Properties

Label 2912.2.h.b.2575.28
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.28
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.b.2575.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.610846i q^{3} -0.780706 q^{5} +(2.18555 + 1.49110i) q^{7} +2.62687 q^{9} -3.13678 q^{11} +1.00000 q^{13} -0.476891i q^{15} +4.47267i q^{17} +1.92835i q^{19} +(-0.910831 + 1.33503i) q^{21} +5.54704i q^{23} -4.39050 q^{25} +3.43715i q^{27} -2.44239i q^{29} -5.76655 q^{31} -1.91609i q^{33} +(-1.70627 - 1.16411i) q^{35} +0.0497032i q^{37} +0.610846i q^{39} -9.71318i q^{41} -9.34658 q^{43} -2.05081 q^{45} +12.2688 q^{47} +(2.55326 + 6.51774i) q^{49} -2.73211 q^{51} -7.60088i q^{53} +2.44890 q^{55} -1.17792 q^{57} +13.2723i q^{59} +8.35048 q^{61} +(5.74115 + 3.91692i) q^{63} -0.780706 q^{65} -0.937154 q^{67} -3.38838 q^{69} +13.0139i q^{71} -0.406509i q^{73} -2.68192i q^{75} +(-6.85559 - 4.67725i) q^{77} -4.03568i q^{79} +5.78103 q^{81} +11.9237i q^{83} -3.49184i q^{85} +1.49193 q^{87} +15.7622i q^{89} +(2.18555 + 1.49110i) q^{91} -3.52247i q^{93} -1.50547i q^{95} -7.10470i q^{97} -8.23991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} + 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} - 24 q^{45} + 40 q^{51} + 20 q^{63} + 4 q^{67} + 20 q^{77} + 64 q^{81} - 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.610846i 0.352672i 0.984330 + 0.176336i \(0.0564245\pi\)
−0.984330 + 0.176336i \(0.943575\pi\)
\(4\) 0 0
\(5\) −0.780706 −0.349142 −0.174571 0.984645i \(-0.555854\pi\)
−0.174571 + 0.984645i \(0.555854\pi\)
\(6\) 0 0
\(7\) 2.18555 + 1.49110i 0.826060 + 0.563582i
\(8\) 0 0
\(9\) 2.62687 0.875622
\(10\) 0 0
\(11\) −3.13678 −0.945775 −0.472888 0.881123i \(-0.656788\pi\)
−0.472888 + 0.881123i \(0.656788\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0.476891i 0.123133i
\(16\) 0 0
\(17\) 4.47267i 1.08478i 0.840126 + 0.542391i \(0.182481\pi\)
−0.840126 + 0.542391i \(0.817519\pi\)
\(18\) 0 0
\(19\) 1.92835i 0.442393i 0.975229 + 0.221197i \(0.0709962\pi\)
−0.975229 + 0.221197i \(0.929004\pi\)
\(20\) 0 0
\(21\) −0.910831 + 1.33503i −0.198760 + 0.291328i
\(22\) 0 0
\(23\) 5.54704i 1.15664i 0.815811 + 0.578319i \(0.196291\pi\)
−0.815811 + 0.578319i \(0.803709\pi\)
\(24\) 0 0
\(25\) −4.39050 −0.878100
\(26\) 0 0
\(27\) 3.43715i 0.661480i
\(28\) 0 0
\(29\) 2.44239i 0.453541i −0.973948 0.226771i \(-0.927183\pi\)
0.973948 0.226771i \(-0.0728167\pi\)
\(30\) 0 0
\(31\) −5.76655 −1.03570 −0.517851 0.855471i \(-0.673268\pi\)
−0.517851 + 0.855471i \(0.673268\pi\)
\(32\) 0 0
\(33\) 1.91609i 0.333548i
\(34\) 0 0
\(35\) −1.70627 1.16411i −0.288413 0.196770i
\(36\) 0 0
\(37\) 0.0497032i 0.00817115i 0.999992 + 0.00408557i \(0.00130048\pi\)
−0.999992 + 0.00408557i \(0.998700\pi\)
\(38\) 0 0
\(39\) 0.610846i 0.0978136i
\(40\) 0 0
\(41\) 9.71318i 1.51694i −0.651706 0.758472i \(-0.725946\pi\)
0.651706 0.758472i \(-0.274054\pi\)
\(42\) 0 0
\(43\) −9.34658 −1.42534 −0.712670 0.701499i \(-0.752514\pi\)
−0.712670 + 0.701499i \(0.752514\pi\)
\(44\) 0 0
\(45\) −2.05081 −0.305717
\(46\) 0 0
\(47\) 12.2688 1.78959 0.894794 0.446479i \(-0.147322\pi\)
0.894794 + 0.446479i \(0.147322\pi\)
\(48\) 0 0
\(49\) 2.55326 + 6.51774i 0.364751 + 0.931105i
\(50\) 0 0
\(51\) −2.73211 −0.382572
\(52\) 0 0
\(53\) 7.60088i 1.04406i −0.852927 0.522031i \(-0.825175\pi\)
0.852927 0.522031i \(-0.174825\pi\)
\(54\) 0 0
\(55\) 2.44890 0.330210
\(56\) 0 0
\(57\) −1.17792 −0.156020
\(58\) 0 0
\(59\) 13.2723i 1.72791i 0.503568 + 0.863955i \(0.332020\pi\)
−0.503568 + 0.863955i \(0.667980\pi\)
\(60\) 0 0
\(61\) 8.35048 1.06917 0.534585 0.845115i \(-0.320468\pi\)
0.534585 + 0.845115i \(0.320468\pi\)
\(62\) 0 0
\(63\) 5.74115 + 3.91692i 0.723317 + 0.493485i
\(64\) 0 0
\(65\) −0.780706 −0.0968346
\(66\) 0 0
\(67\) −0.937154 −0.114492 −0.0572458 0.998360i \(-0.518232\pi\)
−0.0572458 + 0.998360i \(0.518232\pi\)
\(68\) 0 0
\(69\) −3.38838 −0.407914
\(70\) 0 0
\(71\) 13.0139i 1.54446i 0.635341 + 0.772232i \(0.280859\pi\)
−0.635341 + 0.772232i \(0.719141\pi\)
\(72\) 0 0
\(73\) 0.406509i 0.0475783i −0.999717 0.0237891i \(-0.992427\pi\)
0.999717 0.0237891i \(-0.00757304\pi\)
\(74\) 0 0
\(75\) 2.68192i 0.309681i
\(76\) 0 0
\(77\) −6.85559 4.67725i −0.781267 0.533022i
\(78\) 0 0
\(79\) 4.03568i 0.454049i −0.973889 0.227025i \(-0.927100\pi\)
0.973889 0.227025i \(-0.0728998\pi\)
\(80\) 0 0
\(81\) 5.78103 0.642337
\(82\) 0 0
\(83\) 11.9237i 1.30879i 0.756151 + 0.654397i \(0.227078\pi\)
−0.756151 + 0.654397i \(0.772922\pi\)
\(84\) 0 0
\(85\) 3.49184i 0.378743i
\(86\) 0 0
\(87\) 1.49193 0.159951
\(88\) 0 0
\(89\) 15.7622i 1.67079i 0.549646 + 0.835397i \(0.314762\pi\)
−0.549646 + 0.835397i \(0.685238\pi\)
\(90\) 0 0
\(91\) 2.18555 + 1.49110i 0.229108 + 0.156309i
\(92\) 0 0
\(93\) 3.52247i 0.365263i
\(94\) 0 0
\(95\) 1.50547i 0.154458i
\(96\) 0 0
\(97\) 7.10470i 0.721373i −0.932687 0.360687i \(-0.882542\pi\)
0.932687 0.360687i \(-0.117458\pi\)
\(98\) 0 0
\(99\) −8.23991 −0.828142
\(100\) 0 0
\(101\) −7.67995 −0.764184 −0.382092 0.924124i \(-0.624796\pi\)
−0.382092 + 0.924124i \(0.624796\pi\)
\(102\) 0 0
\(103\) 4.33561 0.427201 0.213600 0.976921i \(-0.431481\pi\)
0.213600 + 0.976921i \(0.431481\pi\)
\(104\) 0 0
\(105\) 0.711091 1.04227i 0.0693954 0.101715i
\(106\) 0 0
\(107\) −16.2564 −1.57157 −0.785784 0.618501i \(-0.787740\pi\)
−0.785784 + 0.618501i \(0.787740\pi\)
\(108\) 0 0
\(109\) 3.71293i 0.355634i 0.984064 + 0.177817i \(0.0569035\pi\)
−0.984064 + 0.177817i \(0.943097\pi\)
\(110\) 0 0
\(111\) −0.0303610 −0.00288174
\(112\) 0 0
\(113\) −15.6349 −1.47081 −0.735403 0.677630i \(-0.763007\pi\)
−0.735403 + 0.677630i \(0.763007\pi\)
\(114\) 0 0
\(115\) 4.33060i 0.403831i
\(116\) 0 0
\(117\) 2.62687 0.242854
\(118\) 0 0
\(119\) −6.66919 + 9.77525i −0.611364 + 0.896096i
\(120\) 0 0
\(121\) −1.16060 −0.105509
\(122\) 0 0
\(123\) 5.93325 0.534983
\(124\) 0 0
\(125\) 7.33122 0.655724
\(126\) 0 0
\(127\) 15.3966i 1.36623i −0.730313 0.683113i \(-0.760626\pi\)
0.730313 0.683113i \(-0.239374\pi\)
\(128\) 0 0
\(129\) 5.70932i 0.502678i
\(130\) 0 0
\(131\) 17.2379i 1.50608i −0.657972 0.753042i \(-0.728585\pi\)
0.657972 0.753042i \(-0.271415\pi\)
\(132\) 0 0
\(133\) −2.87535 + 4.21450i −0.249325 + 0.365443i
\(134\) 0 0
\(135\) 2.68340i 0.230950i
\(136\) 0 0
\(137\) −10.9864 −0.938628 −0.469314 0.883031i \(-0.655499\pi\)
−0.469314 + 0.883031i \(0.655499\pi\)
\(138\) 0 0
\(139\) 18.0704i 1.53271i 0.642419 + 0.766354i \(0.277931\pi\)
−0.642419 + 0.766354i \(0.722069\pi\)
\(140\) 0 0
\(141\) 7.49434i 0.631138i
\(142\) 0 0
\(143\) −3.13678 −0.262311
\(144\) 0 0
\(145\) 1.90679i 0.158350i
\(146\) 0 0
\(147\) −3.98133 + 1.55965i −0.328375 + 0.128637i
\(148\) 0 0
\(149\) 20.7169i 1.69720i 0.529038 + 0.848598i \(0.322553\pi\)
−0.529038 + 0.848598i \(0.677447\pi\)
\(150\) 0 0
\(151\) 12.7907i 1.04089i −0.853895 0.520446i \(-0.825766\pi\)
0.853895 0.520446i \(-0.174234\pi\)
\(152\) 0 0
\(153\) 11.7491i 0.949860i
\(154\) 0 0
\(155\) 4.50198 0.361608
\(156\) 0 0
\(157\) 5.52377 0.440845 0.220423 0.975404i \(-0.429256\pi\)
0.220423 + 0.975404i \(0.429256\pi\)
\(158\) 0 0
\(159\) 4.64297 0.368211
\(160\) 0 0
\(161\) −8.27117 + 12.1233i −0.651860 + 0.955452i
\(162\) 0 0
\(163\) 0.876767 0.0686737 0.0343368 0.999410i \(-0.489068\pi\)
0.0343368 + 0.999410i \(0.489068\pi\)
\(164\) 0 0
\(165\) 1.49590i 0.116456i
\(166\) 0 0
\(167\) −22.5988 −1.74875 −0.874373 0.485254i \(-0.838727\pi\)
−0.874373 + 0.485254i \(0.838727\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 5.06551i 0.387369i
\(172\) 0 0
\(173\) 1.41995 0.107956 0.0539782 0.998542i \(-0.482810\pi\)
0.0539782 + 0.998542i \(0.482810\pi\)
\(174\) 0 0
\(175\) −9.59565 6.54666i −0.725363 0.494881i
\(176\) 0 0
\(177\) −8.10735 −0.609386
\(178\) 0 0
\(179\) −12.0505 −0.900698 −0.450349 0.892852i \(-0.648701\pi\)
−0.450349 + 0.892852i \(0.648701\pi\)
\(180\) 0 0
\(181\) 23.9696 1.78164 0.890822 0.454352i \(-0.150129\pi\)
0.890822 + 0.454352i \(0.150129\pi\)
\(182\) 0 0
\(183\) 5.10086i 0.377066i
\(184\) 0 0
\(185\) 0.0388035i 0.00285289i
\(186\) 0 0
\(187\) 14.0298i 1.02596i
\(188\) 0 0
\(189\) −5.12512 + 7.51206i −0.372798 + 0.546422i
\(190\) 0 0
\(191\) 12.0391i 0.871119i 0.900160 + 0.435559i \(0.143449\pi\)
−0.900160 + 0.435559i \(0.856551\pi\)
\(192\) 0 0
\(193\) 3.94730 0.284133 0.142066 0.989857i \(-0.454625\pi\)
0.142066 + 0.989857i \(0.454625\pi\)
\(194\) 0 0
\(195\) 0.476891i 0.0341509i
\(196\) 0 0
\(197\) 16.8982i 1.20394i 0.798517 + 0.601972i \(0.205618\pi\)
−0.798517 + 0.601972i \(0.794382\pi\)
\(198\) 0 0
\(199\) 11.8887 0.842767 0.421383 0.906883i \(-0.361545\pi\)
0.421383 + 0.906883i \(0.361545\pi\)
\(200\) 0 0
\(201\) 0.572456i 0.0403780i
\(202\) 0 0
\(203\) 3.64185 5.33797i 0.255608 0.374652i
\(204\) 0 0
\(205\) 7.58313i 0.529629i
\(206\) 0 0
\(207\) 14.5713i 1.01278i
\(208\) 0 0
\(209\) 6.04880i 0.418405i
\(210\) 0 0
\(211\) 11.2892 0.777182 0.388591 0.921410i \(-0.372962\pi\)
0.388591 + 0.921410i \(0.372962\pi\)
\(212\) 0 0
\(213\) −7.94947 −0.544689
\(214\) 0 0
\(215\) 7.29693 0.497646
\(216\) 0 0
\(217\) −12.6031 8.59849i −0.855553 0.583703i
\(218\) 0 0
\(219\) 0.248314 0.0167795
\(220\) 0 0
\(221\) 4.47267i 0.300865i
\(222\) 0 0
\(223\) −6.21212 −0.415994 −0.207997 0.978129i \(-0.566694\pi\)
−0.207997 + 0.978129i \(0.566694\pi\)
\(224\) 0 0
\(225\) −11.5333 −0.768884
\(226\) 0 0
\(227\) 2.41724i 0.160438i 0.996777 + 0.0802188i \(0.0255619\pi\)
−0.996777 + 0.0802188i \(0.974438\pi\)
\(228\) 0 0
\(229\) 0.777226 0.0513606 0.0256803 0.999670i \(-0.491825\pi\)
0.0256803 + 0.999670i \(0.491825\pi\)
\(230\) 0 0
\(231\) 2.85708 4.18771i 0.187982 0.275531i
\(232\) 0 0
\(233\) 0.935862 0.0613104 0.0306552 0.999530i \(-0.490241\pi\)
0.0306552 + 0.999530i \(0.490241\pi\)
\(234\) 0 0
\(235\) −9.57832 −0.624821
\(236\) 0 0
\(237\) 2.46518 0.160131
\(238\) 0 0
\(239\) 8.07542i 0.522356i 0.965291 + 0.261178i \(0.0841109\pi\)
−0.965291 + 0.261178i \(0.915889\pi\)
\(240\) 0 0
\(241\) 13.0922i 0.843344i 0.906748 + 0.421672i \(0.138557\pi\)
−0.906748 + 0.421672i \(0.861443\pi\)
\(242\) 0 0
\(243\) 13.8428i 0.888014i
\(244\) 0 0
\(245\) −1.99334 5.08843i −0.127350 0.325088i
\(246\) 0 0
\(247\) 1.92835i 0.122698i
\(248\) 0 0
\(249\) −7.28353 −0.461575
\(250\) 0 0
\(251\) 11.6794i 0.737199i 0.929588 + 0.368599i \(0.120163\pi\)
−0.929588 + 0.368599i \(0.879837\pi\)
\(252\) 0 0
\(253\) 17.3998i 1.09392i
\(254\) 0 0
\(255\) 2.13298 0.133572
\(256\) 0 0
\(257\) 22.9812i 1.43353i 0.697315 + 0.716765i \(0.254378\pi\)
−0.697315 + 0.716765i \(0.745622\pi\)
\(258\) 0 0
\(259\) −0.0741123 + 0.108629i −0.00460511 + 0.00674986i
\(260\) 0 0
\(261\) 6.41584i 0.397131i
\(262\) 0 0
\(263\) 8.58073i 0.529111i −0.964371 0.264555i \(-0.914775\pi\)
0.964371 0.264555i \(-0.0852252\pi\)
\(264\) 0 0
\(265\) 5.93405i 0.364526i
\(266\) 0 0
\(267\) −9.62830 −0.589243
\(268\) 0 0
\(269\) 20.5726 1.25433 0.627167 0.778885i \(-0.284214\pi\)
0.627167 + 0.778885i \(0.284214\pi\)
\(270\) 0 0
\(271\) −7.63381 −0.463721 −0.231861 0.972749i \(-0.574481\pi\)
−0.231861 + 0.972749i \(0.574481\pi\)
\(272\) 0 0
\(273\) −0.910831 + 1.33503i −0.0551260 + 0.0807999i
\(274\) 0 0
\(275\) 13.7720 0.830485
\(276\) 0 0
\(277\) 11.3502i 0.681965i 0.940070 + 0.340982i \(0.110760\pi\)
−0.940070 + 0.340982i \(0.889240\pi\)
\(278\) 0 0
\(279\) −15.1480 −0.906885
\(280\) 0 0
\(281\) 6.35231 0.378947 0.189474 0.981886i \(-0.439322\pi\)
0.189474 + 0.981886i \(0.439322\pi\)
\(282\) 0 0
\(283\) 23.3762i 1.38957i −0.719217 0.694785i \(-0.755499\pi\)
0.719217 0.694785i \(-0.244501\pi\)
\(284\) 0 0
\(285\) 0.919611 0.0544731
\(286\) 0 0
\(287\) 14.4833 21.2286i 0.854922 1.25309i
\(288\) 0 0
\(289\) −3.00481 −0.176753
\(290\) 0 0
\(291\) 4.33988 0.254408
\(292\) 0 0
\(293\) 0.300712 0.0175678 0.00878389 0.999961i \(-0.497204\pi\)
0.00878389 + 0.999961i \(0.497204\pi\)
\(294\) 0 0
\(295\) 10.3618i 0.603287i
\(296\) 0 0
\(297\) 10.7816i 0.625611i
\(298\) 0 0
\(299\) 5.54704i 0.320793i
\(300\) 0 0
\(301\) −20.4274 13.9367i −1.17742 0.803296i
\(302\) 0 0
\(303\) 4.69127i 0.269506i
\(304\) 0 0
\(305\) −6.51927 −0.373292
\(306\) 0 0
\(307\) 10.2092i 0.582671i −0.956621 0.291336i \(-0.905900\pi\)
0.956621 0.291336i \(-0.0940997\pi\)
\(308\) 0 0
\(309\) 2.64839i 0.150662i
\(310\) 0 0
\(311\) 3.99969 0.226802 0.113401 0.993549i \(-0.463826\pi\)
0.113401 + 0.993549i \(0.463826\pi\)
\(312\) 0 0
\(313\) 14.2771i 0.806988i −0.914982 0.403494i \(-0.867796\pi\)
0.914982 0.403494i \(-0.132204\pi\)
\(314\) 0 0
\(315\) −4.48215 3.05796i −0.252540 0.172296i
\(316\) 0 0
\(317\) 4.92436i 0.276580i 0.990392 + 0.138290i \(0.0441605\pi\)
−0.990392 + 0.138290i \(0.955839\pi\)
\(318\) 0 0
\(319\) 7.66126i 0.428948i
\(320\) 0 0
\(321\) 9.93017i 0.554248i
\(322\) 0 0
\(323\) −8.62487 −0.479900
\(324\) 0 0
\(325\) −4.39050 −0.243541
\(326\) 0 0
\(327\) −2.26802 −0.125422
\(328\) 0 0
\(329\) 26.8141 + 18.2940i 1.47831 + 1.00858i
\(330\) 0 0
\(331\) 10.2132 0.561368 0.280684 0.959800i \(-0.409439\pi\)
0.280684 + 0.959800i \(0.409439\pi\)
\(332\) 0 0
\(333\) 0.130564i 0.00715484i
\(334\) 0 0
\(335\) 0.731641 0.0399738
\(336\) 0 0
\(337\) −5.87706 −0.320144 −0.160072 0.987105i \(-0.551173\pi\)
−0.160072 + 0.987105i \(0.551173\pi\)
\(338\) 0 0
\(339\) 9.55050i 0.518712i
\(340\) 0 0
\(341\) 18.0884 0.979542
\(342\) 0 0
\(343\) −4.13831 + 18.0520i −0.223448 + 0.974716i
\(344\) 0 0
\(345\) 2.64533 0.142420
\(346\) 0 0
\(347\) 26.0891 1.40053 0.700267 0.713881i \(-0.253064\pi\)
0.700267 + 0.713881i \(0.253064\pi\)
\(348\) 0 0
\(349\) −24.8684 −1.33118 −0.665588 0.746319i \(-0.731819\pi\)
−0.665588 + 0.746319i \(0.731819\pi\)
\(350\) 0 0
\(351\) 3.43715i 0.183461i
\(352\) 0 0
\(353\) 1.35013i 0.0718601i 0.999354 + 0.0359300i \(0.0114393\pi\)
−0.999354 + 0.0359300i \(0.988561\pi\)
\(354\) 0 0
\(355\) 10.1600i 0.539237i
\(356\) 0 0
\(357\) −5.97117 4.07385i −0.316028 0.215611i
\(358\) 0 0
\(359\) 4.82833i 0.254829i −0.991850 0.127415i \(-0.959332\pi\)
0.991850 0.127415i \(-0.0406679\pi\)
\(360\) 0 0
\(361\) 15.2815 0.804288
\(362\) 0 0
\(363\) 0.708947i 0.0372101i
\(364\) 0 0
\(365\) 0.317364i 0.0166116i
\(366\) 0 0
\(367\) 8.89488 0.464309 0.232155 0.972679i \(-0.425422\pi\)
0.232155 + 0.972679i \(0.425422\pi\)
\(368\) 0 0
\(369\) 25.5152i 1.32827i
\(370\) 0 0
\(371\) 11.3337 16.6121i 0.588414 0.862458i
\(372\) 0 0
\(373\) 35.8127i 1.85431i −0.374674 0.927157i \(-0.622245\pi\)
0.374674 0.927157i \(-0.377755\pi\)
\(374\) 0 0
\(375\) 4.47824i 0.231255i
\(376\) 0 0
\(377\) 2.44239i 0.125790i
\(378\) 0 0
\(379\) 12.9413 0.664748 0.332374 0.943148i \(-0.392150\pi\)
0.332374 + 0.943148i \(0.392150\pi\)
\(380\) 0 0
\(381\) 9.40493 0.481829
\(382\) 0 0
\(383\) 16.3984 0.837918 0.418959 0.908005i \(-0.362395\pi\)
0.418959 + 0.908005i \(0.362395\pi\)
\(384\) 0 0
\(385\) 5.35220 + 3.65155i 0.272773 + 0.186100i
\(386\) 0 0
\(387\) −24.5522 −1.24806
\(388\) 0 0
\(389\) 19.3191i 0.979516i −0.871858 0.489758i \(-0.837085\pi\)
0.871858 0.489758i \(-0.162915\pi\)
\(390\) 0 0
\(391\) −24.8101 −1.25470
\(392\) 0 0
\(393\) 10.5297 0.531154
\(394\) 0 0
\(395\) 3.15068i 0.158528i
\(396\) 0 0
\(397\) 27.8169 1.39609 0.698044 0.716055i \(-0.254054\pi\)
0.698044 + 0.716055i \(0.254054\pi\)
\(398\) 0 0
\(399\) −2.57441 1.75640i −0.128882 0.0879299i
\(400\) 0 0
\(401\) −32.8827 −1.64208 −0.821041 0.570869i \(-0.806606\pi\)
−0.821041 + 0.570869i \(0.806606\pi\)
\(402\) 0 0
\(403\) −5.76655 −0.287252
\(404\) 0 0
\(405\) −4.51329 −0.224267
\(406\) 0 0
\(407\) 0.155908i 0.00772807i
\(408\) 0 0
\(409\) 22.6861i 1.12176i −0.827899 0.560878i \(-0.810464\pi\)
0.827899 0.560878i \(-0.189536\pi\)
\(410\) 0 0
\(411\) 6.71097i 0.331028i
\(412\) 0 0
\(413\) −19.7903 + 29.0074i −0.973819 + 1.42736i
\(414\) 0 0
\(415\) 9.30889i 0.456956i
\(416\) 0 0
\(417\) −11.0382 −0.540543
\(418\) 0 0
\(419\) 7.03620i 0.343741i −0.985120 0.171870i \(-0.945019\pi\)
0.985120 0.171870i \(-0.0549810\pi\)
\(420\) 0 0
\(421\) 13.2449i 0.645515i 0.946482 + 0.322757i \(0.104610\pi\)
−0.946482 + 0.322757i \(0.895390\pi\)
\(422\) 0 0
\(423\) 32.2285 1.56700
\(424\) 0 0
\(425\) 19.6373i 0.952547i
\(426\) 0 0
\(427\) 18.2504 + 12.4514i 0.883199 + 0.602565i
\(428\) 0 0
\(429\) 1.91609i 0.0925097i
\(430\) 0 0
\(431\) 28.2469i 1.36060i −0.732932 0.680302i \(-0.761849\pi\)
0.732932 0.680302i \(-0.238151\pi\)
\(432\) 0 0
\(433\) 13.3814i 0.643071i 0.946898 + 0.321535i \(0.104199\pi\)
−0.946898 + 0.321535i \(0.895801\pi\)
\(434\) 0 0
\(435\) −1.16476 −0.0558457
\(436\) 0 0
\(437\) −10.6966 −0.511688
\(438\) 0 0
\(439\) 15.9433 0.760933 0.380467 0.924795i \(-0.375763\pi\)
0.380467 + 0.924795i \(0.375763\pi\)
\(440\) 0 0
\(441\) 6.70707 + 17.1212i 0.319384 + 0.815297i
\(442\) 0 0
\(443\) 15.4639 0.734714 0.367357 0.930080i \(-0.380263\pi\)
0.367357 + 0.930080i \(0.380263\pi\)
\(444\) 0 0
\(445\) 12.3057i 0.583345i
\(446\) 0 0
\(447\) −12.6548 −0.598553
\(448\) 0 0
\(449\) −6.57371 −0.310233 −0.155116 0.987896i \(-0.549575\pi\)
−0.155116 + 0.987896i \(0.549575\pi\)
\(450\) 0 0
\(451\) 30.4681i 1.43469i
\(452\) 0 0
\(453\) 7.81314 0.367093
\(454\) 0 0
\(455\) −1.70627 1.16411i −0.0799912 0.0545743i
\(456\) 0 0
\(457\) 34.8367 1.62959 0.814796 0.579748i \(-0.196849\pi\)
0.814796 + 0.579748i \(0.196849\pi\)
\(458\) 0 0
\(459\) −15.3732 −0.717562
\(460\) 0 0
\(461\) 10.9767 0.511236 0.255618 0.966778i \(-0.417721\pi\)
0.255618 + 0.966778i \(0.417721\pi\)
\(462\) 0 0
\(463\) 18.8055i 0.873963i 0.899470 + 0.436982i \(0.143953\pi\)
−0.899470 + 0.436982i \(0.856047\pi\)
\(464\) 0 0
\(465\) 2.75002i 0.127529i
\(466\) 0 0
\(467\) 14.3383i 0.663497i 0.943368 + 0.331748i \(0.107638\pi\)
−0.943368 + 0.331748i \(0.892362\pi\)
\(468\) 0 0
\(469\) −2.04820 1.39739i −0.0945769 0.0645254i
\(470\) 0 0
\(471\) 3.37417i 0.155474i
\(472\) 0 0
\(473\) 29.3182 1.34805
\(474\) 0 0
\(475\) 8.46640i 0.388465i
\(476\) 0 0
\(477\) 19.9665i 0.914204i
\(478\) 0 0
\(479\) −5.36064 −0.244934 −0.122467 0.992473i \(-0.539081\pi\)
−0.122467 + 0.992473i \(0.539081\pi\)
\(480\) 0 0
\(481\) 0.0497032i 0.00226627i
\(482\) 0 0
\(483\) −7.40548 5.05241i −0.336961 0.229893i
\(484\) 0 0
\(485\) 5.54668i 0.251862i
\(486\) 0 0
\(487\) 14.7792i 0.669708i −0.942270 0.334854i \(-0.891313\pi\)
0.942270 0.334854i \(-0.108687\pi\)
\(488\) 0 0
\(489\) 0.535569i 0.0242193i
\(490\) 0 0
\(491\) 21.0065 0.948011 0.474006 0.880522i \(-0.342808\pi\)
0.474006 + 0.880522i \(0.342808\pi\)
\(492\) 0 0
\(493\) 10.9240 0.491993
\(494\) 0 0
\(495\) 6.43295 0.289139
\(496\) 0 0
\(497\) −19.4050 + 28.4425i −0.870431 + 1.27582i
\(498\) 0 0
\(499\) 14.2078 0.636030 0.318015 0.948086i \(-0.396984\pi\)
0.318015 + 0.948086i \(0.396984\pi\)
\(500\) 0 0
\(501\) 13.8044i 0.616734i
\(502\) 0 0
\(503\) −38.2658 −1.70619 −0.853095 0.521756i \(-0.825277\pi\)
−0.853095 + 0.521756i \(0.825277\pi\)
\(504\) 0 0
\(505\) 5.99578 0.266809
\(506\) 0 0
\(507\) 0.610846i 0.0271286i
\(508\) 0 0
\(509\) −9.93667 −0.440435 −0.220217 0.975451i \(-0.570677\pi\)
−0.220217 + 0.975451i \(0.570677\pi\)
\(510\) 0 0
\(511\) 0.606145 0.888446i 0.0268143 0.0393025i
\(512\) 0 0
\(513\) −6.62802 −0.292634
\(514\) 0 0
\(515\) −3.38484 −0.149154
\(516\) 0 0
\(517\) −38.4845 −1.69255
\(518\) 0 0
\(519\) 0.867368i 0.0380732i
\(520\) 0 0
\(521\) 10.2606i 0.449524i −0.974414 0.224762i \(-0.927840\pi\)
0.974414 0.224762i \(-0.0721605\pi\)
\(522\) 0 0
\(523\) 10.2265i 0.447173i −0.974684 0.223587i \(-0.928223\pi\)
0.974684 0.223587i \(-0.0717765\pi\)
\(524\) 0 0
\(525\) 3.99900 5.86146i 0.174531 0.255815i
\(526\) 0 0
\(527\) 25.7919i 1.12351i
\(528\) 0 0
\(529\) −7.76963 −0.337810
\(530\) 0 0
\(531\) 34.8647i 1.51300i
\(532\) 0 0
\(533\) 9.71318i 0.420724i
\(534\) 0 0
\(535\) 12.6915 0.548701
\(536\) 0 0
\(537\) 7.36101i 0.317651i
\(538\) 0 0
\(539\) −8.00901 20.4447i −0.344972 0.880616i
\(540\) 0 0
\(541\) 46.1245i 1.98305i 0.129934 + 0.991523i \(0.458523\pi\)
−0.129934 + 0.991523i \(0.541477\pi\)
\(542\) 0 0
\(543\) 14.6417i 0.628336i
\(544\) 0 0
\(545\) 2.89870i 0.124167i
\(546\) 0 0
\(547\) 13.4615 0.575573 0.287787 0.957695i \(-0.407081\pi\)
0.287787 + 0.957695i \(0.407081\pi\)
\(548\) 0 0
\(549\) 21.9356 0.936189
\(550\) 0 0
\(551\) 4.70978 0.200643
\(552\) 0 0
\(553\) 6.01759 8.82018i 0.255894 0.375072i
\(554\) 0 0
\(555\) 0.0237030 0.00100614
\(556\) 0 0
\(557\) 18.6109i 0.788568i −0.918989 0.394284i \(-0.870993\pi\)
0.918989 0.394284i \(-0.129007\pi\)
\(558\) 0 0
\(559\) −9.34658 −0.395318
\(560\) 0 0
\(561\) 8.57005 0.361828
\(562\) 0 0
\(563\) 22.1148i 0.932026i −0.884778 0.466013i \(-0.845690\pi\)
0.884778 0.466013i \(-0.154310\pi\)
\(564\) 0 0
\(565\) 12.2062 0.513521
\(566\) 0 0
\(567\) 12.6347 + 8.62009i 0.530609 + 0.362010i
\(568\) 0 0
\(569\) 25.8418 1.08335 0.541673 0.840590i \(-0.317791\pi\)
0.541673 + 0.840590i \(0.317791\pi\)
\(570\) 0 0
\(571\) 25.7728 1.07856 0.539279 0.842127i \(-0.318697\pi\)
0.539279 + 0.842127i \(0.318697\pi\)
\(572\) 0 0
\(573\) −7.35403 −0.307219
\(574\) 0 0
\(575\) 24.3543i 1.01564i
\(576\) 0 0
\(577\) 22.8537i 0.951410i 0.879605 + 0.475705i \(0.157807\pi\)
−0.879605 + 0.475705i \(0.842193\pi\)
\(578\) 0 0
\(579\) 2.41119i 0.100206i
\(580\) 0 0
\(581\) −17.7794 + 26.0598i −0.737613 + 1.08114i
\(582\) 0 0
\(583\) 23.8423i 0.987447i
\(584\) 0 0
\(585\) −2.05081 −0.0847906
\(586\) 0 0
\(587\) 5.51657i 0.227693i 0.993498 + 0.113847i \(0.0363172\pi\)
−0.993498 + 0.113847i \(0.963683\pi\)
\(588\) 0 0
\(589\) 11.1199i 0.458188i
\(590\) 0 0
\(591\) −10.3222 −0.424598
\(592\) 0 0
\(593\) 5.37304i 0.220644i 0.993896 + 0.110322i \(0.0351883\pi\)
−0.993896 + 0.110322i \(0.964812\pi\)
\(594\) 0 0
\(595\) 5.20668 7.63160i 0.213453 0.312865i
\(596\) 0 0
\(597\) 7.26216i 0.297220i
\(598\) 0 0
\(599\) 4.38259i 0.179068i −0.995984 0.0895338i \(-0.971462\pi\)
0.995984 0.0895338i \(-0.0285377\pi\)
\(600\) 0 0
\(601\) 32.9212i 1.34288i −0.741057 0.671442i \(-0.765675\pi\)
0.741057 0.671442i \(-0.234325\pi\)
\(602\) 0 0
\(603\) −2.46178 −0.100251
\(604\) 0 0
\(605\) 0.906087 0.0368377
\(606\) 0 0
\(607\) −16.1526 −0.655615 −0.327807 0.944745i \(-0.606310\pi\)
−0.327807 + 0.944745i \(0.606310\pi\)
\(608\) 0 0
\(609\) 3.26068 + 2.22461i 0.132129 + 0.0901456i
\(610\) 0 0
\(611\) 12.2688 0.496342
\(612\) 0 0
\(613\) 38.2321i 1.54418i 0.635514 + 0.772090i \(0.280788\pi\)
−0.635514 + 0.772090i \(0.719212\pi\)
\(614\) 0 0
\(615\) −4.63212 −0.186785
\(616\) 0 0
\(617\) 13.4473 0.541370 0.270685 0.962668i \(-0.412750\pi\)
0.270685 + 0.962668i \(0.412750\pi\)
\(618\) 0 0
\(619\) 3.01278i 0.121094i −0.998165 0.0605468i \(-0.980716\pi\)
0.998165 0.0605468i \(-0.0192845\pi\)
\(620\) 0 0
\(621\) −19.0660 −0.765092
\(622\) 0 0
\(623\) −23.5030 + 34.4492i −0.941630 + 1.38018i
\(624\) 0 0
\(625\) 16.2290 0.649159
\(626\) 0 0
\(627\) 3.69489 0.147560
\(628\) 0 0
\(629\) −0.222306 −0.00886392
\(630\) 0 0
\(631\) 45.0426i 1.79312i −0.442923 0.896560i \(-0.646059\pi\)
0.442923 0.896560i \(-0.353941\pi\)
\(632\) 0 0
\(633\) 6.89598i 0.274090i
\(634\) 0 0
\(635\) 12.0202i 0.477007i
\(636\) 0 0
\(637\) 2.55326 + 6.51774i 0.101164 + 0.258242i
\(638\) 0 0
\(639\) 34.1857i 1.35237i
\(640\) 0 0
\(641\) −13.9305 −0.550223 −0.275111 0.961412i \(-0.588715\pi\)
−0.275111 + 0.961412i \(0.588715\pi\)
\(642\) 0 0
\(643\) 12.4706i 0.491793i 0.969296 + 0.245896i \(0.0790823\pi\)
−0.969296 + 0.245896i \(0.920918\pi\)
\(644\) 0 0
\(645\) 4.45730i 0.175506i
\(646\) 0 0
\(647\) 15.0662 0.592315 0.296157 0.955139i \(-0.404295\pi\)
0.296157 + 0.955139i \(0.404295\pi\)
\(648\) 0 0
\(649\) 41.6324i 1.63422i
\(650\) 0 0
\(651\) 5.25235 7.69854i 0.205856 0.301730i
\(652\) 0 0
\(653\) 4.21959i 0.165125i −0.996586 0.0825627i \(-0.973690\pi\)
0.996586 0.0825627i \(-0.0263105\pi\)
\(654\) 0 0
\(655\) 13.4578i 0.525838i
\(656\) 0 0
\(657\) 1.06785i 0.0416606i
\(658\) 0 0
\(659\) −3.00756 −0.117158 −0.0585790 0.998283i \(-0.518657\pi\)
−0.0585790 + 0.998283i \(0.518657\pi\)
\(660\) 0 0
\(661\) −18.4307 −0.716871 −0.358436 0.933554i \(-0.616690\pi\)
−0.358436 + 0.933554i \(0.616690\pi\)
\(662\) 0 0
\(663\) −2.73211 −0.106107
\(664\) 0 0
\(665\) 2.24481 3.29028i 0.0870498 0.127592i
\(666\) 0 0
\(667\) 13.5480 0.524583
\(668\) 0 0
\(669\) 3.79465i 0.146710i
\(670\) 0 0
\(671\) −26.1936 −1.01119
\(672\) 0 0
\(673\) 34.6624 1.33614 0.668069 0.744099i \(-0.267121\pi\)
0.668069 + 0.744099i \(0.267121\pi\)
\(674\) 0 0
\(675\) 15.0908i 0.580845i
\(676\) 0 0
\(677\) 46.5739 1.78998 0.894990 0.446087i \(-0.147183\pi\)
0.894990 + 0.446087i \(0.147183\pi\)
\(678\) 0 0
\(679\) 10.5938 15.5277i 0.406553 0.595898i
\(680\) 0 0
\(681\) −1.47656 −0.0565819
\(682\) 0 0
\(683\) −13.1703 −0.503947 −0.251974 0.967734i \(-0.581080\pi\)
−0.251974 + 0.967734i \(0.581080\pi\)
\(684\) 0 0
\(685\) 8.57711 0.327715
\(686\) 0 0
\(687\) 0.474765i 0.0181134i
\(688\) 0 0
\(689\) 7.60088i 0.289571i
\(690\) 0 0
\(691\) 37.3690i 1.42158i −0.703402 0.710792i \(-0.748337\pi\)
0.703402 0.710792i \(-0.251663\pi\)
\(692\) 0 0
\(693\) −18.0087 12.2865i −0.684095 0.466726i
\(694\) 0 0
\(695\) 14.1076i 0.535133i
\(696\) 0 0
\(697\) 43.4439 1.64555
\(698\) 0 0
\(699\) 0.571668i 0.0216225i
\(700\) 0 0
\(701\) 19.9712i 0.754302i 0.926152 + 0.377151i \(0.123096\pi\)
−0.926152 + 0.377151i \(0.876904\pi\)
\(702\) 0 0
\(703\) −0.0958449 −0.00361486
\(704\) 0 0
\(705\) 5.85088i 0.220357i
\(706\) 0 0
\(707\) −16.7849 11.4516i −0.631262 0.430680i
\(708\) 0 0
\(709\) 16.5434i 0.621302i −0.950524 0.310651i \(-0.899453\pi\)
0.950524 0.310651i \(-0.100547\pi\)
\(710\) 0 0
\(711\) 10.6012i 0.397576i
\(712\) 0 0
\(713\) 31.9873i 1.19793i
\(714\) 0 0
\(715\) 2.44890 0.0915838
\(716\) 0 0
\(717\) −4.93284 −0.184220
\(718\) 0 0
\(719\) 11.5055 0.429084 0.214542 0.976715i \(-0.431174\pi\)
0.214542 + 0.976715i \(0.431174\pi\)
\(720\) 0 0
\(721\) 9.47570 + 6.46482i 0.352894 + 0.240763i
\(722\) 0 0
\(723\) −7.99733 −0.297424
\(724\) 0 0
\(725\) 10.7233i 0.398254i
\(726\) 0 0
\(727\) −24.4779 −0.907835 −0.453918 0.891044i \(-0.649974\pi\)
−0.453918 + 0.891044i \(0.649974\pi\)
\(728\) 0 0
\(729\) 8.88731 0.329160
\(730\) 0 0
\(731\) 41.8042i 1.54618i
\(732\) 0 0
\(733\) 6.67143 0.246415 0.123207 0.992381i \(-0.460682\pi\)
0.123207 + 0.992381i \(0.460682\pi\)
\(734\) 0 0
\(735\) 3.10825 1.21762i 0.114649 0.0449128i
\(736\) 0 0
\(737\) 2.93965 0.108283
\(738\) 0 0
\(739\) 29.0139 1.06730 0.533648 0.845707i \(-0.320821\pi\)
0.533648 + 0.845707i \(0.320821\pi\)
\(740\) 0 0
\(741\) −1.17792 −0.0432721
\(742\) 0 0
\(743\) 6.25450i 0.229455i −0.993397 0.114728i \(-0.963400\pi\)
0.993397 0.114728i \(-0.0365996\pi\)
\(744\) 0 0
\(745\) 16.1738i 0.592563i
\(746\) 0 0
\(747\) 31.3219i 1.14601i
\(748\) 0 0
\(749\) −35.5292 24.2399i −1.29821 0.885707i
\(750\) 0 0
\(751\) 13.3309i 0.486450i −0.969970 0.243225i \(-0.921795\pi\)
0.969970 0.243225i \(-0.0782053\pi\)
\(752\) 0 0
\(753\) −7.13433 −0.259989
\(754\) 0 0
\(755\) 9.98577i 0.363419i
\(756\) 0 0
\(757\) 42.5601i 1.54687i −0.633875 0.773436i \(-0.718537\pi\)
0.633875 0.773436i \(-0.281463\pi\)
\(758\) 0 0
\(759\) 10.6286 0.385795
\(760\) 0 0
\(761\) 16.7302i 0.606470i −0.952916 0.303235i \(-0.901933\pi\)
0.952916 0.303235i \(-0.0980668\pi\)
\(762\) 0 0
\(763\) −5.53633 + 8.11478i −0.200429 + 0.293775i
\(764\) 0 0
\(765\) 9.17261i 0.331636i
\(766\) 0 0
\(767\) 13.2723i 0.479236i
\(768\) 0 0
\(769\) 20.9434i 0.755238i 0.925961 + 0.377619i \(0.123257\pi\)
−0.925961 + 0.377619i \(0.876743\pi\)
\(770\) 0 0
\(771\) −14.0380 −0.505566
\(772\) 0 0
\(773\) 7.79043 0.280202 0.140101 0.990137i \(-0.455257\pi\)
0.140101 + 0.990137i \(0.455257\pi\)
\(774\) 0 0
\(775\) 25.3180 0.909450
\(776\) 0 0
\(777\) −0.0663554 0.0452712i −0.00238049 0.00162409i
\(778\) 0 0
\(779\) 18.7304 0.671085
\(780\) 0 0
\(781\) 40.8217i 1.46072i
\(782\) 0 0
\(783\) 8.39487 0.300008
\(784\) 0 0
\(785\) −4.31244 −0.153918
\(786\) 0 0
\(787\) 46.2745i 1.64951i −0.565491 0.824755i \(-0.691313\pi\)
0.565491 0.824755i \(-0.308687\pi\)
\(788\) 0 0
\(789\) 5.24150 0.186602
\(790\) 0 0
\(791\) −34.1708 23.3131i −1.21497 0.828920i
\(792\) 0 0
\(793\) 8.35048 0.296534
\(794\) 0 0
\(795\) −3.62479 −0.128558
\(796\) 0 0
\(797\) 37.9333 1.34367 0.671833 0.740703i \(-0.265507\pi\)
0.671833 + 0.740703i \(0.265507\pi\)
\(798\) 0 0
\(799\) 54.8743i 1.94131i
\(800\) 0 0
\(801\) 41.4053i 1.46299i
\(802\) 0 0
\(803\) 1.27513i 0.0449984i
\(804\) 0 0
\(805\) 6.45735 9.46475i 0.227592 0.333589i
\(806\) 0 0
\(807\) 12.5667i 0.442369i
\(808\) 0 0
\(809\) 27.1364 0.954066 0.477033 0.878885i \(-0.341712\pi\)
0.477033 + 0.878885i \(0.341712\pi\)
\(810\) 0 0
\(811\) 13.4314i 0.471639i 0.971797 + 0.235820i \(0.0757774\pi\)
−0.971797 + 0.235820i \(0.924223\pi\)
\(812\) 0 0
\(813\) 4.66308i 0.163541i
\(814\) 0 0
\(815\) −0.684497 −0.0239769
\(816\) 0 0
\(817\) 18.0234i 0.630561i
\(818\) 0 0
\(819\) 5.74115 + 3.91692i 0.200612 + 0.136868i
\(820\) 0 0
\(821\) 22.5402i 0.786659i −0.919398 0.393330i \(-0.871323\pi\)
0.919398 0.393330i \(-0.128677\pi\)
\(822\) 0 0
\(823\) 7.78576i 0.271394i −0.990750 0.135697i \(-0.956673\pi\)
0.990750 0.135697i \(-0.0433274\pi\)
\(824\) 0 0
\(825\) 8.41259i 0.292889i
\(826\) 0 0
\(827\) −0.985448 −0.0342674 −0.0171337 0.999853i \(-0.505454\pi\)
−0.0171337 + 0.999853i \(0.505454\pi\)
\(828\) 0 0
\(829\) −54.4732 −1.89193 −0.945967 0.324264i \(-0.894883\pi\)
−0.945967 + 0.324264i \(0.894883\pi\)
\(830\) 0 0
\(831\) −6.93319 −0.240510
\(832\) 0 0
\(833\) −29.1517 + 11.4199i −1.01005 + 0.395675i
\(834\) 0 0
\(835\) 17.6430 0.610561
\(836\) 0 0
\(837\) 19.8205i 0.685096i
\(838\) 0 0
\(839\) 18.5284 0.639672 0.319836 0.947473i \(-0.396372\pi\)
0.319836 + 0.947473i \(0.396372\pi\)
\(840\) 0 0
\(841\) 23.0347 0.794301
\(842\) 0 0
\(843\) 3.88028i 0.133644i
\(844\) 0 0
\(845\) −0.780706 −0.0268571
\(846\) 0 0
\(847\) −2.53655 1.73057i −0.0871568 0.0594630i
\(848\) 0 0
\(849\) 14.2792 0.490063
\(850\) 0 0
\(851\) −0.275705 −0.00945105
\(852\) 0 0
\(853\) −54.5504 −1.86777 −0.933886 0.357571i \(-0.883605\pi\)
−0.933886 + 0.357571i \(0.883605\pi\)
\(854\) 0 0
\(855\) 3.95467i 0.135247i
\(856\) 0 0
\(857\) 17.4890i 0.597413i −0.954345 0.298706i \(-0.903445\pi\)
0.954345 0.298706i \(-0.0965551\pi\)
\(858\) 0 0
\(859\) 32.4405i 1.10686i 0.832897 + 0.553428i \(0.186681\pi\)
−0.832897 + 0.553428i \(0.813319\pi\)
\(860\) 0 0
\(861\) 12.9674 + 8.84706i 0.441928 + 0.301507i
\(862\) 0 0
\(863\) 2.87423i 0.0978400i 0.998803 + 0.0489200i \(0.0155779\pi\)
−0.998803 + 0.0489200i \(0.984422\pi\)
\(864\) 0 0
\(865\) −1.10856 −0.0376922
\(866\) 0 0
\(867\) 1.83547i 0.0623360i
\(868\) 0 0
\(869\) 12.6590i 0.429429i
\(870\) 0 0
\(871\) −0.937154 −0.0317542
\(872\) 0 0
\(873\) 18.6631i 0.631651i
\(874\) 0 0
\(875\) 16.0227 + 10.9316i 0.541667 + 0.369554i
\(876\) 0 0
\(877\) 11.8009i 0.398489i −0.979950 0.199244i \(-0.936151\pi\)
0.979950 0.199244i \(-0.0638487\pi\)
\(878\) 0 0
\(879\) 0.183689i 0.00619567i
\(880\) 0 0
\(881\) 11.1084i 0.374252i 0.982336 + 0.187126i \(0.0599173\pi\)
−0.982336 + 0.187126i \(0.940083\pi\)
\(882\) 0 0
\(883\) 2.08414 0.0701370 0.0350685 0.999385i \(-0.488835\pi\)
0.0350685 + 0.999385i \(0.488835\pi\)
\(884\) 0 0
\(885\) 6.32946 0.212762
\(886\) 0 0
\(887\) 40.7788 1.36922 0.684609 0.728911i \(-0.259973\pi\)
0.684609 + 0.728911i \(0.259973\pi\)
\(888\) 0 0
\(889\) 22.9578 33.6500i 0.769980 1.12858i
\(890\) 0 0
\(891\) −18.1338 −0.607507
\(892\) 0 0
\(893\) 23.6585i 0.791702i
\(894\) 0 0
\(895\) 9.40791 0.314472
\(896\) 0 0
\(897\) −3.38838 −0.113135
\(898\) 0 0
\(899\) 14.0842i 0.469734i
\(900\) 0 0
\(901\) 33.9963 1.13258
\(902\) 0 0
\(903\) 8.51315 12.4780i 0.283300 0.415242i
\(904\) 0 0
\(905\) −18.7132 −0.622047
\(906\) 0 0
\(907\) −28.4897 −0.945984 −0.472992 0.881067i \(-0.656826\pi\)
−0.472992 + 0.881067i \(0.656826\pi\)
\(908\) 0 0
\(909\) −20.1742 −0.669137
\(910\) 0 0
\(911\) 25.7994i 0.854772i −0.904069 0.427386i \(-0.859435\pi\)
0.904069 0.427386i \(-0.140565\pi\)
\(912\) 0 0
\(913\) 37.4020i 1.23783i
\(914\) 0 0
\(915\) 3.98227i 0.131650i
\(916\) 0 0
\(917\) 25.7034 37.6744i 0.848802 1.24412i
\(918\) 0 0
\(919\) 48.7196i 1.60711i 0.595230 + 0.803556i \(0.297061\pi\)
−0.595230 + 0.803556i \(0.702939\pi\)
\(920\) 0 0
\(921\) 6.23626 0.205492
\(922\) 0 0
\(923\) 13.0139i 0.428357i
\(924\) 0 0
\(925\) 0.218222i 0.00717508i
\(926\) 0 0
\(927\) 11.3891 0.374067
\(928\) 0 0
\(929\) 16.1335i 0.529322i −0.964341 0.264661i \(-0.914740\pi\)
0.964341 0.264661i \(-0.0852601\pi\)
\(930\) 0 0
\(931\) −12.5685 + 4.92356i −0.411915 + 0.161363i
\(932\) 0 0
\(933\) 2.44320i 0.0799866i
\(934\) 0 0
\(935\) 10.9531i 0.358206i
\(936\) 0 0
\(937\) 11.6153i 0.379454i 0.981837 + 0.189727i \(0.0607604\pi\)
−0.981837 + 0.189727i \(0.939240\pi\)
\(938\) 0 0
\(939\) 8.72109 0.284602
\(940\) 0 0
\(941\) 16.5828 0.540584 0.270292 0.962778i \(-0.412880\pi\)
0.270292 + 0.962778i \(0.412880\pi\)
\(942\) 0 0
\(943\) 53.8794 1.75455
\(944\) 0 0
\(945\) 4.00121 5.86471i 0.130159 0.190779i
\(946\) 0 0
\(947\) 20.6272 0.670295 0.335147 0.942166i \(-0.391214\pi\)
0.335147 + 0.942166i \(0.391214\pi\)
\(948\) 0 0
\(949\) 0.406509i 0.0131958i
\(950\) 0 0
\(951\) −3.00803 −0.0975419
\(952\) 0 0
\(953\) −44.3425 −1.43640 −0.718198 0.695839i \(-0.755033\pi\)
−0.718198 + 0.695839i \(0.755033\pi\)
\(954\) 0 0
\(955\) 9.39899i 0.304144i
\(956\) 0 0
\(957\) −4.67985 −0.151278
\(958\) 0 0
\(959\) −24.0112 16.3817i −0.775363 0.528994i
\(960\) 0 0
\(961\) 2.25310 0.0726807
\(962\) 0 0
\(963\) −42.7035 −1.37610
\(964\) 0 0
\(965\) −3.08168 −0.0992028
\(966\) 0 0
\(967\) 11.2213i 0.360852i −0.983589 0.180426i \(-0.942252\pi\)
0.983589 0.180426i \(-0.0577477\pi\)
\(968\) 0 0
\(969\) 5.26846i 0.169247i
\(970\) 0 0
\(971\) 53.3628i 1.71249i −0.516566 0.856247i \(-0.672790\pi\)
0.516566 0.856247i \(-0.327210\pi\)
\(972\) 0 0
\(973\) −26.9447 + 39.4937i −0.863806 + 1.26611i
\(974\) 0 0
\(975\) 2.68192i 0.0858901i
\(976\) 0 0
\(977\) −61.6226 −1.97148 −0.985741 0.168270i \(-0.946182\pi\)
−0.985741 + 0.168270i \(0.946182\pi\)
\(978\) 0 0
\(979\) 49.4427i 1.58020i
\(980\) 0 0
\(981\) 9.75336i 0.311401i
\(982\) 0 0
\(983\) 19.3693 0.617786 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(984\) 0 0
\(985\) 13.1925i 0.420348i
\(986\) 0 0
\(987\) −11.1748 + 16.3793i −0.355698 + 0.521358i
\(988\) 0 0
\(989\) 51.8458i 1.64860i
\(990\) 0 0
\(991\) 10.3242i 0.327958i −0.986464 0.163979i \(-0.947567\pi\)
0.986464 0.163979i \(-0.0524329\pi\)
\(992\) 0 0
\(993\) 6.23869i 0.197979i
\(994\) 0 0
\(995\) −9.28157 −0.294245
\(996\) 0 0
\(997\) −44.2145 −1.40029 −0.700143 0.714002i \(-0.746881\pi\)
−0.700143 + 0.714002i \(0.746881\pi\)
\(998\) 0 0
\(999\) −0.170837 −0.00540505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.b.2575.28 48
4.3 odd 2 728.2.h.b.27.5 yes 48
7.6 odd 2 2912.2.h.a.2575.21 48
8.3 odd 2 2912.2.h.a.2575.28 48
8.5 even 2 728.2.h.a.27.6 yes 48
28.27 even 2 728.2.h.a.27.5 48
56.13 odd 2 728.2.h.b.27.6 yes 48
56.27 even 2 inner 2912.2.h.b.2575.21 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.5 48 28.27 even 2
728.2.h.a.27.6 yes 48 8.5 even 2
728.2.h.b.27.5 yes 48 4.3 odd 2
728.2.h.b.27.6 yes 48 56.13 odd 2
2912.2.h.a.2575.21 48 7.6 odd 2
2912.2.h.a.2575.28 48 8.3 odd 2
2912.2.h.b.2575.21 48 56.27 even 2 inner
2912.2.h.b.2575.28 48 1.1 even 1 trivial