(335\) 45.1843 2.46868
\(336\) 14.2953 4.03691i 0.779872 0.220231i
\(337\) 1.87767 0.102283 0.0511416 0.998691i \(-0.483714\pi\)
0.0511416 + 0.998691i \(0.483714\pi\)
\(338\) −0.635480 1.26339i −0.0345655 0.0687196i
\(339\) 13.5193i 0.734268i
\(340\) 0.641174 + 0.476104i 0.0347725 + 0.0258204i
\(341\) −7.33257 −0.397081
\(342\) 7.14490 3.59384i 0.386352 0.194333i
\(343\) −18.4929 1.00714i −0.998520 0.0543803i
\(344\) 24.3517 + 4.24727i 1.31295 + 0.228997i
\(345\) −22.3879 −1.20532
\(346\) 1.62004 + 3.22080i 0.0870940 + 0.173151i
\(347\) 14.7147 0.789924 0.394962 0.918697i \(-0.370758\pi\)
0.394962 + 0.918697i \(0.370758\pi\)
\(348\) 11.8372 15.9413i 0.634542 0.854543i
\(349\) −1.50124 −0.0803598 −0.0401799 0.999192i \(-0.512793\pi\)
−0.0401799 + 0.999192i \(0.512793\pi\)
\(350\) 7.62055 + 15.8605i 0.407336 + 0.847781i
\(351\) 5.65638i 0.301915i
\(352\) 2.91921 2.77126i 0.155595 0.147708i
\(353\) 2.52907i 0.134609i −0.997732 0.0673043i \(-0.978560\pi\)
0.997732 0.0673043i \(-0.0214398\pi\)
\(354\) −6.58289 13.0874i −0.349877 0.695589i
\(355\) 26.2674i 1.39413i
\(356\) 3.62376 + 2.69083i 0.192059 + 0.142613i
\(357\) −0.475969 0.00863299i −0.0251910 0.000456906i
\(358\) −4.31002 8.56874i −0.227792 0.452872i
\(359\) 27.9988i 1.47772i −0.673858 0.738861i \(-0.735364\pi\)
0.673858 0.738861i \(-0.264636\pi\)
\(360\) −8.93880 1.55905i −0.471116 0.0821691i
\(361\) −11.1528 −0.586992
\(362\) −1.37273 2.72911i −0.0721489 0.143439i
\(363\) 14.7290i 0.773072i
\(364\) −3.23114 + 4.19044i −0.169358 + 0.219639i
\(365\) 26.8786i 1.40689i
\(366\) 20.0959 10.1081i 1.05043 0.528359i
\(367\) 13.6580 0.712944 0.356472 0.934306i \(-0.383980\pi\)
0.356472 + 0.934306i \(0.383980\pi\)
\(368\) 19.6073 5.92294i 1.02210 0.308755i
\(369\) 0.103856i 0.00540653i
\(370\) −32.1048 + 16.1485i −1.66905 + 0.839522i
\(371\) −0.409369 + 22.5701i −0.0212534 + 1.17178i
\(372\) 23.2256 + 17.2462i 1.20419 + 0.894173i
\(373\) 12.4286i 0.643528i 0.946820 + 0.321764i \(0.104276\pi\)
−0.946820 + 0.321764i \(0.895724\pi\)
\(374\) −0.115239 + 0.0579646i −0.00595888 + 0.00299728i
\(375\) 1.29938i 0.0670995i
\(376\) 7.83728 + 1.36693i 0.404177 + 0.0704939i
\(377\) 7.07307i 0.364282i
\(378\) 19.0765 9.16575i 0.981190 0.471435i
\(379\) 10.5288 0.540826 0.270413 0.962744i \(-0.412840\pi\)
0.270413 + 0.962744i \(0.412840\pi\)
\(380\) 27.4652 + 20.3943i 1.40894 + 1.04621i
\(381\) 17.5793 0.900616
\(382\) 11.6498 5.85979i 0.596057 0.299813i
\(383\) −7.90669 −0.404013 −0.202007 0.979384i \(-0.564746\pi\)
−0.202007 + 0.979384i \(0.564746\pi\)
\(384\) −15.7645 + 1.91185i −0.804477 + 0.0975636i
\(385\) −5.86315 0.106344i −0.298814 0.00541979i
\(386\) 8.48438 + 16.8678i 0.431844 + 0.858546i
\(387\) 9.00086 0.457540
\(388\) 8.23974 + 6.11842i 0.418309 + 0.310616i
\(389\) 9.18004i 0.465446i 0.972543 + 0.232723i \(0.0747636\pi\)
−0.972543 + 0.232723i \(0.925236\pi\)
\(390\) −5.52373 + 2.77840i −0.279705 + 0.140690i
\(391\) −0.656411 −0.0331961
\(392\) 19.3684 + 4.10692i 0.978250 + 0.207431i
\(393\) 13.0902 0.660312
\(394\) −31.1752 + 15.6810i −1.57059 + 0.789995i
\(395\) 51.0120i 2.56669i
\(396\) 0.873765 1.17671i 0.0439083 0.0591318i
\(397\) −24.0822 −1.20865 −0.604325 0.796738i \(-0.706557\pi\)
−0.604325 + 0.796738i \(0.706557\pi\)
\(398\) −10.2003 20.2792i −0.511295 1.01650i
\(399\) −20.3886 0.369801i −1.02070 0.0185132i
\(400\) −5.43970 18.0075i −0.271985 0.900377i
\(401\) −28.7217 −1.43429 −0.717146 0.696923i \(-0.754552\pi\)
−0.717146 + 0.696923i \(0.754552\pi\)
\(402\) 25.7230 12.9385i 1.28295 0.645316i
\(403\) −10.3051 −0.513333
\(404\) −19.1540 + 25.7949i −0.952949 + 1.28334i
\(405\) 15.1063 0.750637
\(406\) 23.8544 11.4614i 1.18387 0.568820i
\(407\) 5.80480i 0.287733i
\(408\) 0.501348 + 0.0874419i 0.0248204 + 0.00432902i
\(409\) 17.5653i 0.868550i −0.900780 0.434275i \(-0.857005\pi\)
0.900780 0.434275i \(-0.142995\pi\)
\(410\) −0.396850 + 0.199613i −0.0195990 + 0.00985819i
\(411\) 4.89258i 0.241333i
\(412\) −5.22347 + 7.03449i −0.257342 + 0.346565i
\(413\) 0.354103 19.5231i 0.0174243 0.960667i
\(414\) 6.66271 3.35130i 0.327454 0.164708i
\(415\) 12.6719i 0.622038i
\(416\) 4.10262 3.89468i 0.201147 0.190952i
\(417\) 19.2867 0.944471
\(418\) −4.93637 + 2.48297i −0.241446 + 0.121446i
\(419\) 30.2826i 1.47940i 0.672935 + 0.739702i \(0.265033\pi\)
−0.672935 + 0.739702i \(0.734967\pi\)
\(420\) 18.3211 + 14.1270i 0.893981 + 0.689325i
\(421\) 29.1955i 1.42290i 0.702736 + 0.711450i \(0.251961\pi\)
−0.702736 + 0.711450i \(0.748039\pi\)
\(422\) 5.24076 + 10.4191i 0.255116 + 0.507196i
\(423\) 2.89681 0.140848
\(424\) 4.14643 23.7735i 0.201368 1.15454i
\(425\) 0.602856i 0.0292428i
\(426\) −7.52167 14.9538i −0.364426 0.724514i
\(427\) 29.9779 + 0.543730i 1.45073 + 0.0263129i
\(428\) 3.28976 4.43034i 0.159016 0.214149i
\(429\) 0.998733i 0.0482193i
\(430\) 17.2998 + 34.3937i 0.834271 + 1.65861i
\(431\) 25.5623i 1.23129i 0.788023 + 0.615645i \(0.211105\pi\)
−0.788023 + 0.615645i \(0.788895\pi\)
\(432\) −21.6589 + 6.54269i −1.04206 + 0.314786i
\(433\) 22.4517i 1.07896i −0.841998 0.539481i \(-0.818621\pi\)
0.841998 0.539481i \(-0.181379\pi\)
\(434\) 16.6986 + 34.7546i 0.801560 + 1.66827i
\(435\) 30.9244 1.48271
\(436\) −23.2791 17.2859i −1.11486 0.827844i
\(437\) −28.1179 −1.34506
\(438\) −7.69670 15.3018i −0.367763 0.731147i
\(439\) 22.3455 1.06649 0.533245 0.845961i \(-0.320972\pi\)
0.533245 + 0.845961i \(0.320972\pi\)
\(440\) 6.17577 + 1.07714i 0.294418 + 0.0513506i
\(441\) 7.20452 + 0.261433i 0.343073 + 0.0124492i
\(442\) −0.161955 + 0.0814626i −0.00770344 + 0.00387478i
\(443\) 21.6237 1.02737 0.513686 0.857978i \(-0.328279\pi\)
0.513686 + 0.857978i \(0.328279\pi\)
\(444\) −13.6529 + 18.3865i −0.647937 + 0.872582i
\(445\) 7.02971i 0.333240i
\(446\) 7.04229 + 14.0008i 0.333462 + 0.662955i
\(447\) 0.107098 0.00506558
\(448\) −19.7831 7.52531i −0.934662 0.355538i
\(449\) −2.89960 −0.136840 −0.0684202 0.997657i \(-0.521796\pi\)
−0.0684202 + 0.997657i \(0.521796\pi\)
\(450\) −3.07788 6.11912i −0.145093 0.288458i
\(451\) 0.0717536i 0.00337874i
\(452\) −11.4843 + 15.4661i −0.540178 + 0.727463i
\(453\) 2.50551 0.117719
\(454\) −16.5394 + 8.31921i −0.776232 + 0.390440i
\(455\) −8.23998 0.149454i −0.386296 0.00700652i
\(456\) 21.4757 + 3.74565i 1.00569 + 0.175406i
\(457\) 10.5445 0.493253 0.246626 0.969111i \(-0.420678\pi\)
0.246626 + 0.969111i \(0.420678\pi\)
\(458\) −16.9946 33.7868i −0.794104 1.57875i
\(459\) 0.725095 0.0338445
\(460\) 25.6117 + 19.0180i 1.19415 + 0.886719i
\(461\) −14.9774 −0.697566 −0.348783 0.937203i \(-0.613405\pi\)
−0.348783 + 0.937203i \(0.613405\pi\)
\(462\) −3.36830 + 1.61837i −0.156707 + 0.0752936i
\(463\) 7.38989i 0.343438i −0.985146 0.171719i \(-0.945068\pi\)
0.985146 0.171719i \(-0.0549320\pi\)
\(464\) −27.0836 + 8.18138i −1.25732 + 0.379811i
\(465\) 45.0552i 2.08938i
\(466\) 12.8561 + 25.5591i 0.595547 + 1.18400i
\(467\) 19.0398i 0.881058i −0.897738 0.440529i \(-0.854791\pi\)
0.897738 0.440529i \(-0.145209\pi\)
\(468\) 1.22798 1.65373i 0.0567632 0.0764435i
\(469\) 38.3722 + 0.695983i 1.77186 + 0.0321375i
\(470\) 5.56772 + 11.0692i 0.256820 + 0.510583i
\(471\) 10.5576i 0.486467i
\(472\) −3.58665 + 20.5640i −0.165089 + 0.946536i
\(473\) −6.21865 −0.285934
\(474\) −14.6073 29.0407i −0.670936 1.33388i
\(475\) 25.8239i 1.18488i
\(476\) 0.537175 + 0.414202i 0.0246214 + 0.0189849i
\(477\) 8.78716i 0.402336i
\(478\) −17.4135 + 8.75887i −0.796474 + 0.400622i
\(479\) 6.93161 0.316713 0.158357 0.987382i \(-0.449380\pi\)
0.158357 + 0.987382i \(0.449380\pi\)
\(480\) −17.0281 17.9372i −0.777221 0.818717i
\(481\) 8.15798i 0.371972i
\(482\) 16.1020 8.09922i 0.733427 0.368909i
\(483\) −19.0126 0.344845i −0.865103 0.0156910i
\(484\) 12.5120 16.8500i 0.568726 0.765908i
\(485\) 15.9842i 0.725806i
\(486\) −12.8388 + 6.45785i −0.582381 + 0.292934i
\(487\) 36.0554i 1.63383i −0.576760 0.816914i \(-0.695683\pi\)
0.576760 0.816914i \(-0.304317\pi\)
\(488\) −31.5763 5.50734i −1.42939 0.249305i
\(489\) 7.97540i 0.360660i
\(490\) 12.8482 + 28.0321i 0.580425 + 1.26636i
\(491\) −28.4173 −1.28245 −0.641227 0.767352i \(-0.721574\pi\)
−0.641227 + 0.767352i \(0.721574\pi\)
\(492\) −0.168764 + 0.227276i −0.00760848 + 0.0102464i
\(493\) 0.906702 0.0408358
\(494\) −6.93750 + 3.48952i −0.312133 + 0.157001i
\(495\) 2.28269 0.102599
\(496\) −11.9198 39.4593i −0.535216 1.77177i
\(497\) 0.404602 22.3072i 0.0181489 1.00062i
\(498\) −3.62860 7.21400i −0.162601 0.323267i
\(499\) 16.1378 0.722429 0.361214 0.932483i \(-0.382362\pi\)
0.361214 + 0.932483i \(0.382362\pi\)
\(500\) −1.10379 + 1.48649i −0.0493631 + 0.0664777i
\(501\) 13.6885i 0.611559i
\(502\) 28.3855 14.2777i 1.26690 0.637245i
\(503\) −15.8090 −0.704888 −0.352444 0.935833i \(-0.614649\pi\)
−0.352444 + 0.935833i \(0.614649\pi\)
\(504\) −7.56715 1.46169i −0.337068 0.0651088i
\(505\) −50.0394 −2.22672
\(506\) −4.60323 + 2.31540i −0.204639 + 0.102932i
\(507\) 1.40360i 0.0623363i
\(508\) −20.1107 14.9332i −0.892270 0.662556i
\(509\) 12.3255 0.546320 0.273160 0.961969i \(-0.411931\pi\)
0.273160 + 0.961969i \(0.411931\pi\)
\(510\) 0.356165 + 0.708091i 0.0157713 + 0.0313548i
\(511\) 0.414017 22.8263i 0.0183150 1.00978i
\(512\) 19.6586 + 11.2044i 0.868796 + 0.495170i
\(513\) 31.0601 1.37134
\(514\) 18.0981 9.10324i 0.798273 0.401527i
\(515\) −13.6462 −0.601322
\(516\) 19.6973 + 14.6262i 0.867125 + 0.643884i
\(517\) −2.00139 −0.0880211
\(518\) −27.5133 + 13.2194i −1.20887 + 0.580828i
\(519\) 3.57824i 0.157067i
\(520\) 8.67934 + 1.51379i 0.380614 + 0.0663843i
\(521\) 32.9577i 1.44390i −0.691945 0.721950i \(-0.743246\pi\)
0.691945 0.721950i \(-0.256754\pi\)
\(522\) −9.20322 + 4.62917i −0.402814 + 0.202613i
\(523\) 2.21195i 0.0967220i 0.998830 + 0.0483610i \(0.0153998\pi\)
−0.998830 + 0.0483610i \(0.984600\pi\)
\(524\) −14.9752 11.1198i −0.654193 0.485771i
\(525\) −0.316710 + 17.4614i −0.0138223 + 0.762078i
\(526\) −16.8893 + 8.49520i −0.736407 + 0.370408i
\(527\) 1.32102i 0.0575444i
\(528\) 3.82426 1.15523i 0.166429 0.0502748i
\(529\) −3.22035 −0.140015
\(530\) 33.5771 16.8891i 1.45850 0.733615i
\(531\) 7.60087i 0.329850i
\(532\) 23.0104 + 17.7427i 0.997626 + 0.769243i
\(533\) 0.100841i 0.00436792i
\(534\) 2.01296 + 4.00196i 0.0871093 + 0.173182i
\(535\) 8.59440 0.371568
\(536\) −40.4182 7.04948i −1.74580 0.304491i
\(537\) 9.51969i 0.410805i
\(538\) 8.42965 + 16.7589i 0.363428 + 0.722529i
\(539\) −4.97757 0.180623i −0.214399 0.00777997i
\(540\) −28.2916 21.0080i −1.21748 0.904039i
\(541\) 11.3965i 0.489976i 0.969526 + 0.244988i \(0.0787840\pi\)
−0.969526 + 0.244988i \(0.921216\pi\)
\(542\) −9.49205 18.8711i −0.407719 0.810584i
\(543\) 3.03198i 0.130115i
\(544\) −0.499262 0.525918i −0.0214057 0.0225485i
\(545\) 45.1589i 1.93440i
\(546\) −4.73375 + 2.27444i −0.202586 + 0.0973370i
\(547\) 20.8868 0.893053 0.446527 0.894770i \(-0.352661\pi\)
0.446527 + 0.894770i \(0.352661\pi\)
\(548\) −4.15614 + 5.59711i −0.177541 + 0.239097i
\(549\) −11.6712 −0.498115
\(550\) 2.12649 + 4.22767i 0.0906739 + 0.180268i
\(551\) 38.8394 1.65461
\(552\) 20.0263 + 3.49287i 0.852378 + 0.148666i
\(553\) 0.785748 43.3213i 0.0334134 1.84221i
\(554\) 2.62523 1.32048i 0.111535 0.0561017i
\(555\) −35.6678 −1.51401
\(556\) −22.0639 16.3836i −0.935719 0.694819i
\(557\) 36.5235i 1.54755i 0.633460 + 0.773776i \(0.281634\pi\)
−0.633460 + 0.773776i \(0.718366\pi\)
\(558\) −6.74444 13.4086i −0.285515 0.567631i
\(559\) −8.73959 −0.369645
\(560\) −8.95885 31.7246i −0.378581 1.34061i
\(561\) −0.128028 −0.00540536
\(562\) −4.86798 9.67802i −0.205343 0.408242i
\(563\) 21.2293i 0.894707i 0.894357 + 0.447354i \(0.147633\pi\)
−0.894357 + 0.447354i \(0.852367\pi\)
\(564\) 6.33932 + 4.70727i 0.266934 + 0.198212i
\(565\) −30.0025 −1.26222
\(566\) 6.00674 3.02135i 0.252482 0.126997i
\(567\) 12.8288 + 0.232685i 0.538759 + 0.00977185i
\(568\) −4.09814 + 23.4966i −0.171954 + 0.985897i
\(569\) −18.2538 −0.765239 −0.382619 0.923906i \(-0.624978\pi\)
−0.382619 + 0.923906i \(0.624978\pi\)
\(570\) 15.2566 + 30.3317i 0.639031 + 1.27045i
\(571\) 4.06655 0.170180 0.0850899 0.996373i \(-0.472882\pi\)
0.0850899 + 0.996373i \(0.472882\pi\)
\(572\) −0.848402 + 1.14255i −0.0354735 + 0.0477724i
\(573\) 12.9427 0.540690
\(574\) −0.340094 + 0.163406i −0.0141953 + 0.00682044i
\(575\) 24.0811i 1.00425i
\(576\) 7.75269 + 2.78920i 0.323029 + 0.116217i
\(577\) 32.8326i 1.36684i −0.730025 0.683420i \(-0.760492\pi\)
0.730025 0.683420i \(-0.239508\pi\)
\(578\) −10.7927 21.4569i −0.448918 0.892491i
\(579\) 18.7397i 0.778796i
\(580\) −35.3775 26.2696i −1.46897 1.09079i
\(581\) 0.195187 10.7614i 0.00809774 0.446459i
\(582\) 4.57709 + 9.09968i 0.189726 + 0.377194i
\(583\) 6.07100i 0.251435i
\(584\) −4.19350 + 24.0434i −0.173528 + 0.994923i
\(585\) 3.20805 0.132637
\(586\) −13.0073 25.8597i −0.537326 1.06826i
\(587\) 34.6043i 1.42827i 0.700008 + 0.714135i \(0.253180\pi\)
−0.700008 + 0.714135i \(0.746820\pi\)
\(588\) 15.3414 + 12.2793i 0.632669 + 0.506391i
\(589\) 56.5869i 2.33162i
\(590\) −29.0441 + 14.6090i −1.19573 + 0.601443i
\(591\) −34.6350 −1.42469
\(592\) 31.2378 9.43628i 1.28386 0.387829i
\(593\) 30.7831i 1.26411i 0.774923 + 0.632056i \(0.217789\pi\)
−0.774923 + 0.632056i \(0.782211\pi\)
\(594\) 5.08490 2.55767i 0.208636 0.104943i
\(595\) −0.0191587 + 1.05629i −0.000785428 + 0.0433036i
\(596\) −0.122521 0.0909777i −0.00501864 0.00372659i
\(597\) 22.5297i 0.922080i
\(598\) −6.46931 + 3.25403i −0.264550 + 0.133067i
\(599\) 18.1200i 0.740363i 0.928959 + 0.370181i \(0.120704\pi\)
−0.928959 + 0.370181i \(0.879296\pi\)
\(600\) 3.20789 18.3924i 0.130962 0.750868i
\(601\) 2.44947i 0.0999158i −0.998751 0.0499579i \(-0.984091\pi\)
0.998751 0.0499579i \(-0.0159087\pi\)
\(602\) 14.1619 + 29.4749i 0.577195 + 1.20131i
\(603\) −14.9393 −0.608377
\(604\) −2.86631 2.12838i −0.116628 0.0866025i
\(605\) 32.6872 1.32892
\(606\) −28.4870 + 14.3288i −1.15721 + 0.582067i
\(607\) −17.5171 −0.710998 −0.355499 0.934677i \(-0.615689\pi\)
−0.355499 + 0.934677i \(0.615689\pi\)
\(608\) −21.3863 22.5281i −0.867329 0.913636i
\(609\) 26.2622 + 0.476335i 1.06420 + 0.0193021i
\(610\) −22.4323 44.5975i −0.908257 1.80570i
\(611\) −2.81273 −0.113791
\(612\) −0.211992 0.157415i −0.00856928 0.00636313i
\(613\) 12.6633i 0.511465i 0.966748 + 0.255732i \(0.0823166\pi\)
−0.966748 + 0.255732i \(0.917683\pi\)
\(614\) −0.880342 + 0.442806i −0.0355277 + 0.0178702i
\(615\) −0.440892 −0.0177785
\(616\) 5.22810 + 1.00987i 0.210646 + 0.0406890i
\(617\) −39.5883 −1.59376 −0.796882 0.604135i \(-0.793519\pi\)
−0.796882 + 0.604135i \(0.793519\pi\)
\(618\) −7.76865 + 3.90759i −0.312501 + 0.157186i
\(619\) 14.7549i 0.593049i 0.955025 + 0.296525i \(0.0958277\pi\)
−0.955025 + 0.296525i \(0.904172\pi\)
\(620\) 38.2734 51.5431i 1.53710 2.07002i
\(621\) 28.9639 1.16228
\(622\) 13.6005 + 27.0392i 0.545332 + 1.08417i
\(623\) −0.108280 + 5.96989i −0.00433815 + 0.239179i
\(624\) 5.37455 1.62354i 0.215154 0.0649936i
\(625\) −26.3977 −1.05591
\(626\) 3.85942 1.94126i 0.154253 0.0775884i
\(627\) −5.48420 −0.219018
\(628\) 8.96842 12.0778i 0.357879 0.481959i
\(629\) −1.04578 −0.0416979
\(630\) −5.19842 10.8194i −0.207110 0.431054i
\(631\) 24.2732i 0.966303i −0.875537 0.483151i \(-0.839492\pi\)
0.875537 0.483151i \(-0.160508\pi\)
\(632\) −7.95870 + 45.6312i −0.316580 + 1.81511i
\(633\) 11.5754i 0.460082i
\(634\) −33.9054 + 17.0542i −1.34656 + 0.677310i
\(635\) 39.0127i 1.54817i
\(636\) 14.2790 19.2296i 0.566198 0.762505i
\(637\) −6.99540 0.253844i −0.277168 0.0100577i
\(638\) 6.35846 3.19827i 0.251734 0.126621i
\(639\) 8.68482i 0.343566i
\(640\) 4.24285 + 34.9851i 0.167713 + 1.38291i
\(641\) −7.40358 −0.292424 −0.146212 0.989253i \(-0.546708\pi\)
−0.146212 + 0.989253i \(0.546708\pi\)
\(642\) 4.89272 2.46101i 0.193100 0.0971283i
\(643\) 33.4236i 1.31810i 0.752101 + 0.659048i \(0.229041\pi\)
−0.752101 + 0.659048i \(0.770959\pi\)
\(644\) 21.4575 + 16.5453i 0.845543 + 0.651976i
\(645\) 38.2107i 1.50454i
\(646\) 0.447324 + 0.889323i 0.0175997 + 0.0349900i
\(647\) 34.4335 1.35372 0.676861 0.736111i \(-0.263340\pi\)
0.676861 + 0.736111i \(0.263340\pi\)
\(648\) −13.5128 2.35682i −0.530834 0.0925848i
\(649\) 5.25140i 0.206136i
\(650\) 2.98854 + 5.94150i 0.117220 + 0.233045i
\(651\) −0.693994 + 38.2625i −0.0271998 + 1.49963i
\(652\) 6.77493 9.12386i 0.265327 0.357318i
\(653\) 3.01244i 0.117886i −0.998261 0.0589430i \(-0.981227\pi\)
0.998261 0.0589430i \(-0.0187730\pi\)
\(654\) −12.9313 25.7086i −0.505653 1.00529i
\(655\) 29.0502i 1.13509i
\(656\) 0.386132 0.116643i 0.0150759 0.00455413i
\(657\) 8.88692i 0.346712i
\(658\) 4.55782 + 9.48611i 0.177682 + 0.369807i
\(659\) 49.8643 1.94244 0.971218 0.238191i \(-0.0765544\pi\)
0.971218 + 0.238191i \(0.0765544\pi\)
\(660\) 4.99538 + 3.70933i 0.194445 + 0.144385i
\(661\) −13.2329 −0.514701 −0.257350 0.966318i \(-0.582849\pi\)
−0.257350 + 0.966318i \(0.582849\pi\)
\(662\) 11.2227 + 22.3119i 0.436184 + 0.867176i
\(663\) −0.179929 −0.00698787
\(664\) −1.97702 + 11.3352i −0.0767232 + 0.439892i
\(665\) −0.820677 + 45.2471i −0.0318245 + 1.75461i
\(666\) 10.6149 5.33921i 0.411318 0.206890i
\(667\) 36.2182 1.40238
\(668\) 11.6281 15.6597i 0.449905 0.605891i
\(669\) 15.5545i 0.601373i
\(670\) −28.7137 57.0856i −1.10931 2.20541i
\(671\) 8.06358 0.311291
\(672\) −14.1846 15.4952i −0.547182 0.597741i
\(673\) 44.0069 1.69634 0.848170 0.529724i \(-0.177704\pi\)
0.848170 + 0.529724i \(0.177704\pi\)
\(674\) −1.19322 2.37224i −0.0459612 0.0913752i
\(675\) 26.6008i 1.02387i
\(676\) −1.19233 + 1.60572i −0.0458589 + 0.0617586i
\(677\) −5.69662 −0.218939 −0.109470 0.993990i \(-0.534915\pi\)
−0.109470 + 0.993990i \(0.534915\pi\)
\(678\) −17.0802 + 8.59124i −0.655961 + 0.329945i
\(679\) −0.246208 + 13.5744i −0.00944860 + 0.520937i
\(680\) 0.194054 1.11261i 0.00744165 0.0426667i
\(681\) −18.3749 −0.704128
\(682\) 4.65970 + 9.26393i 0.178429 + 0.354734i
\(683\) 21.1458 0.809121 0.404560 0.914511i \(-0.367425\pi\)
0.404560 + 0.914511i \(0.367425\pi\)
\(684\) −9.08088 6.74301i −0.347216 0.257825i
\(685\) −10.8578 −0.414855
\(686\) 10.4794 + 24.0038i 0.400106 + 0.916469i
\(687\) 37.5364i 1.43210i
\(688\) −10.1090 33.4648i −0.385403 1.27583i
\(689\) 8.53210i 0.325047i
\(690\) 14.2270 + 28.2847i 0.541614 + 1.07678i
\(691\) 32.1264i 1.22215i −0.791575 0.611073i \(-0.790738\pi\)
0.791575 0.611073i \(-0.209262\pi\)
\(692\) 3.03963 4.09350i 0.115550 0.155612i
\(693\) 1.93854 + 0.0351607i 0.0736391 + 0.00133564i
\(694\) −9.35087 18.5904i −0.354954 0.705683i
\(695\) 42.8017i 1.62356i
\(696\) −27.6625 4.82471i −1.04854 0.182880i
\(697\) −0.0129269 −0.000489642
\(698\) 0.954010 + 1.89666i 0.0361098 + 0.0717898i
\(699\) 28.3956i 1.07402i
\(700\) 15.1954 19.7068i 0.574332 0.744847i
\(701\) 27.9007i 1.05379i 0.849929 + 0.526897i \(0.176645\pi\)
−0.849929 + 0.526897i \(0.823355\pi\)
\(702\) 7.14624 3.59451i 0.269717 0.135666i
\(703\) −44.7968 −1.68954
\(704\) −5.35629 1.92704i −0.201873 0.0726281i
\(705\) 12.2976i 0.463155i
\(706\) −3.19521 + 1.60717i −0.120253 + 0.0604867i
\(707\) −42.4953 0.770767i −1.59820 0.0289877i
\(708\) −12.3513 + 16.6336i −0.464190 + 0.625128i
\(709\) 9.64782i 0.362331i 0.983453 + 0.181166i \(0.0579870\pi\)
−0.983453 + 0.181166i \(0.942013\pi\)
\(710\) −33.1861 + 16.6924i −1.24545 + 0.626454i
\(711\) 16.8662i 0.632531i
\(712\) 1.09675 6.28820i 0.0411024 0.235660i
\(713\) 52.7680i 1.97618i
\(714\) 0.291562 + 0.606823i 0.0109114 + 0.0227098i
\(715\) −2.21643 −0.0828897
\(716\) −8.08677 + 10.8905i −0.302217 + 0.406998i
\(717\) −19.3460 −0.722490
\(718\) −35.3736 + 17.7927i −1.32013 + 0.664017i
\(719\) −7.10932 −0.265133 −0.132566 0.991174i \(-0.542322\pi\)
−0.132566 + 0.991174i \(0.542322\pi\)
\(720\) 3.71073 + 12.2840i 0.138291 + 0.457797i
\(721\) −11.5888 0.210195i −0.431591 0.00782806i
\(722\) 7.08741 + 14.0904i 0.263766 + 0.524392i
\(723\) 17.8890 0.665299
\(724\) −2.57560 + 3.46859i −0.0957215 + 0.128909i
\(725\) 33.2633i 1.23537i
\(726\) 18.6085 9.35998i 0.690628 0.347381i
\(727\) −31.7118 −1.17613 −0.588063 0.808815i \(-0.700109\pi\)
−0.588063 + 0.808815i \(0.700109\pi\)
\(728\) 7.34750 + 1.41926i 0.272316 + 0.0526013i
\(729\) −28.8126 −1.06713
\(730\) −33.9583 + 17.0808i −1.25685 + 0.632189i
\(731\) 1.12033i 0.0414371i
\(732\) −25.5410 18.9655i −0.944024 0.700986i
\(733\) 3.95576 0.146109 0.0730546 0.997328i \(-0.476725\pi\)
0.0730546 + 0.997328i \(0.476725\pi\)
\(734\) −8.67940 17.2555i −0.320363 0.636912i
\(735\) −1.10984 + 30.5848i −0.0409371 + 1.12814i
\(736\) −19.9430 21.0078i −0.735110 0.774357i
\(737\) 10.3215 0.380198
\(738\) 0.131211 0.0659984i 0.00482995 0.00242943i
\(739\) 4.79871 0.176523 0.0882617 0.996097i \(-0.471869\pi\)
0.0882617 + 0.996097i \(0.471869\pi\)
\(740\) 40.8039 + 30.2990i 1.49998 + 1.11381i
\(741\) −7.70742 −0.283139
\(742\) 28.7751 13.8256i 1.05637 0.507555i
\(743\) 11.6943i 0.429021i 0.976722 + 0.214511i \(0.0688157\pi\)
−0.976722 + 0.214511i \(0.931184\pi\)
\(744\) 7.02934 40.3027i 0.257708 1.47757i
\(745\) 0.237677i 0.00870781i
\(746\) 15.7022 7.89812i 0.574899 0.289171i
\(747\) 4.18972i 0.153294i
\(748\) 0.146464 + 0.108757i 0.00535527 + 0.00397656i
\(749\) 7.29868 + 0.132381i 0.266688 + 0.00483710i
\(750\) −1.64163 + 0.825728i −0.0599437 + 0.0301513i
\(751\) 4.77337i 0.174183i 0.996200 + 0.0870914i \(0.0277572\pi\)
−0.996200 + 0.0870914i \(0.972243\pi\)
\(752\) −3.25346 10.7702i −0.118641 0.392750i
\(753\) 31.5356 1.14922
\(754\) 8.93608 4.49479i 0.325433 0.163691i
\(755\) 5.56033i 0.202361i
\(756\) −23.7027 18.2765i −0.862059 0.664711i
\(757\) 44.2310i 1.60760i 0.594898 + 0.803801i \(0.297192\pi\)
−0.594898 + 0.803801i \(0.702808\pi\)
\(758\) −6.69082 13.3020i −0.243021 0.483150i
\(759\) −5.11409 −0.185630
\(760\) 8.31249 47.6596i 0.301526 1.72880i
\(761\) 19.9559i 0.723401i −0.932294 0.361700i \(-0.882196\pi\)
0.932294 0.361700i \(-0.117804\pi\)
\(762\) −11.1713 22.2096i −0.404694 0.804570i
\(763\) 0.695592 38.3506i 0.0251821 1.38839i
\(764\) −14.8065 10.9946i −0.535679 0.397769i
\(765\) 0.411243i 0.0148685i
\(766\) 5.02454 + 9.98927i 0.181544 + 0.360927i
\(767\) 7.38024i 0.266485i
\(768\) 12.4334 + 18.7018i 0.448652 + 0.674843i
\(769\) 12.6775i 0.457162i −0.973525 0.228581i \(-0.926591\pi\)
0.973525 0.228581i \(-0.0734086\pi\)
\(770\) 3.59156 + 7.47505i 0.129431 + 0.269382i
\(771\) 20.1066 0.724122
\(772\) 15.9190 21.4382i 0.572937 0.771579i
\(773\) −7.32173 −0.263344 −0.131672 0.991293i \(-0.542035\pi\)
−0.131672 + 0.991293i \(0.542035\pi\)
\(774\) −5.71987 11.3716i −0.205596 0.408745i
\(775\) 48.4628 1.74084
\(776\) 2.49380 14.2982i 0.0895221 0.513274i
\(777\) −30.2904 0.549398i −1.08666 0.0197095i
\(778\) 11.5980 5.83373i 0.415809 0.209149i
\(779\) −0.553736 −0.0198397
\(780\) 7.02043 + 5.21303i 0.251372 + 0.186656i
\(781\) 6.00030i 0.214708i
\(782\) 0.417136 + 0.829306i 0.0149167 + 0.0296559i
\(783\) −40.0080 −1.42977
\(784\) −7.11953 27.0797i −0.254269 0.967134i
\(785\) 23.4297 0.836244
\(786\) −8.31854 16.5381i −0.296713 0.589893i
\(787\) 50.2628i 1.79168i 0.444381 + 0.895838i \(0.353424\pi\)
−0.444381 + 0.895838i \(0.646576\pi\)
\(788\) 39.6225 + 29.4217i 1.41149 + 1.04810i
\(789\) −18.7636 −0.668003
\(790\) −64.4483 + 32.4171i −2.29297 + 1.15335i
\(791\) −25.4793 0.462135i −0.905939 0.0164316i
\(792\) −2.04191 0.356136i −0.0725559 0.0126547i
\(793\) 11.3324 0.402427
\(794\) 15.3037 + 30.4253i 0.543109 + 1.07975i
\(795\) 37.3035 1.32302
\(796\) −19.1385 + 25.7740i −0.678346 + 0.913535i
\(797\) 50.0051 1.77127 0.885636 0.464381i \(-0.153723\pi\)
0.885636 + 0.464381i \(0.153723\pi\)
\(798\) 12.4893 + 25.9938i 0.442117 + 0.920170i
\(799\) 0.360565i 0.0127559i
\(800\) −19.2938 + 18.3159i −0.682139 + 0.647565i
\(801\) 2.32424i 0.0821231i
\(802\) 18.2520 + 36.2868i 0.644502 + 1.28133i
\(803\) 6.13992i 0.216673i
\(804\) −32.6929 24.2762i −1.15299 0.856155i
\(805\) −0.765293 + 42.1935i −0.0269730 + 1.48713i
\(806\) 6.54867 + 13.0194i 0.230667 + 0.458588i
\(807\) 18.6188i 0.655414i
\(808\) 44.7611 + 7.80695i 1.57469 + 0.274648i
\(809\) −18.2457 −0.641483 −0.320742 0.947167i \(-0.603932\pi\)
−0.320742 + 0.947167i \(0.603932\pi\)
\(810\) −9.59973 19.0852i −0.337300 0.670585i
\(811\) 49.8112i 1.74911i −0.484929 0.874554i \(-0.661154\pi\)
0.484929 0.874554i \(-0.338846\pi\)
\(812\) −29.6393 22.8541i −1.04013 0.802020i
\(813\) 20.9654i 0.735289i
\(814\) −7.33375 + 3.68883i −0.257048 + 0.129294i
\(815\) 17.6993 0.619980
\(816\) −0.208123 0.688968i −0.00728575 0.0241187i
\(817\) 47.9905i 1.67898i
\(818\) −22.1919 + 11.1624i −0.775923 + 0.390285i
\(819\) 2.72440 + 0.0494143i 0.0951982 + 0.00172668i
\(820\) 0.504380 + 0.374528i 0.0176137 + 0.0130791i
\(821\) 23.2872i 0.812727i 0.913711 + 0.406364i \(0.133203\pi\)
−0.913711 + 0.406364i \(0.866797\pi\)
\(822\) −6.18126 + 3.10913i −0.215596 + 0.108443i
\(823\) 46.7989i 1.63131i 0.578540 + 0.815654i \(0.303623\pi\)
−0.578540 + 0.815654i \(0.696377\pi\)
\(824\) 12.2067 + 2.12902i 0.425242 + 0.0741681i
\(825\) 4.69685i 0.163523i
\(826\) −24.8904 + 11.9591i −0.866046 + 0.416112i
\(827\) −33.8764 −1.17800 −0.588998 0.808134i \(-0.700478\pi\)
−0.588998 + 0.808134i \(0.700478\pi\)
\(828\) −8.46804 6.28795i −0.294285 0.218521i
\(829\) 1.54700 0.0537296 0.0268648 0.999639i \(-0.491448\pi\)
0.0268648 + 0.999639i \(0.491448\pi\)
\(830\) −16.0096 + 8.05272i −0.555700 + 0.279514i
\(831\) 2.91658 0.101175
\(832\) −7.52765 2.70823i −0.260974 0.0938911i
\(833\) −0.0325405 + 0.896745i −0.00112746 + 0.0310704i
\(834\) −12.2563 24.3666i −0.424400 0.843748i
\(835\) 30.3781 1.05128
\(836\) 6.27393 + 4.65871i 0.216988 + 0.161125i
\(837\) 58.2895i 2.01478i
\(838\) 38.2589 19.2440i 1.32163 0.664773i
\(839\) 12.5119 0.431959 0.215980 0.976398i \(-0.430705\pi\)
0.215980 + 0.976398i \(0.430705\pi\)
\(840\) 6.20519 32.1242i 0.214100 1.10839i
\(841\) −21.0284 −0.725116
\(842\) 36.8854 18.5531i 1.27116 0.639383i
\(843\) 10.7521i 0.370321i
\(844\) 9.83308 13.2423i 0.338469 0.455819i
\(845\) −3.11493 −0.107157
\(846\) −1.84086 3.65982i −0.0632902 0.125827i
\(847\) 27.7591 + 0.503487i 0.953816 + 0.0173000i
\(848\) −32.6703 + 9.86902i −1.12190 + 0.338903i
\(849\) 6.67336 0.229029
\(850\) 0.761645 0.383103i 0.0261242 0.0131403i
\(851\) −41.7736 −1.43198
\(852\) −14.1127 + 19.0057i −0.483493 + 0.651124i
\(853\) −3.10292 −0.106242 −0.0531210 0.998588i \(-0.516917\pi\)
−0.0531210 + 0.998588i \(0.516917\pi\)
\(854\) −18.3634 38.2194i −0.628382 1.30784i
\(855\) 17.6159i 0.602452i
\(856\) −7.68784 1.34087i −0.262765 0.0458298i
\(857\) 35.6654i 1.21831i 0.793052 + 0.609154i \(0.208491\pi\)
−0.793052 + 0.609154i \(0.791509\pi\)
\(858\) −1.26179 + 0.634675i −0.0430769 + 0.0216674i
\(859\) 0.510482i 0.0174174i −0.999962 0.00870870i \(-0.997228\pi\)
0.999962 0.00870870i \(-0.00277210\pi\)
\(860\) 32.4591 43.7130i 1.10685 1.49060i
\(861\) −0.374422 0.00679115i −0.0127603 0.000231442i
\(862\) 32.2952 16.2443i 1.09998 0.553283i
\(863\) 36.6222i 1.24663i −0.781969 0.623317i \(-0.785785\pi\)
0.781969 0.623317i \(-0.214215\pi\)
\(864\) 22.0298 + 23.2060i 0.749468 + 0.789483i
\(865\) 7.94096 0.270001
\(866\) −28.3654 + 14.2676i −0.963895 + 0.484834i
\(867\) 23.8382i 0.809588i
\(868\) 33.2971 43.1828i 1.13018 1.46572i
\(869\) 11.6528i 0.395293i
\(870\) −19.6518 39.0697i −0.666260 1.32459i
\(871\) 14.5057 0.491507
\(872\) −7.04552 + 40.3955i −0.238591 + 1.36796i
\(873\) 5.28489i 0.178866i
\(874\) 17.8684 + 35.5240i 0.604407 + 1.20162i
\(875\) −2.44888 0.0444171i −0.0827874 0.00150157i
\(876\) −14.4411 + 19.4479i −0.487919 + 0.657085i
\(877\) 1.65400i 0.0558515i 0.999610 + 0.0279257i \(0.00889020\pi\)
−0.999610 + 0.0279257i \(0.991110\pi\)
\(878\) −14.2001 28.2311i −0.479230 0.952754i
\(879\) 28.7296i 0.969026i
\(880\) −2.56373 8.48694i −0.0864232 0.286095i
\(881\) 17.3400i 0.584199i 0.956388 + 0.292099i \(0.0943538\pi\)
−0.956388 + 0.292099i \(0.905646\pi\)
\(882\) −4.24804 9.26829i −0.143039 0.312080i
\(883\) 18.7952 0.632510 0.316255 0.948674i \(-0.397574\pi\)
0.316255 + 0.948674i \(0.397574\pi\)
\(884\) 0.205839 + 0.152846i 0.00692311 + 0.00514076i
\(885\) −32.2674 −1.08466
\(886\) −13.7414 27.3193i −0.461652 0.917808i
\(887\) 1.74179 0.0584836 0.0292418 0.999572i \(-0.490691\pi\)
0.0292418 + 0.999572i \(0.490691\pi\)
\(888\) 31.9055 + 5.56475i 1.07068 + 0.186741i
\(889\) 0.600921 33.1310i 0.0201542 1.11118i
\(890\) 8.88130 4.46724i 0.297702 0.149742i
\(891\) 3.45075 0.115604
\(892\) 13.2132 17.7944i 0.442412 0.595800i
\(893\) 15.4451i 0.516851i
\(894\) −0.0680589 0.135308i −0.00227623 0.00452536i
\(895\) −21.1265 −0.706180
\(896\) 3.06430 + 29.7760i 0.102371 + 0.994746i
\(897\) −7.18727 −0.239976
\(898\) 1.84264 + 3.66334i 0.0614896 + 0.122247i
\(899\) 72.8886i 2.43097i
\(900\) −5.77493 + 7.77715i −0.192498 + 0.259238i
\(901\) 1.09374 0.0364376
\(902\) −0.0906531 + 0.0455979i −0.00301842 + 0.00151825i
\(903\) −0.588567 + 32.4499i −0.0195863 + 1.07987i
\(904\) 26.8378 + 4.68088i 0.892613 + 0.155684i
\(905\) −6.72869 −0.223669
\(906\) −1.59220 3.16545i −0.0528974 0.105165i
\(907\) −6.46569 −0.214690 −0.107345 0.994222i \(-0.534235\pi\)
−0.107345 + 0.994222i \(0.534235\pi\)
\(908\) 21.0209 + 15.6091i 0.697603 + 0.518006i
\(909\) 16.5446 0.548750
\(910\) 5.04752 + 10.5053i 0.167324 + 0.348248i
\(911\) 39.3511i 1.30376i −0.758321 0.651881i \(-0.773980\pi\)
0.758321 0.651881i \(-0.226020\pi\)
\(912\) −8.91512 29.5125i −0.295209 0.977257i
\(913\) 2.89466i 0.0957991i
\(914\) −6.70084 13.3219i −0.221644 0.440650i
\(915\) 49.5469i 1.63797i
\(916\) −31.8864 + 42.9417i −1.05356 + 1.41883i
\(917\) 0.447466 24.6705i 0.0147766 0.814692i
\(918\) −0.460783 0.916081i −0.0152081 0.0302352i
\(919\) 1.51489i 0.0499716i −0.999688 0.0249858i \(-0.992046\pi\)
0.999688 0.0249858i \(-0.00795405\pi\)
\(920\) 7.75151 44.4432i 0.255560 1.46525i
\(921\) −0.978041 −0.0322275
\(922\) 9.51782 + 18.9223i 0.313453 + 0.623174i
\(923\) 8.43273i 0.277567i
\(924\) 4.18513 + 3.22704i 0.137681 + 0.106162i
\(925\) 38.3654i 1.26145i
\(926\) −9.33635 + 4.69613i −0.306812 + 0.154324i
\(927\) 4.51185 0.148189
\(928\) 27.5474 + 29.0181i 0.904286 + 0.952566i
\(929\) 29.8691i 0.979975i 0.871729 + 0.489987i \(0.162999\pi\)
−0.871729 + 0.489987i \(0.837001\pi\)
\(930\) 56.9225 28.6317i 1.86656 0.938869i
\(931\) −1.39390 + 38.4128i −0.0456832 + 1.25893i
\(932\) 24.1215 32.4846i 0.790125 1.06407i
\(933\) 30.0400i 0.983464i
\(934\) −24.0548 + 12.0994i −0.787098 + 0.395905i
\(935\) 0.284125i 0.00929190i
\(936\) −2.86966 0.500508i −0.0937978 0.0163596i
\(937\) 35.3032i 1.15330i −0.816990 0.576652i \(-0.804359\pi\)
0.816990 0.576652i \(-0.195641\pi\)
\(938\) −23.5054 48.9215i −0.767480 1.59734i
\(939\) 4.28773 0.139925
\(940\) 10.4465 14.0685i 0.340729 0.458863i
\(941\) −40.5751 −1.32271 −0.661355 0.750073i \(-0.730018\pi\)
−0.661355 + 0.750073i \(0.730018\pi\)
\(942\) 13.3384 6.70912i 0.434587 0.218595i
\(943\) −0.516366 −0.0168152
\(944\) 28.2597 8.53667i 0.919776 0.277845i
\(945\) 0.845370 46.6084i 0.0274999 1.51617i
\(946\) 3.95183 + 7.85661i 0.128485 + 0.255440i
\(947\) 2.97693 0.0967373 0.0483687 0.998830i \(-0.484598\pi\)
0.0483687 + 0.998830i \(0.484598\pi\)
\(948\) −27.4072 + 36.9096i −0.890146 + 1.19877i
\(949\) 8.62895i 0.280108i
\(950\) 32.6257 16.4105i 1.05852 0.532428i
\(951\) −37.6682 −1.22148
\(952\) 0.181936 0.941881i 0.00589658 0.0305265i
\(953\) 31.5607 1.02235 0.511175 0.859477i \(-0.329210\pi\)
0.511175 + 0.859477i \(0.329210\pi\)
\(954\) −11.1017 + 5.58406i −0.359429 + 0.180791i
\(955\) 28.7230i 0.929453i
\(956\) 22.1318 + 16.4340i 0.715794 + 0.531514i
\(957\) 7.06411 0.228350
\(958\) −4.40490 8.75736i −0.142316 0.282937i
\(959\) −9.22084 0.167245i −0.297757 0.00540062i
\(960\) −11.8408 + 32.9119i −0.382159 + 1.06223i
\(961\) 75.1948 2.42564
\(962\) −10.3067 + 5.18423i −0.332303 + 0.167146i
\(963\) −2.84158 −0.0915686
\(964\) −20.4650 15.1963i −0.659134 0.489441i
\(965\) 41.5879 1.33876
\(966\) 11.6464 + 24.2396i 0.374718 + 0.779895i
\(967\) 16.6169i 0.534365i 0.963646 + 0.267182i \(0.0860926\pi\)
−0.963646 + 0.267182i \(0.913907\pi\)
\(968\) −29.2393 5.09973i −0.939785 0.163911i
\(969\) 0.988019i 0.0317398i
\(970\) 20.1944 10.1576i 0.648402 0.326142i
\(971\) 22.3652i 0.717733i −0.933389 0.358866i \(-0.883163\pi\)
0.933389 0.358866i \(-0.116837\pi\)
\(972\) 16.3176 + 12.1167i 0.523388 + 0.388642i
\(973\) 0.659283 36.3488i 0.0211356 1.16529i
\(974\) −45.5522 + 22.9125i −1.45959 + 0.734164i
\(975\) 6.60088i 0.211397i
\(976\) 13.1082 + 43.3931i 0.419582 + 1.38898i
\(977\) 46.7904 1.49696 0.748480 0.663158i \(-0.230784\pi\)
0.748480 + 0.663158i \(0.230784\pi\)
\(978\) 10.0761 5.06821i 0.322198 0.162063i
\(979\) 1.60581i 0.0513218i
\(980\) 27.2508 34.0462i 0.870494 1.08757i
\(981\) 14.9310i 0.476709i
\(982\) 18.0586 + 35.9022i 0.576273 + 1.14569i
\(983\) −9.87533 −0.314974 −0.157487 0.987521i \(-0.550339\pi\)
−0.157487 + 0.987521i \(0.550339\pi\)
\(984\) 0.394386 + 0.0687863i 0.0125726 + 0.00219283i
\(985\) 76.8634i 2.44907i
\(986\) −0.576191 1.14552i −0.0183497 0.0364809i
\(987\) −0.189423 + 10.4436i −0.00602939 + 0.332423i
\(988\) 8.81728 + 6.54728i 0.280515 + 0.208297i
\(989\) 44.7518i 1.42302i
\(990\) −1.45060 2.88393i −0.0461031 0.0916574i
\(991\) 6.15361i 0.195476i 0.995212 + 0.0977379i \(0.0311607\pi\)
−0.995212 + 0.0977379i \(0.968839\pi\)
\(992\) −42.2778 + 40.1350i −1.34232 + 1.27429i
\(993\) 24.7880i 0.786624i
\(994\) −28.4399 + 13.6646i −0.902060 + 0.433415i
\(995\) −49.9988 −1.58507
\(996\) −6.80822 + 9.16870i −0.215727 + 0.290521i
\(997\) −5.86468 −0.185736 −0.0928682 0.995678i \(-0.529604\pi\)
−0.0928682 + 0.995678i \(0.529604\pi\)
\(998\) −10.2553 20.3885i −0.324625 0.645385i
\(999\) 46.1446 1.45995
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.a.27.15 48
4.3 odd 2 2912.2.h.a.2575.34 48
7.6 odd 2 728.2.h.b.27.15 yes 48
8.3 odd 2 728.2.h.b.27.16 yes 48
8.5 even 2 2912.2.h.b.2575.34 48
28.27 even 2 2912.2.h.b.2575.15 48
56.13 odd 2 2912.2.h.a.2575.15 48
56.27 even 2 inner 728.2.h.a.27.16 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.15 48 1.1 even 1 trivial
728.2.h.a.27.16 yes 48 56.27 even 2 inner
728.2.h.b.27.15 yes 48 7.6 odd 2
728.2.h.b.27.16 yes 48 8.3 odd 2
2912.2.h.a.2575.15 48 56.13 odd 2
2912.2.h.a.2575.34 48 4.3 odd 2
2912.2.h.b.2575.15 48 28.27 even 2
2912.2.h.b.2575.34 48 8.5 even 2