Properties

Label 728.2.h.a.27.5
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.5
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.a.27.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32721 - 0.488382i) q^{2} +0.610846i q^{3} +(1.52297 + 1.29637i) q^{4} +0.780706 q^{5} +(0.298326 - 0.810720i) q^{6} +(2.18555 - 1.49110i) q^{7} +(-1.38817 - 2.46434i) q^{8} +2.62687 q^{9} +(-1.03616 - 0.381283i) q^{10} +3.13678 q^{11} +(-0.791882 + 0.930297i) q^{12} -1.00000 q^{13} +(-3.62891 + 0.911614i) q^{14} +0.476891i q^{15} +(0.638848 + 3.94865i) q^{16} -4.47267i q^{17} +(-3.48640 - 1.28292i) q^{18} +1.92835i q^{19} +(1.18899 + 1.01208i) q^{20} +(0.910831 + 1.33503i) q^{21} +(-4.16316 - 1.53195i) q^{22} -5.54704i q^{23} +(1.50533 - 0.847957i) q^{24} -4.39050 q^{25} +(1.32721 + 0.488382i) q^{26} +3.43715i q^{27} +(5.26153 + 0.562392i) q^{28} -2.44239i q^{29} +(0.232905 - 0.632934i) q^{30} -5.76655 q^{31} +(1.08057 - 5.55269i) q^{32} +1.91609i q^{33} +(-2.18437 + 5.93617i) q^{34} +(1.70627 - 1.16411i) q^{35} +(4.00063 + 3.40539i) q^{36} +0.0497032i q^{37} +(0.941771 - 2.55932i) q^{38} -0.610846i q^{39} +(-1.08375 - 1.92393i) q^{40} +9.71318i q^{41} +(-0.556855 - 2.21670i) q^{42} +9.34658 q^{43} +(4.77721 + 4.06643i) q^{44} +2.05081 q^{45} +(-2.70907 + 7.36208i) q^{46} +12.2688 q^{47} +(-2.41202 + 0.390238i) q^{48} +(2.55326 - 6.51774i) q^{49} +(5.82711 + 2.14424i) q^{50} +2.73211 q^{51} +(-1.52297 - 1.29637i) q^{52} -7.60088i q^{53} +(1.67864 - 4.56181i) q^{54} +2.44890 q^{55} +(-6.70849 - 3.31605i) q^{56} -1.17792 q^{57} +(-1.19282 + 3.24157i) q^{58} +13.2723i q^{59} +(-0.618227 + 0.726288i) q^{60} -8.35048 q^{61} +(7.65342 + 2.81628i) q^{62} +(5.74115 - 3.91692i) q^{63} +(-4.14597 + 6.84185i) q^{64} -0.780706 q^{65} +(0.935784 - 2.54305i) q^{66} +0.937154 q^{67} +(5.79824 - 6.81173i) q^{68} +3.38838 q^{69} +(-2.83311 + 0.711702i) q^{70} -13.0139i q^{71} +(-3.64654 - 6.47350i) q^{72} +0.406509i q^{73} +(0.0242741 - 0.0659665i) q^{74} -2.68192i q^{75} +(-2.49985 + 2.93681i) q^{76} +(6.85559 - 4.67725i) q^{77} +(-0.298326 + 0.810720i) q^{78} +4.03568i q^{79} +(0.498752 + 3.08274i) q^{80} +5.78103 q^{81} +(4.74374 - 12.8914i) q^{82} +11.9237i q^{83} +(-0.343535 + 3.21398i) q^{84} -3.49184i q^{85} +(-12.4049 - 4.56470i) q^{86} +1.49193 q^{87} +(-4.35438 - 7.73011i) q^{88} -15.7622i q^{89} +(-2.72185 - 1.00158i) q^{90} +(-2.18555 + 1.49110i) q^{91} +(7.19102 - 8.44795i) q^{92} -3.52247i q^{93} +(-16.2833 - 5.99186i) q^{94} +1.50547i q^{95} +(3.39184 + 0.660061i) q^{96} +7.10470i q^{97} +(-6.57185 + 7.40343i) q^{98} +8.23991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} - 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} + 10 q^{12} - 48 q^{13} + 10 q^{14} + 5 q^{16} - 15 q^{18} - 22 q^{20} - 6 q^{22} + 48 q^{25} - q^{26} + 4 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32721 0.488382i −0.938478 0.345338i
\(3\) 0.610846i 0.352672i 0.984330 + 0.176336i \(0.0564245\pi\)
−0.984330 + 0.176336i \(0.943575\pi\)
\(4\) 1.52297 + 1.29637i 0.761483 + 0.648185i
\(5\) 0.780706 0.349142 0.174571 0.984645i \(-0.444146\pi\)
0.174571 + 0.984645i \(0.444146\pi\)
\(6\) 0.298326 0.810720i 0.121791 0.330975i
\(7\) 2.18555 1.49110i 0.826060 0.563582i
\(8\) −1.38817 2.46434i −0.490792 0.871277i
\(9\) 2.62687 0.875622
\(10\) −1.03616 0.381283i −0.327662 0.120572i
\(11\) 3.13678 0.945775 0.472888 0.881123i \(-0.343212\pi\)
0.472888 + 0.881123i \(0.343212\pi\)
\(12\) −0.791882 + 0.930297i −0.228597 + 0.268554i
\(13\) −1.00000 −0.277350
\(14\) −3.62891 + 0.911614i −0.969866 + 0.243639i
\(15\) 0.476891i 0.123133i
\(16\) 0.638848 + 3.94865i 0.159712 + 0.987164i
\(17\) 4.47267i 1.08478i −0.840126 0.542391i \(-0.817519\pi\)
0.840126 0.542391i \(-0.182481\pi\)
\(18\) −3.48640 1.28292i −0.821753 0.302386i
\(19\) 1.92835i 0.442393i 0.975229 + 0.221197i \(0.0709962\pi\)
−0.975229 + 0.221197i \(0.929004\pi\)
\(20\) 1.18899 + 1.01208i 0.265866 + 0.226309i
\(21\) 0.910831 + 1.33503i 0.198760 + 0.291328i
\(22\) −4.16316 1.53195i −0.887590 0.326613i
\(23\) 5.54704i 1.15664i −0.815811 0.578319i \(-0.803709\pi\)
0.815811 0.578319i \(-0.196291\pi\)
\(24\) 1.50533 0.847957i 0.307275 0.173089i
\(25\) −4.39050 −0.878100
\(26\) 1.32721 + 0.488382i 0.260287 + 0.0957796i
\(27\) 3.43715i 0.661480i
\(28\) 5.26153 + 0.562392i 0.994336 + 0.106282i
\(29\) 2.44239i 0.453541i −0.973948 0.226771i \(-0.927183\pi\)
0.973948 0.226771i \(-0.0728167\pi\)
\(30\) 0.232905 0.632934i 0.0425225 0.115557i
\(31\) −5.76655 −1.03570 −0.517851 0.855471i \(-0.673268\pi\)
−0.517851 + 0.855471i \(0.673268\pi\)
\(32\) 1.08057 5.55269i 0.191019 0.981586i
\(33\) 1.91609i 0.333548i
\(34\) −2.18437 + 5.93617i −0.374617 + 1.01804i
\(35\) 1.70627 1.16411i 0.288413 0.196770i
\(36\) 4.00063 + 3.40539i 0.666771 + 0.567565i
\(37\) 0.0497032i 0.00817115i 0.999992 + 0.00408557i \(0.00130048\pi\)
−0.999992 + 0.00408557i \(0.998700\pi\)
\(38\) 0.941771 2.55932i 0.152775 0.415176i
\(39\) 0.610846i 0.0978136i
\(40\) −1.08375 1.92393i −0.171356 0.304200i
\(41\) 9.71318i 1.51694i 0.651706 + 0.758472i \(0.274054\pi\)
−0.651706 + 0.758472i \(0.725946\pi\)
\(42\) −0.556855 2.21670i −0.0859247 0.342045i
\(43\) 9.34658 1.42534 0.712670 0.701499i \(-0.247486\pi\)
0.712670 + 0.701499i \(0.247486\pi\)
\(44\) 4.77721 + 4.06643i 0.720192 + 0.613038i
\(45\) 2.05081 0.305717
\(46\) −2.70907 + 7.36208i −0.399431 + 1.08548i
\(47\) 12.2688 1.78959 0.894794 0.446479i \(-0.147322\pi\)
0.894794 + 0.446479i \(0.147322\pi\)
\(48\) −2.41202 + 0.390238i −0.348145 + 0.0563260i
\(49\) 2.55326 6.51774i 0.364751 0.931105i
\(50\) 5.82711 + 2.14424i 0.824077 + 0.303242i
\(51\) 2.73211 0.382572
\(52\) −1.52297 1.29637i −0.211197 0.179774i
\(53\) 7.60088i 1.04406i −0.852927 0.522031i \(-0.825175\pi\)
0.852927 0.522031i \(-0.174825\pi\)
\(54\) 1.67864 4.56181i 0.228434 0.620784i
\(55\) 2.44890 0.330210
\(56\) −6.70849 3.31605i −0.896459 0.443126i
\(57\) −1.17792 −0.156020
\(58\) −1.19282 + 3.24157i −0.156625 + 0.425638i
\(59\) 13.2723i 1.72791i 0.503568 + 0.863955i \(0.332020\pi\)
−0.503568 + 0.863955i \(0.667980\pi\)
\(60\) −0.618227 + 0.726288i −0.0798128 + 0.0937634i
\(61\) −8.35048 −1.06917 −0.534585 0.845115i \(-0.679532\pi\)
−0.534585 + 0.845115i \(0.679532\pi\)
\(62\) 7.65342 + 2.81628i 0.971985 + 0.357668i
\(63\) 5.74115 3.91692i 0.723317 0.493485i
\(64\) −4.14597 + 6.84185i −0.518247 + 0.855231i
\(65\) −0.780706 −0.0968346
\(66\) 0.935784 2.54305i 0.115187 0.313028i
\(67\) 0.937154 0.114492 0.0572458 0.998360i \(-0.481768\pi\)
0.0572458 + 0.998360i \(0.481768\pi\)
\(68\) 5.79824 6.81173i 0.703140 0.826043i
\(69\) 3.38838 0.407914
\(70\) −2.83311 + 0.711702i −0.338621 + 0.0850647i
\(71\) 13.0139i 1.54446i −0.635341 0.772232i \(-0.719141\pi\)
0.635341 0.772232i \(-0.280859\pi\)
\(72\) −3.64654 6.47350i −0.429748 0.762910i
\(73\) 0.406509i 0.0475783i 0.999717 + 0.0237891i \(0.00757304\pi\)
−0.999717 + 0.0237891i \(0.992427\pi\)
\(74\) 0.0242741 0.0659665i 0.00282181 0.00766844i
\(75\) 2.68192i 0.309681i
\(76\) −2.49985 + 2.93681i −0.286753 + 0.336875i
\(77\) 6.85559 4.67725i 0.781267 0.533022i
\(78\) −0.298326 + 0.810720i −0.0337788 + 0.0917959i
\(79\) 4.03568i 0.454049i 0.973889 + 0.227025i \(0.0728998\pi\)
−0.973889 + 0.227025i \(0.927100\pi\)
\(80\) 0.498752 + 3.08274i 0.0557622 + 0.344661i
\(81\) 5.78103 0.642337
\(82\) 4.74374 12.8914i 0.523859 1.42362i
\(83\) 11.9237i 1.30879i 0.756151 + 0.654397i \(0.227078\pi\)
−0.756151 + 0.654397i \(0.772922\pi\)
\(84\) −0.343535 + 3.21398i −0.0374827 + 0.350674i
\(85\) 3.49184i 0.378743i
\(86\) −12.4049 4.56470i −1.33765 0.492225i
\(87\) 1.49193 0.159951
\(88\) −4.35438 7.73011i −0.464179 0.824032i
\(89\) 15.7622i 1.67079i −0.549646 0.835397i \(-0.685238\pi\)
0.549646 0.835397i \(-0.314762\pi\)
\(90\) −2.72185 1.00158i −0.286909 0.105576i
\(91\) −2.18555 + 1.49110i −0.229108 + 0.156309i
\(92\) 7.19102 8.44795i 0.749715 0.880759i
\(93\) 3.52247i 0.365263i
\(94\) −16.2833 5.99186i −1.67949 0.618014i
\(95\) 1.50547i 0.154458i
\(96\) 3.39184 + 0.660061i 0.346178 + 0.0673671i
\(97\) 7.10470i 0.721373i 0.932687 + 0.360687i \(0.117458\pi\)
−0.932687 + 0.360687i \(0.882542\pi\)
\(98\) −6.57185 + 7.40343i −0.663857 + 0.747859i
\(99\) 8.23991 0.828142
\(100\) −6.68658 5.69171i −0.668658 0.569171i
\(101\) 7.67995 0.764184 0.382092 0.924124i \(-0.375204\pi\)
0.382092 + 0.924124i \(0.375204\pi\)
\(102\) −3.62609 1.33432i −0.359036 0.132117i
\(103\) 4.33561 0.427201 0.213600 0.976921i \(-0.431481\pi\)
0.213600 + 0.976921i \(0.431481\pi\)
\(104\) 1.38817 + 2.46434i 0.136121 + 0.241649i
\(105\) 0.711091 + 1.04227i 0.0693954 + 0.101715i
\(106\) −3.71214 + 10.0880i −0.360554 + 0.979829i
\(107\) 16.2564 1.57157 0.785784 0.618501i \(-0.212260\pi\)
0.785784 + 0.618501i \(0.212260\pi\)
\(108\) −4.45582 + 5.23466i −0.428761 + 0.503705i
\(109\) 3.71293i 0.355634i 0.984064 + 0.177817i \(0.0569035\pi\)
−0.984064 + 0.177817i \(0.943097\pi\)
\(110\) −3.25021 1.19600i −0.309895 0.114034i
\(111\) −0.0303610 −0.00288174
\(112\) 7.28406 + 7.67740i 0.688279 + 0.725446i
\(113\) −15.6349 −1.47081 −0.735403 0.677630i \(-0.763007\pi\)
−0.735403 + 0.677630i \(0.763007\pi\)
\(114\) 1.56335 + 0.575277i 0.146421 + 0.0538796i
\(115\) 4.33060i 0.403831i
\(116\) 3.16625 3.71968i 0.293979 0.345364i
\(117\) −2.62687 −0.242854
\(118\) 6.48197 17.6152i 0.596714 1.62161i
\(119\) −6.66919 9.77525i −0.611364 0.896096i
\(120\) 1.17522 0.662005i 0.107283 0.0604325i
\(121\) −1.16060 −0.105509
\(122\) 11.0828 + 4.07823i 1.00339 + 0.369225i
\(123\) −5.93325 −0.534983
\(124\) −8.78226 7.47558i −0.788670 0.671327i
\(125\) −7.33122 −0.655724
\(126\) −9.53266 + 2.39469i −0.849236 + 0.213336i
\(127\) 15.3966i 1.36623i 0.730313 + 0.683113i \(0.239374\pi\)
−0.730313 + 0.683113i \(0.760626\pi\)
\(128\) 8.84401 7.05574i 0.781708 0.623645i
\(129\) 5.70932i 0.502678i
\(130\) 1.03616 + 0.381283i 0.0908772 + 0.0334407i
\(131\) 17.2379i 1.50608i −0.657972 0.753042i \(-0.728585\pi\)
0.657972 0.753042i \(-0.271415\pi\)
\(132\) −2.48396 + 2.91814i −0.216201 + 0.253991i
\(133\) 2.87535 + 4.21450i 0.249325 + 0.365443i
\(134\) −1.24380 0.457689i −0.107448 0.0395383i
\(135\) 2.68340i 0.230950i
\(136\) −11.0222 + 6.20883i −0.945146 + 0.532402i
\(137\) −10.9864 −0.938628 −0.469314 0.883031i \(-0.655499\pi\)
−0.469314 + 0.883031i \(0.655499\pi\)
\(138\) −4.49709 1.65483i −0.382818 0.140868i
\(139\) 18.0704i 1.53271i 0.642419 + 0.766354i \(0.277931\pi\)
−0.642419 + 0.766354i \(0.722069\pi\)
\(140\) 4.10771 + 0.439062i 0.347165 + 0.0371076i
\(141\) 7.49434i 0.631138i
\(142\) −6.35575 + 17.2721i −0.533362 + 1.44944i
\(143\) −3.13678 −0.262311
\(144\) 1.67817 + 10.3726i 0.139847 + 0.864383i
\(145\) 1.90679i 0.158350i
\(146\) 0.198532 0.539522i 0.0164306 0.0446512i
\(147\) 3.98133 + 1.55965i 0.328375 + 0.128637i
\(148\) −0.0644337 + 0.0756962i −0.00529642 + 0.00622219i
\(149\) 20.7169i 1.69720i 0.529038 + 0.848598i \(0.322553\pi\)
−0.529038 + 0.848598i \(0.677447\pi\)
\(150\) −1.30980 + 3.55946i −0.106945 + 0.290629i
\(151\) 12.7907i 1.04089i 0.853895 + 0.520446i \(0.174234\pi\)
−0.853895 + 0.520446i \(0.825766\pi\)
\(152\) 4.75211 2.67687i 0.385447 0.217123i
\(153\) 11.7491i 0.949860i
\(154\) −11.3831 + 2.85953i −0.917275 + 0.230428i
\(155\) −4.50198 −0.361608
\(156\) 0.791882 0.930297i 0.0634013 0.0744834i
\(157\) −5.52377 −0.440845 −0.220423 0.975404i \(-0.570744\pi\)
−0.220423 + 0.975404i \(0.570744\pi\)
\(158\) 1.97095 5.35619i 0.156801 0.426116i
\(159\) 4.64297 0.368211
\(160\) 0.843606 4.33502i 0.0666929 0.342713i
\(161\) −8.27117 12.1233i −0.651860 0.955452i
\(162\) −7.67264 2.82335i −0.602819 0.221824i
\(163\) −0.876767 −0.0686737 −0.0343368 0.999410i \(-0.510932\pi\)
−0.0343368 + 0.999410i \(0.510932\pi\)
\(164\) −12.5919 + 14.7928i −0.983260 + 1.15513i
\(165\) 1.49590i 0.116456i
\(166\) 5.82332 15.8252i 0.451977 1.22828i
\(167\) −22.5988 −1.74875 −0.874373 0.485254i \(-0.838727\pi\)
−0.874373 + 0.485254i \(0.838727\pi\)
\(168\) 2.02560 4.09785i 0.156278 0.316156i
\(169\) 1.00000 0.0769231
\(170\) −1.70535 + 4.63440i −0.130795 + 0.355443i
\(171\) 5.06551i 0.387369i
\(172\) 14.2345 + 12.1166i 1.08537 + 0.923884i
\(173\) −1.41995 −0.107956 −0.0539782 0.998542i \(-0.517190\pi\)
−0.0539782 + 0.998542i \(0.517190\pi\)
\(174\) −1.98010 0.728630i −0.150111 0.0552373i
\(175\) −9.59565 + 6.54666i −0.725363 + 0.494881i
\(176\) 2.00393 + 12.3861i 0.151052 + 0.933635i
\(177\) −8.10735 −0.609386
\(178\) −7.69800 + 20.9198i −0.576990 + 1.56800i
\(179\) 12.0505 0.900698 0.450349 0.892852i \(-0.351299\pi\)
0.450349 + 0.892852i \(0.351299\pi\)
\(180\) 3.12331 + 2.65861i 0.232798 + 0.198161i
\(181\) −23.9696 −1.78164 −0.890822 0.454352i \(-0.849871\pi\)
−0.890822 + 0.454352i \(0.849871\pi\)
\(182\) 3.62891 0.911614i 0.268992 0.0675733i
\(183\) 5.10086i 0.377066i
\(184\) −13.6698 + 7.70022i −1.00775 + 0.567668i
\(185\) 0.0388035i 0.00285289i
\(186\) −1.72031 + 4.67506i −0.126139 + 0.342792i
\(187\) 14.0298i 1.02596i
\(188\) 18.6850 + 15.9049i 1.36274 + 1.15998i
\(189\) 5.12512 + 7.51206i 0.372798 + 0.546422i
\(190\) 0.735246 1.99808i 0.0533403 0.144956i
\(191\) 12.0391i 0.871119i −0.900160 0.435559i \(-0.856551\pi\)
0.900160 0.435559i \(-0.143449\pi\)
\(192\) −4.17931 2.53255i −0.301616 0.182771i
\(193\) 3.94730 0.284133 0.142066 0.989857i \(-0.454625\pi\)
0.142066 + 0.989857i \(0.454625\pi\)
\(194\) 3.46981 9.42942i 0.249118 0.676993i
\(195\) 0.476891i 0.0341509i
\(196\) 12.3379 6.61632i 0.881280 0.472594i
\(197\) 16.8982i 1.20394i 0.798517 + 0.601972i \(0.205618\pi\)
−0.798517 + 0.601972i \(0.794382\pi\)
\(198\) −10.9361 4.02423i −0.777193 0.285989i
\(199\) 11.8887 0.842767 0.421383 0.906883i \(-0.361545\pi\)
0.421383 + 0.906883i \(0.361545\pi\)
\(200\) 6.09475 + 10.8197i 0.430964 + 0.765068i
\(201\) 0.572456i 0.0403780i
\(202\) −10.1929 3.75075i −0.717170 0.263902i
\(203\) −3.64185 5.33797i −0.255608 0.374652i
\(204\) 4.16092 + 3.54183i 0.291322 + 0.247978i
\(205\) 7.58313i 0.529629i
\(206\) −5.75426 2.11744i −0.400919 0.147529i
\(207\) 14.5713i 1.01278i
\(208\) −0.638848 3.94865i −0.0442961 0.273790i
\(209\) 6.04880i 0.418405i
\(210\) −0.434740 1.73059i −0.0299999 0.119422i
\(211\) −11.2892 −0.777182 −0.388591 0.921410i \(-0.627038\pi\)
−0.388591 + 0.921410i \(0.627038\pi\)
\(212\) 9.85356 11.5759i 0.676745 0.795035i
\(213\) 7.94947 0.544689
\(214\) −21.5757 7.93935i −1.47488 0.542723i
\(215\) 7.29693 0.497646
\(216\) 8.47031 4.77134i 0.576332 0.324649i
\(217\) −12.6031 + 8.59849i −0.855553 + 0.583703i
\(218\) 1.81333 4.92783i 0.122814 0.333755i
\(219\) −0.248314 −0.0167795
\(220\) 3.72960 + 3.17469i 0.251449 + 0.214037i
\(221\) 4.47267i 0.300865i
\(222\) 0.0402953 + 0.0148278i 0.00270445 + 0.000995174i
\(223\) −6.21212 −0.415994 −0.207997 0.978129i \(-0.566694\pi\)
−0.207997 + 0.978129i \(0.566694\pi\)
\(224\) −5.91797 13.7469i −0.395411 0.918504i
\(225\) −11.5333 −0.768884
\(226\) 20.7508 + 7.63580i 1.38032 + 0.507926i
\(227\) 2.41724i 0.160438i 0.996777 + 0.0802188i \(0.0255619\pi\)
−0.996777 + 0.0802188i \(0.974438\pi\)
\(228\) −1.79394 1.52702i −0.118806 0.101130i
\(229\) −0.777226 −0.0513606 −0.0256803 0.999670i \(-0.508175\pi\)
−0.0256803 + 0.999670i \(0.508175\pi\)
\(230\) −2.11499 + 5.74762i −0.139458 + 0.378987i
\(231\) 2.85708 + 4.18771i 0.187982 + 0.275531i
\(232\) −6.01890 + 3.39045i −0.395160 + 0.222594i
\(233\) 0.935862 0.0613104 0.0306552 0.999530i \(-0.490241\pi\)
0.0306552 + 0.999530i \(0.490241\pi\)
\(234\) 3.48640 + 1.28292i 0.227913 + 0.0838668i
\(235\) 9.57832 0.624821
\(236\) −17.2059 + 20.2133i −1.12001 + 1.31577i
\(237\) −2.46518 −0.160131
\(238\) 4.07735 + 16.2309i 0.264295 + 1.05209i
\(239\) 8.07542i 0.522356i −0.965291 0.261178i \(-0.915889\pi\)
0.965291 0.261178i \(-0.0841109\pi\)
\(240\) −1.88308 + 0.304661i −0.121552 + 0.0196658i
\(241\) 13.0922i 0.843344i −0.906748 0.421672i \(-0.861443\pi\)
0.906748 0.421672i \(-0.138557\pi\)
\(242\) 1.54036 + 0.566816i 0.0990179 + 0.0364363i
\(243\) 13.8428i 0.888014i
\(244\) −12.7175 10.8253i −0.814155 0.693020i
\(245\) 1.99334 5.08843i 0.127350 0.325088i
\(246\) 7.87466 + 2.89770i 0.502070 + 0.184750i
\(247\) 1.92835i 0.122698i
\(248\) 8.00494 + 14.2108i 0.508315 + 0.902384i
\(249\) −7.28353 −0.461575
\(250\) 9.73005 + 3.58044i 0.615383 + 0.226447i
\(251\) 11.6794i 0.737199i 0.929588 + 0.368599i \(0.120163\pi\)
−0.929588 + 0.368599i \(0.879837\pi\)
\(252\) 13.8213 + 1.47733i 0.870663 + 0.0930629i
\(253\) 17.3998i 1.09392i
\(254\) 7.51942 20.4345i 0.471810 1.28217i
\(255\) 2.13298 0.133572
\(256\) −15.1837 + 5.04518i −0.948984 + 0.315324i
\(257\) 22.9812i 1.43353i −0.697315 0.716765i \(-0.745622\pi\)
0.697315 0.716765i \(-0.254378\pi\)
\(258\) 2.78833 7.57746i 0.173594 0.471752i
\(259\) 0.0741123 + 0.108629i 0.00460511 + 0.00674986i
\(260\) −1.18899 1.01208i −0.0737379 0.0627668i
\(261\) 6.41584i 0.397131i
\(262\) −8.41870 + 22.8783i −0.520109 + 1.41343i
\(263\) 8.58073i 0.529111i 0.964371 + 0.264555i \(0.0852252\pi\)
−0.964371 + 0.264555i \(0.914775\pi\)
\(264\) 4.72190 2.65986i 0.290613 0.163703i
\(265\) 5.93405i 0.364526i
\(266\) −1.75791 6.99779i −0.107784 0.429062i
\(267\) 9.62830 0.589243
\(268\) 1.42725 + 1.21490i 0.0871833 + 0.0742117i
\(269\) −20.5726 −1.25433 −0.627167 0.778885i \(-0.715786\pi\)
−0.627167 + 0.778885i \(0.715786\pi\)
\(270\) 1.31053 3.56143i 0.0797561 0.216742i
\(271\) −7.63381 −0.463721 −0.231861 0.972749i \(-0.574481\pi\)
−0.231861 + 0.972749i \(0.574481\pi\)
\(272\) 17.6610 2.85736i 1.07086 0.173253i
\(273\) −0.910831 1.33503i −0.0551260 0.0807999i
\(274\) 14.5812 + 5.36554i 0.880882 + 0.324144i
\(275\) −13.7720 −0.830485
\(276\) 5.16039 + 4.39260i 0.310619 + 0.264404i
\(277\) 11.3502i 0.681965i 0.940070 + 0.340982i \(0.110760\pi\)
−0.940070 + 0.340982i \(0.889240\pi\)
\(278\) 8.82524 23.9831i 0.529303 1.43841i
\(279\) −15.1480 −0.906885
\(280\) −5.23736 2.58886i −0.312992 0.154714i
\(281\) 6.35231 0.378947 0.189474 0.981886i \(-0.439322\pi\)
0.189474 + 0.981886i \(0.439322\pi\)
\(282\) 3.66010 9.94656i 0.217956 0.592309i
\(283\) 23.3762i 1.38957i −0.719217 0.694785i \(-0.755499\pi\)
0.719217 0.694785i \(-0.244501\pi\)
\(284\) 16.8708 19.8197i 1.00110 1.17608i
\(285\) −0.919611 −0.0544731
\(286\) 4.16316 + 1.53195i 0.246173 + 0.0905860i
\(287\) 14.4833 + 21.2286i 0.854922 + 1.25309i
\(288\) 2.83851 14.5862i 0.167261 0.859499i
\(289\) −3.00481 −0.176753
\(290\) −0.931243 + 2.53071i −0.0546845 + 0.148608i
\(291\) −4.33988 −0.254408
\(292\) −0.526986 + 0.619099i −0.0308395 + 0.0362301i
\(293\) −0.300712 −0.0175678 −0.00878389 0.999961i \(-0.502796\pi\)
−0.00878389 + 0.999961i \(0.502796\pi\)
\(294\) −4.52235 4.01439i −0.263749 0.234124i
\(295\) 10.3618i 0.603287i
\(296\) 0.122486 0.0689964i 0.00711933 0.00401033i
\(297\) 10.7816i 0.625611i
\(298\) 10.1178 27.4957i 0.586107 1.59278i
\(299\) 5.54704i 0.320793i
\(300\) 3.47676 4.08447i 0.200731 0.235817i
\(301\) 20.4274 13.9367i 1.17742 0.803296i
\(302\) 6.24675 16.9759i 0.359460 0.976854i
\(303\) 4.69127i 0.269506i
\(304\) −7.61438 + 1.23192i −0.436714 + 0.0706555i
\(305\) −6.51927 −0.373292
\(306\) −5.73806 + 15.5935i −0.328023 + 0.891423i
\(307\) 10.2092i 0.582671i −0.956621 0.291336i \(-0.905900\pi\)
0.956621 0.291336i \(-0.0940997\pi\)
\(308\) 16.5043 + 1.76410i 0.940418 + 0.100519i
\(309\) 2.64839i 0.150662i
\(310\) 5.97507 + 2.19869i 0.339361 + 0.124877i
\(311\) 3.99969 0.226802 0.113401 0.993549i \(-0.463826\pi\)
0.113401 + 0.993549i \(0.463826\pi\)
\(312\) −1.50533 + 0.847957i −0.0852227 + 0.0480061i
\(313\) 14.2771i 0.806988i 0.914982 + 0.403494i \(0.132204\pi\)
−0.914982 + 0.403494i \(0.867796\pi\)
\(314\) 7.33120 + 2.69771i 0.413724 + 0.152241i
\(315\) 4.48215 3.05796i 0.252540 0.172296i
\(316\) −5.23174 + 6.14620i −0.294308 + 0.345751i
\(317\) 4.92436i 0.276580i 0.990392 + 0.138290i \(0.0441605\pi\)
−0.990392 + 0.138290i \(0.955839\pi\)
\(318\) −6.16219 2.26754i −0.345558 0.127157i
\(319\) 7.66126i 0.428948i
\(320\) −3.23679 + 5.34147i −0.180942 + 0.298597i
\(321\) 9.93017i 0.554248i
\(322\) 5.05676 + 20.1297i 0.281802 + 1.12178i
\(323\) 8.62487 0.479900
\(324\) 8.80432 + 7.49436i 0.489129 + 0.416353i
\(325\) 4.39050 0.243541
\(326\) 1.16365 + 0.428197i 0.0644488 + 0.0237157i
\(327\) −2.26802 −0.125422
\(328\) 23.9366 13.4835i 1.32168 0.744503i
\(329\) 26.8141 18.2940i 1.47831 1.00858i
\(330\) 0.730572 1.98538i 0.0402167 0.109291i
\(331\) −10.2132 −0.561368 −0.280684 0.959800i \(-0.590561\pi\)
−0.280684 + 0.959800i \(0.590561\pi\)
\(332\) −15.4575 + 18.1594i −0.848341 + 0.996625i
\(333\) 0.130564i 0.00715484i
\(334\) 29.9933 + 11.0368i 1.64116 + 0.603909i
\(335\) 0.731641 0.0399738
\(336\) −4.68971 + 4.44944i −0.255844 + 0.242737i
\(337\) −5.87706 −0.320144 −0.160072 0.987105i \(-0.551173\pi\)
−0.160072 + 0.987105i \(0.551173\pi\)
\(338\) −1.32721 0.488382i −0.0721906 0.0265645i
\(339\) 9.55050i 0.518712i
\(340\) 4.52672 5.31796i 0.245496 0.288407i
\(341\) −18.0884 −0.979542
\(342\) 2.47391 6.72299i 0.133774 0.363538i
\(343\) −4.13831 18.0520i −0.223448 0.974716i
\(344\) −12.9746 23.0332i −0.699545 1.24187i
\(345\) 2.64533 0.142420
\(346\) 1.88456 + 0.693476i 0.101315 + 0.0372815i
\(347\) −26.0891 −1.40053 −0.700267 0.713881i \(-0.746936\pi\)
−0.700267 + 0.713881i \(0.746936\pi\)
\(348\) 2.27215 + 1.93409i 0.121800 + 0.103678i
\(349\) 24.8684 1.33118 0.665588 0.746319i \(-0.268181\pi\)
0.665588 + 0.746319i \(0.268181\pi\)
\(350\) 15.9327 4.00244i 0.851639 0.213939i
\(351\) 3.43715i 0.183461i
\(352\) 3.38951 17.4176i 0.180661 0.928360i
\(353\) 1.35013i 0.0718601i −0.999354 0.0359300i \(-0.988561\pi\)
0.999354 0.0359300i \(-0.0114393\pi\)
\(354\) 10.7601 + 3.95949i 0.571895 + 0.210444i
\(355\) 10.1600i 0.539237i
\(356\) 20.4337 24.0054i 1.08298 1.27228i
\(357\) 5.97117 4.07385i 0.316028 0.215611i
\(358\) −15.9936 5.88526i −0.845286 0.311046i
\(359\) 4.82833i 0.254829i 0.991850 + 0.127415i \(0.0406679\pi\)
−0.991850 + 0.127415i \(0.959332\pi\)
\(360\) −2.84687 5.05390i −0.150043 0.266364i
\(361\) 15.2815 0.804288
\(362\) 31.8126 + 11.7063i 1.67203 + 0.615270i
\(363\) 0.708947i 0.0372101i
\(364\) −5.26153 0.562392i −0.275779 0.0294773i
\(365\) 0.317364i 0.0166116i
\(366\) −2.49117 + 6.76990i −0.130215 + 0.353869i
\(367\) 8.89488 0.464309 0.232155 0.972679i \(-0.425422\pi\)
0.232155 + 0.972679i \(0.425422\pi\)
\(368\) 21.9033 3.54371i 1.14179 0.184729i
\(369\) 25.5152i 1.32827i
\(370\) 0.0189510 0.0515004i 0.000985214 0.00267738i
\(371\) −11.3337 16.6121i −0.588414 0.862458i
\(372\) 4.56643 5.36461i 0.236758 0.278142i
\(373\) 35.8127i 1.85431i −0.374674 0.927157i \(-0.622245\pi\)
0.374674 0.927157i \(-0.377755\pi\)
\(374\) −6.85191 + 18.6205i −0.354304 + 0.962842i
\(375\) 4.47824i 0.231255i
\(376\) −17.0312 30.2345i −0.878315 1.55923i
\(377\) 2.44239i 0.125790i
\(378\) −3.13335 12.4731i −0.161162 0.641546i
\(379\) −12.9413 −0.664748 −0.332374 0.943148i \(-0.607850\pi\)
−0.332374 + 0.943148i \(0.607850\pi\)
\(380\) −1.95165 + 2.29278i −0.100117 + 0.117617i
\(381\) −9.40493 −0.481829
\(382\) −5.87968 + 15.9784i −0.300831 + 0.817526i
\(383\) 16.3984 0.837918 0.418959 0.908005i \(-0.362395\pi\)
0.418959 + 0.908005i \(0.362395\pi\)
\(384\) 4.30997 + 5.40233i 0.219942 + 0.275686i
\(385\) 5.35220 3.65155i 0.272773 0.186100i
\(386\) −5.23889 1.92779i −0.266652 0.0981220i
\(387\) 24.5522 1.24806
\(388\) −9.21032 + 10.8202i −0.467583 + 0.549313i
\(389\) 19.3191i 0.979516i −0.871858 0.489758i \(-0.837085\pi\)
0.871858 0.489758i \(-0.162915\pi\)
\(390\) −0.232905 + 0.632934i −0.0117936 + 0.0320498i
\(391\) −24.8101 −1.25470
\(392\) −19.6063 + 2.75562i −0.990267 + 0.139180i
\(393\) 10.5297 0.531154
\(394\) 8.25277 22.4274i 0.415768 1.12988i
\(395\) 3.15068i 0.158528i
\(396\) 12.5491 + 10.6820i 0.630616 + 0.536789i
\(397\) −27.8169 −1.39609 −0.698044 0.716055i \(-0.745946\pi\)
−0.698044 + 0.716055i \(0.745946\pi\)
\(398\) −15.7788 5.80622i −0.790918 0.291040i
\(399\) −2.57441 + 1.75640i −0.128882 + 0.0879299i
\(400\) −2.80486 17.3366i −0.140243 0.866828i
\(401\) −32.8827 −1.64208 −0.821041 0.570869i \(-0.806606\pi\)
−0.821041 + 0.570869i \(0.806606\pi\)
\(402\) 0.279578 0.759769i 0.0139441 0.0378938i
\(403\) 5.76655 0.287252
\(404\) 11.6963 + 9.95606i 0.581913 + 0.495333i
\(405\) 4.51329 0.224267
\(406\) 2.22652 + 8.86322i 0.110500 + 0.439874i
\(407\) 0.155908i 0.00772807i
\(408\) −3.79264 6.73287i −0.187763 0.333327i
\(409\) 22.6861i 1.12176i 0.827899 + 0.560878i \(0.189536\pi\)
−0.827899 + 0.560878i \(0.810464\pi\)
\(410\) 3.70347 10.0644i 0.182901 0.497045i
\(411\) 6.71097i 0.331028i
\(412\) 6.60299 + 5.62056i 0.325306 + 0.276905i
\(413\) 19.7903 + 29.0074i 0.973819 + 1.42736i
\(414\) −7.11638 + 19.3392i −0.349751 + 0.950470i
\(415\) 9.30889i 0.456956i
\(416\) −1.08057 + 5.55269i −0.0529792 + 0.272243i
\(417\) −11.0382 −0.540543
\(418\) 2.95413 8.02803i 0.144491 0.392664i
\(419\) 7.03620i 0.343741i −0.985120 0.171870i \(-0.945019\pi\)
0.985120 0.171870i \(-0.0549810\pi\)
\(420\) −0.268199 + 2.50918i −0.0130868 + 0.122435i
\(421\) 13.2449i 0.645515i 0.946482 + 0.322757i \(0.104610\pi\)
−0.946482 + 0.322757i \(0.895390\pi\)
\(422\) 14.9832 + 5.51346i 0.729369 + 0.268391i
\(423\) 32.2285 1.56700
\(424\) −18.7312 + 10.5513i −0.909667 + 0.512417i
\(425\) 19.6373i 0.952547i
\(426\) −10.5506 3.88238i −0.511179 0.188102i
\(427\) −18.2504 + 12.4514i −0.883199 + 0.602565i
\(428\) 24.7580 + 21.0743i 1.19672 + 1.01867i
\(429\) 1.91609i 0.0925097i
\(430\) −9.68455 3.56369i −0.467030 0.171856i
\(431\) 28.2469i 1.36060i 0.732932 + 0.680302i \(0.238151\pi\)
−0.732932 + 0.680302i \(0.761849\pi\)
\(432\) −13.5721 + 2.19582i −0.652989 + 0.105646i
\(433\) 13.3814i 0.643071i −0.946898 0.321535i \(-0.895801\pi\)
0.946898 0.321535i \(-0.104199\pi\)
\(434\) 20.9263 5.25687i 1.00449 0.252338i
\(435\) 1.16476 0.0558457
\(436\) −4.81333 + 5.65466i −0.230516 + 0.270809i
\(437\) 10.6966 0.511688
\(438\) 0.329565 + 0.121272i 0.0157472 + 0.00579462i
\(439\) 15.9433 0.760933 0.380467 0.924795i \(-0.375763\pi\)
0.380467 + 0.924795i \(0.375763\pi\)
\(440\) −3.39949 6.03494i −0.162064 0.287704i
\(441\) 6.70707 17.1212i 0.319384 0.815297i
\(442\) 2.18437 5.93617i 0.103900 0.282355i
\(443\) −15.4639 −0.734714 −0.367357 0.930080i \(-0.619737\pi\)
−0.367357 + 0.930080i \(0.619737\pi\)
\(444\) −0.0462387 0.0393591i −0.00219439 0.00186790i
\(445\) 12.3057i 0.583345i
\(446\) 8.24478 + 3.03389i 0.390402 + 0.143659i
\(447\) −12.6548 −0.598553
\(448\) 1.14063 + 21.1353i 0.0538897 + 0.998547i
\(449\) −6.57371 −0.310233 −0.155116 0.987896i \(-0.549575\pi\)
−0.155116 + 0.987896i \(0.549575\pi\)
\(450\) 15.3070 + 5.63264i 0.721581 + 0.265525i
\(451\) 30.4681i 1.43469i
\(452\) −23.8114 20.2686i −1.11999 0.953355i
\(453\) −7.81314 −0.367093
\(454\) 1.18054 3.20818i 0.0554053 0.150567i
\(455\) −1.70627 + 1.16411i −0.0799912 + 0.0545743i
\(456\) 1.63516 + 2.90281i 0.0765732 + 0.135936i
\(457\) 34.8367 1.62959 0.814796 0.579748i \(-0.196849\pi\)
0.814796 + 0.579748i \(0.196849\pi\)
\(458\) 1.03154 + 0.379583i 0.0482008 + 0.0177368i
\(459\) 15.3732 0.717562
\(460\) 5.61407 6.59536i 0.261757 0.307510i
\(461\) −10.9767 −0.511236 −0.255618 0.966778i \(-0.582279\pi\)
−0.255618 + 0.966778i \(0.582279\pi\)
\(462\) −1.74673 6.95331i −0.0812654 0.323497i
\(463\) 18.8055i 0.873963i −0.899470 0.436982i \(-0.856047\pi\)
0.899470 0.436982i \(-0.143953\pi\)
\(464\) 9.64417 1.56032i 0.447719 0.0724360i
\(465\) 2.75002i 0.127529i
\(466\) −1.24208 0.457059i −0.0575385 0.0211728i
\(467\) 14.3383i 0.663497i 0.943368 + 0.331748i \(0.107638\pi\)
−0.943368 + 0.331748i \(0.892362\pi\)
\(468\) −4.00063 3.40539i −0.184929 0.157414i
\(469\) 2.04820 1.39739i 0.0945769 0.0645254i
\(470\) −12.7124 4.67788i −0.586381 0.215775i
\(471\) 3.37417i 0.155474i
\(472\) 32.7076 18.4242i 1.50549 0.848044i
\(473\) 29.3182 1.34805
\(474\) 3.27181 + 1.20395i 0.150279 + 0.0552992i
\(475\) 8.46640i 0.388465i
\(476\) 2.51539 23.5331i 0.115293 1.07864i
\(477\) 19.9665i 0.914204i
\(478\) −3.94389 + 10.7178i −0.180390 + 0.490220i
\(479\) −5.36064 −0.244934 −0.122467 0.992473i \(-0.539081\pi\)
−0.122467 + 0.992473i \(0.539081\pi\)
\(480\) 2.64803 + 0.515313i 0.120865 + 0.0235207i
\(481\) 0.0497032i 0.00226627i
\(482\) −6.39401 + 17.3761i −0.291239 + 0.791460i
\(483\) 7.40548 5.05241i 0.336961 0.229893i
\(484\) −1.76755 1.50457i −0.0803433 0.0683894i
\(485\) 5.54668i 0.251862i
\(486\) 6.76056 18.3722i 0.306665 0.833382i
\(487\) 14.7792i 0.669708i 0.942270 + 0.334854i \(0.108687\pi\)
−0.942270 + 0.334854i \(0.891313\pi\)
\(488\) 11.5919 + 20.5785i 0.524740 + 0.931543i
\(489\) 0.535569i 0.0242193i
\(490\) −5.13068 + 5.77990i −0.231781 + 0.261109i
\(491\) −21.0065 −0.948011 −0.474006 0.880522i \(-0.657192\pi\)
−0.474006 + 0.880522i \(0.657192\pi\)
\(492\) −9.03614 7.69169i −0.407381 0.346768i
\(493\) −10.9240 −0.491993
\(494\) −0.941771 + 2.55932i −0.0423723 + 0.115149i
\(495\) 6.43295 0.289139
\(496\) −3.68395 22.7701i −0.165414 1.02241i
\(497\) −19.4050 28.4425i −0.870431 1.27582i
\(498\) 9.66677 + 3.55715i 0.433178 + 0.159400i
\(499\) −14.2078 −0.636030 −0.318015 0.948086i \(-0.603016\pi\)
−0.318015 + 0.948086i \(0.603016\pi\)
\(500\) −11.1652 9.50397i −0.499323 0.425031i
\(501\) 13.8044i 0.616734i
\(502\) 5.70402 15.5010i 0.254583 0.691845i
\(503\) −38.2658 −1.70619 −0.853095 0.521756i \(-0.825277\pi\)
−0.853095 + 0.521756i \(0.825277\pi\)
\(504\) −17.6223 8.71082i −0.784960 0.388011i
\(505\) 5.99578 0.266809
\(506\) −8.49778 + 23.0932i −0.377772 + 1.02662i
\(507\) 0.610846i 0.0271286i
\(508\) −19.9597 + 23.4485i −0.885567 + 1.04036i
\(509\) 9.93667 0.440435 0.220217 0.975451i \(-0.429323\pi\)
0.220217 + 0.975451i \(0.429323\pi\)
\(510\) −2.83091 1.04171i −0.125355 0.0461276i
\(511\) 0.606145 + 0.888446i 0.0268143 + 0.0393025i
\(512\) 22.6160 + 0.719465i 0.999494 + 0.0317961i
\(513\) −6.62802 −0.292634
\(514\) −11.2236 + 30.5009i −0.495053 + 1.34534i
\(515\) 3.38484 0.149154
\(516\) −7.40139 + 8.69510i −0.325828 + 0.382780i
\(517\) 38.4845 1.69255
\(518\) −0.0453101 0.180368i −0.00199081 0.00792492i
\(519\) 0.867368i 0.0380732i
\(520\) 1.08375 + 1.92393i 0.0475256 + 0.0843698i
\(521\) 10.2606i 0.449524i 0.974414 + 0.224762i \(0.0721605\pi\)
−0.974414 + 0.224762i \(0.927840\pi\)
\(522\) −3.13338 + 8.51516i −0.137144 + 0.372699i
\(523\) 10.2265i 0.447173i −0.974684 0.223587i \(-0.928223\pi\)
0.974684 0.223587i \(-0.0717765\pi\)
\(524\) 22.3467 26.2528i 0.976222 1.14686i
\(525\) −3.99900 5.86146i −0.174531 0.255815i
\(526\) 4.19068 11.3884i 0.182722 0.496559i
\(527\) 25.7919i 1.12351i
\(528\) −7.56598 + 1.22409i −0.329267 + 0.0532717i
\(529\) −7.76963 −0.337810
\(530\) −2.89809 + 7.87573i −0.125885 + 0.342100i
\(531\) 34.8647i 1.51300i
\(532\) −1.08449 + 10.1461i −0.0470184 + 0.439887i
\(533\) 9.71318i 0.420724i
\(534\) −12.7788 4.70229i −0.552991 0.203488i
\(535\) 12.6915 0.548701
\(536\) −1.30093 2.30947i −0.0561915 0.0997538i
\(537\) 7.36101i 0.317651i
\(538\) 27.3042 + 10.0473i 1.17717 + 0.433170i
\(539\) 8.00901 20.4447i 0.344972 0.880616i
\(540\) −3.47868 + 4.08673i −0.149699 + 0.175865i
\(541\) 46.1245i 1.98305i 0.129934 + 0.991523i \(0.458523\pi\)
−0.129934 + 0.991523i \(0.541477\pi\)
\(542\) 10.1317 + 3.72822i 0.435192 + 0.160141i
\(543\) 14.6417i 0.628336i
\(544\) −24.8354 4.83303i −1.06481 0.207214i
\(545\) 2.89870i 0.124167i
\(546\) 0.556855 + 2.21670i 0.0238312 + 0.0948661i
\(547\) −13.4615 −0.575573 −0.287787 0.957695i \(-0.592919\pi\)
−0.287787 + 0.957695i \(0.592919\pi\)
\(548\) −16.7318 14.2424i −0.714749 0.608405i
\(549\) −21.9356 −0.936189
\(550\) 18.2784 + 6.72602i 0.779392 + 0.286798i
\(551\) 4.70978 0.200643
\(552\) −4.70365 8.35014i −0.200201 0.355406i
\(553\) 6.01759 + 8.82018i 0.255894 + 0.375072i
\(554\) 5.54321 15.0640i 0.235509 0.640009i
\(555\) −0.0237030 −0.00100614
\(556\) −23.4259 + 27.5205i −0.993479 + 1.16713i
\(557\) 18.6109i 0.788568i −0.918989 0.394284i \(-0.870993\pi\)
0.918989 0.394284i \(-0.129007\pi\)
\(558\) 20.1045 + 7.39800i 0.851092 + 0.313182i
\(559\) −9.34658 −0.395318
\(560\) 5.68671 + 5.99379i 0.240307 + 0.253284i
\(561\) 8.57005 0.361828
\(562\) −8.43084 3.10236i −0.355634 0.130865i
\(563\) 22.1148i 0.932026i −0.884778 0.466013i \(-0.845690\pi\)
0.884778 0.466013i \(-0.154310\pi\)
\(564\) −9.71545 + 11.4136i −0.409094 + 0.480600i
\(565\) −12.2062 −0.513521
\(566\) −11.4165 + 31.0251i −0.479872 + 1.30408i
\(567\) 12.6347 8.62009i 0.530609 0.362010i
\(568\) −32.0707 + 18.0655i −1.34566 + 0.758010i
\(569\) 25.8418 1.08335 0.541673 0.840590i \(-0.317791\pi\)
0.541673 + 0.840590i \(0.317791\pi\)
\(570\) 1.22052 + 0.449122i 0.0511218 + 0.0188116i
\(571\) −25.7728 −1.07856 −0.539279 0.842127i \(-0.681303\pi\)
−0.539279 + 0.842127i \(0.681303\pi\)
\(572\) −4.77721 4.06643i −0.199745 0.170026i
\(573\) 7.35403 0.307219
\(574\) −8.85466 35.2482i −0.369587 1.47123i
\(575\) 24.3543i 1.01564i
\(576\) −10.8909 + 17.9726i −0.453789 + 0.748860i
\(577\) 22.8537i 0.951410i −0.879605 0.475705i \(-0.842193\pi\)
0.879605 0.475705i \(-0.157807\pi\)
\(578\) 3.98801 + 1.46750i 0.165879 + 0.0610397i
\(579\) 2.41119i 0.100206i
\(580\) 2.47191 2.90398i 0.102640 0.120581i
\(581\) 17.7794 + 26.0598i 0.737613 + 1.08114i
\(582\) 5.75992 + 2.11952i 0.238756 + 0.0878569i
\(583\) 23.8423i 0.987447i
\(584\) 1.00178 0.564303i 0.0414539 0.0233510i
\(585\) −2.05081 −0.0847906
\(586\) 0.399108 + 0.146862i 0.0164870 + 0.00606683i
\(587\) 5.51657i 0.227693i 0.993498 + 0.113847i \(0.0363172\pi\)
−0.993498 + 0.113847i \(0.963683\pi\)
\(588\) 4.04155 + 7.53657i 0.166671 + 0.310803i
\(589\) 11.1199i 0.458188i
\(590\) 5.06051 13.7523i 0.208338 0.566171i
\(591\) −10.3222 −0.424598
\(592\) −0.196261 + 0.0317528i −0.00806626 + 0.00130503i
\(593\) 5.37304i 0.220644i −0.993896 0.110322i \(-0.964812\pi\)
0.993896 0.110322i \(-0.0351883\pi\)
\(594\) 5.26553 14.3094i 0.216048 0.587122i
\(595\) −5.20668 7.63160i −0.213453 0.312865i
\(596\) −26.8568 + 31.5511i −1.10010 + 1.29239i
\(597\) 7.26216i 0.297220i
\(598\) 2.70907 7.36208i 0.110782 0.301058i
\(599\) 4.38259i 0.179068i 0.995984 + 0.0895338i \(0.0285377\pi\)
−0.995984 + 0.0895338i \(0.971462\pi\)
\(600\) −6.60917 + 3.72295i −0.269818 + 0.151989i
\(601\) 32.9212i 1.34288i 0.741057 + 0.671442i \(0.234325\pi\)
−0.741057 + 0.671442i \(0.765675\pi\)
\(602\) −33.9179 + 8.52047i −1.38239 + 0.347268i
\(603\) 2.46178 0.100251
\(604\) −16.5815 + 19.4798i −0.674690 + 0.792621i
\(605\) −0.906087 −0.0368377
\(606\) 2.29113 6.22629i 0.0930709 0.252926i
\(607\) −16.1526 −0.655615 −0.327807 0.944745i \(-0.606310\pi\)
−0.327807 + 0.944745i \(0.606310\pi\)
\(608\) 10.7075 + 2.08371i 0.434247 + 0.0845056i
\(609\) 3.26068 2.22461i 0.132129 0.0901456i
\(610\) 8.65243 + 3.18390i 0.350327 + 0.128912i
\(611\) −12.2688 −0.496342
\(612\) 15.2312 17.8935i 0.615685 0.723302i
\(613\) 38.2321i 1.54418i 0.635514 + 0.772090i \(0.280788\pi\)
−0.635514 + 0.772090i \(0.719212\pi\)
\(614\) −4.98601 + 13.5498i −0.201219 + 0.546824i
\(615\) −4.63212 −0.186785
\(616\) −21.0431 10.4017i −0.847849 0.419097i
\(617\) 13.4473 0.541370 0.270685 0.962668i \(-0.412750\pi\)
0.270685 + 0.962668i \(0.412750\pi\)
\(618\) 1.29343 3.51497i 0.0520293 0.141393i
\(619\) 3.01278i 0.121094i −0.998165 0.0605468i \(-0.980716\pi\)
0.998165 0.0605468i \(-0.0192845\pi\)
\(620\) −6.85636 5.83623i −0.275358 0.234389i
\(621\) 19.0660 0.765092
\(622\) −5.30843 1.95338i −0.212848 0.0783233i
\(623\) −23.5030 34.4492i −0.941630 1.38018i
\(624\) 2.41202 0.390238i 0.0965580 0.0156220i
\(625\) 16.2290 0.649159
\(626\) 6.97267 18.9487i 0.278684 0.757341i
\(627\) −3.69489 −0.147560
\(628\) −8.41252 7.16086i −0.335696 0.285749i
\(629\) 0.222306 0.00886392
\(630\) −7.44220 + 1.86955i −0.296504 + 0.0744845i
\(631\) 45.0426i 1.79312i 0.442923 + 0.896560i \(0.353941\pi\)
−0.442923 + 0.896560i \(0.646059\pi\)
\(632\) 9.94530 5.60220i 0.395603 0.222844i
\(633\) 6.89598i 0.274090i
\(634\) 2.40497 6.53565i 0.0955136 0.259564i
\(635\) 12.0202i 0.477007i
\(636\) 7.07108 + 6.01900i 0.280386 + 0.238669i
\(637\) −2.55326 + 6.51774i −0.101164 + 0.258242i
\(638\) −3.74162 + 10.1681i −0.148132 + 0.402558i
\(639\) 34.1857i 1.35237i
\(640\) 6.90457 5.50846i 0.272927 0.217741i
\(641\) −13.9305 −0.550223 −0.275111 0.961412i \(-0.588715\pi\)
−0.275111 + 0.961412i \(0.588715\pi\)
\(642\) 4.84972 13.1794i 0.191403 0.520150i
\(643\) 12.4706i 0.491793i 0.969296 + 0.245896i \(0.0790823\pi\)
−0.969296 + 0.245896i \(0.920918\pi\)
\(644\) 3.11961 29.1859i 0.122930 1.15009i
\(645\) 4.45730i 0.175506i
\(646\) −11.4470 4.21223i −0.450376 0.165728i
\(647\) 15.0662 0.592315 0.296157 0.955139i \(-0.404295\pi\)
0.296157 + 0.955139i \(0.404295\pi\)
\(648\) −8.02505 14.2465i −0.315254 0.559654i
\(649\) 41.6324i 1.63422i
\(650\) −5.82711 2.14424i −0.228558 0.0841041i
\(651\) −5.25235 7.69854i −0.205856 0.301730i
\(652\) −1.33529 1.13661i −0.0522938 0.0445133i
\(653\) 4.21959i 0.165125i −0.996586 0.0825627i \(-0.973690\pi\)
0.996586 0.0825627i \(-0.0263105\pi\)
\(654\) 3.01014 + 1.10766i 0.117706 + 0.0433131i
\(655\) 13.4578i 0.525838i
\(656\) −38.3540 + 6.20524i −1.49747 + 0.242274i
\(657\) 1.06785i 0.0416606i
\(658\) −44.5223 + 11.1844i −1.73566 + 0.436014i
\(659\) 3.00756 0.117158 0.0585790 0.998283i \(-0.481343\pi\)
0.0585790 + 0.998283i \(0.481343\pi\)
\(660\) −1.93924 + 2.27821i −0.0754850 + 0.0886791i
\(661\) 18.4307 0.716871 0.358436 0.933554i \(-0.383310\pi\)
0.358436 + 0.933554i \(0.383310\pi\)
\(662\) 13.5550 + 4.98794i 0.526831 + 0.193862i
\(663\) −2.73211 −0.106107
\(664\) 29.3841 16.5521i 1.14032 0.642346i
\(665\) 2.24481 + 3.29028i 0.0870498 + 0.127592i
\(666\) 0.0637649 0.173285i 0.00247084 0.00671466i
\(667\) −13.5480 −0.524583
\(668\) −34.4172 29.2964i −1.33164 1.13351i
\(669\) 3.79465i 0.146710i
\(670\) −0.971041 0.357321i −0.0375146 0.0138045i
\(671\) −26.1936 −1.01119
\(672\) 8.39725 3.61497i 0.323931 0.139450i
\(673\) 34.6624 1.33614 0.668069 0.744099i \(-0.267121\pi\)
0.668069 + 0.744099i \(0.267121\pi\)
\(674\) 7.80008 + 2.87025i 0.300448 + 0.110558i
\(675\) 15.0908i 0.580845i
\(676\) 1.52297 + 1.29637i 0.0585756 + 0.0498604i
\(677\) −46.5739 −1.78998 −0.894990 0.446087i \(-0.852817\pi\)
−0.894990 + 0.446087i \(0.852817\pi\)
\(678\) −4.66430 + 12.6755i −0.179131 + 0.486800i
\(679\) 10.5938 + 15.5277i 0.406553 + 0.595898i
\(680\) −8.60510 + 4.84727i −0.329990 + 0.185884i
\(681\) −1.47656 −0.0565819
\(682\) 24.0071 + 8.83406i 0.919279 + 0.338274i
\(683\) 13.1703 0.503947 0.251974 0.967734i \(-0.418920\pi\)
0.251974 + 0.967734i \(0.418920\pi\)
\(684\) −6.56678 + 7.71460i −0.251087 + 0.294975i
\(685\) −8.57711 −0.327715
\(686\) −3.32387 + 25.9798i −0.126906 + 0.991915i
\(687\) 0.474765i 0.0181134i
\(688\) 5.97104 + 36.9064i 0.227644 + 1.40704i
\(689\) 7.60088i 0.289571i
\(690\) −3.51091 1.29193i −0.133658 0.0491831i
\(691\) 37.3690i 1.42158i −0.703402 0.710792i \(-0.748337\pi\)
0.703402 0.710792i \(-0.251663\pi\)
\(692\) −2.16253 1.84077i −0.0822070 0.0699758i
\(693\) 18.0087 12.2865i 0.684095 0.466726i
\(694\) 34.6256 + 12.7414i 1.31437 + 0.483658i
\(695\) 14.1076i 0.535133i
\(696\) −2.07104 3.67662i −0.0785027 0.139362i
\(697\) 43.4439 1.64555
\(698\) −33.0056 12.1453i −1.24928 0.459707i
\(699\) 0.571668i 0.0216225i
\(700\) −23.1007 2.46918i −0.873126 0.0933262i
\(701\) 19.9712i 0.754302i 0.926152 + 0.377151i \(0.123096\pi\)
−0.926152 + 0.377151i \(0.876904\pi\)
\(702\) −1.67864 + 4.56181i −0.0633563 + 0.172175i
\(703\) −0.0958449 −0.00361486
\(704\) −13.0050 + 21.4614i −0.490145 + 0.808856i
\(705\) 5.85088i 0.220357i
\(706\) −0.659379 + 1.79190i −0.0248160 + 0.0674391i
\(707\) 16.7849 11.4516i 0.631262 0.430680i
\(708\) −12.3472 10.5101i −0.464037 0.394995i
\(709\) 16.5434i 0.621302i −0.950524 0.310651i \(-0.899453\pi\)
0.950524 0.310651i \(-0.100547\pi\)
\(710\) −4.96197 + 13.4845i −0.186219 + 0.506063i
\(711\) 10.6012i 0.397576i
\(712\) −38.8436 + 21.8807i −1.45572 + 0.820012i
\(713\) 31.9873i 1.19793i
\(714\) −9.91459 + 2.49063i −0.371044 + 0.0932096i
\(715\) −2.44890 −0.0915838
\(716\) 18.3525 + 15.6219i 0.685866 + 0.583819i
\(717\) 4.93284 0.184220
\(718\) 2.35807 6.40820i 0.0880024 0.239152i
\(719\) 11.5055 0.429084 0.214542 0.976715i \(-0.431174\pi\)
0.214542 + 0.976715i \(0.431174\pi\)
\(720\) 1.31016 + 8.09794i 0.0488267 + 0.301793i
\(721\) 9.47570 6.46482i 0.352894 0.240763i
\(722\) −20.2817 7.46320i −0.754807 0.277752i
\(723\) 7.99733 0.297424
\(724\) −36.5048 31.0735i −1.35669 1.15484i
\(725\) 10.7233i 0.398254i
\(726\) −0.346237 + 0.940921i −0.0128501 + 0.0349209i
\(727\) −24.4779 −0.907835 −0.453918 0.891044i \(-0.649974\pi\)
−0.453918 + 0.891044i \(0.649974\pi\)
\(728\) 6.70849 + 3.31605i 0.248633 + 0.122901i
\(729\) 8.88731 0.329160
\(730\) 0.154995 0.421208i 0.00573662 0.0155896i
\(731\) 41.8042i 1.54618i
\(732\) 6.61260 7.76843i 0.244409 0.287130i
\(733\) −6.67143 −0.246415 −0.123207 0.992381i \(-0.539318\pi\)
−0.123207 + 0.992381i \(0.539318\pi\)
\(734\) −11.8054 4.34410i −0.435744 0.160344i
\(735\) 3.10825 + 1.21762i 0.114649 + 0.0449128i
\(736\) −30.8010 5.99395i −1.13534 0.220940i
\(737\) 2.93965 0.108283
\(738\) 12.4612 33.8640i 0.458702 1.24655i
\(739\) −29.0139 −1.06730 −0.533648 0.845707i \(-0.679179\pi\)
−0.533648 + 0.845707i \(0.679179\pi\)
\(740\) −0.0503038 + 0.0590965i −0.00184920 + 0.00217243i
\(741\) 1.17792 0.0432721
\(742\) 6.92907 + 27.5829i 0.254374 + 1.01260i
\(743\) 6.25450i 0.229455i 0.993397 + 0.114728i \(0.0365996\pi\)
−0.993397 + 0.114728i \(0.963400\pi\)
\(744\) −8.68058 + 4.88979i −0.318246 + 0.179268i
\(745\) 16.1738i 0.592563i
\(746\) −17.4903 + 47.5310i −0.640366 + 1.74023i
\(747\) 31.3219i 1.14601i
\(748\) 18.1878 21.3669i 0.665012 0.781251i
\(749\) 35.5292 24.2399i 1.29821 0.885707i
\(750\) −2.18709 + 5.94356i −0.0798614 + 0.217028i
\(751\) 13.3309i 0.486450i 0.969970 + 0.243225i \(0.0782053\pi\)
−0.969970 + 0.243225i \(0.921795\pi\)
\(752\) 7.83790 + 48.4452i 0.285819 + 1.76662i
\(753\) −7.13433 −0.259989
\(754\) 1.19282 3.24157i 0.0434400 0.118051i
\(755\) 9.98577i 0.363419i
\(756\) −1.93302 + 18.0847i −0.0703034 + 0.657733i
\(757\) 42.5601i 1.54687i −0.633875 0.773436i \(-0.718537\pi\)
0.633875 0.773436i \(-0.281463\pi\)
\(758\) 17.1758 + 6.32028i 0.623851 + 0.229563i
\(759\) 10.6286 0.385795
\(760\) 3.71000 2.08985i 0.134576 0.0758068i
\(761\) 16.7302i 0.606470i 0.952916 + 0.303235i \(0.0980668\pi\)
−0.952916 + 0.303235i \(0.901933\pi\)
\(762\) 12.4823 + 4.59320i 0.452186 + 0.166394i
\(763\) 5.53633 + 8.11478i 0.200429 + 0.293775i
\(764\) 15.6071 18.3351i 0.564646 0.663342i
\(765\) 9.17261i 0.331636i
\(766\) −21.7641 8.00867i −0.786368 0.289365i
\(767\) 13.2723i 0.479236i
\(768\) −3.08183 9.27493i −0.111206 0.334680i
\(769\) 20.9434i 0.755238i −0.925961 0.377619i \(-0.876743\pi\)
0.925961 0.377619i \(-0.123257\pi\)
\(770\) −8.88684 + 2.23245i −0.320260 + 0.0804521i
\(771\) 14.0380 0.505566
\(772\) 6.01160 + 5.11716i 0.216362 + 0.184171i
\(773\) −7.79043 −0.280202 −0.140101 0.990137i \(-0.544743\pi\)
−0.140101 + 0.990137i \(0.544743\pi\)
\(774\) −32.5859 11.9909i −1.17128 0.431003i
\(775\) 25.3180 0.909450
\(776\) 17.5084 9.86253i 0.628516 0.354044i
\(777\) −0.0663554 + 0.0452712i −0.00238049 + 0.00162409i
\(778\) −9.43510 + 25.6405i −0.338265 + 0.919255i
\(779\) −18.7304 −0.671085
\(780\) 0.618227 0.726288i 0.0221361 0.0260053i
\(781\) 40.8217i 1.46072i
\(782\) 32.9282 + 12.1168i 1.17751 + 0.433296i
\(783\) 8.39487 0.300008
\(784\) 27.3674 + 5.91808i 0.977408 + 0.211360i
\(785\) −4.31244 −0.153918
\(786\) −13.9751 5.14253i −0.498476 0.183428i
\(787\) 46.2745i 1.64951i −0.565491 0.824755i \(-0.691313\pi\)
0.565491 0.824755i \(-0.308687\pi\)
\(788\) −21.9063 + 25.7353i −0.780379 + 0.916783i
\(789\) −5.24150 −0.186602
\(790\) 1.53874 4.18161i 0.0547458 0.148775i
\(791\) −34.1708 + 23.3131i −1.21497 + 0.828920i
\(792\) −11.4384 20.3060i −0.406445 0.721541i
\(793\) 8.35048 0.296534
\(794\) 36.9188 + 13.5853i 1.31020 + 0.482123i
\(795\) 3.62479 0.128558
\(796\) 18.1061 + 15.4121i 0.641752 + 0.546269i
\(797\) −37.9333 −1.34367 −0.671833 0.740703i \(-0.734493\pi\)
−0.671833 + 0.740703i \(0.734493\pi\)
\(798\) 4.27457 1.07381i 0.151318 0.0380125i
\(799\) 54.8743i 1.94131i
\(800\) −4.74423 + 24.3791i −0.167734 + 0.861931i
\(801\) 41.4053i 1.46299i
\(802\) 43.6422 + 16.0593i 1.54106 + 0.567074i
\(803\) 1.27513i 0.0449984i
\(804\) −0.742115 + 0.871831i −0.0261724 + 0.0307471i
\(805\) −6.45735 9.46475i −0.227592 0.333589i
\(806\) −7.65342 2.81628i −0.269580 0.0991993i
\(807\) 12.5667i 0.442369i
\(808\) −10.6611 18.9260i −0.375055 0.665816i
\(809\) 27.1364 0.954066 0.477033 0.878885i \(-0.341712\pi\)
0.477033 + 0.878885i \(0.341712\pi\)
\(810\) −5.99007 2.20421i −0.210470 0.0774480i
\(811\) 13.4314i 0.471639i 0.971797 + 0.235820i \(0.0757774\pi\)
−0.971797 + 0.235820i \(0.924223\pi\)
\(812\) 1.37358 12.8507i 0.0482033 0.450972i
\(813\) 4.66308i 0.163541i
\(814\) 0.0761427 0.206922i 0.00266880 0.00725263i
\(815\) −0.684497 −0.0239769
\(816\) 1.74541 + 10.7882i 0.0611014 + 0.377662i
\(817\) 18.0234i 0.630561i
\(818\) 11.0795 30.1092i 0.387385 1.05274i
\(819\) −5.74115 + 3.91692i −0.200612 + 0.136868i
\(820\) −9.83055 + 11.5488i −0.343298 + 0.403303i
\(821\) 22.5402i 0.786659i −0.919398 0.393330i \(-0.871323\pi\)
0.919398 0.393330i \(-0.128677\pi\)
\(822\) −3.27752 + 8.90686i −0.114317 + 0.310662i
\(823\) 7.78576i 0.271394i 0.990750 + 0.135697i \(0.0433274\pi\)
−0.990750 + 0.135697i \(0.956673\pi\)
\(824\) −6.01856 10.6844i −0.209667 0.372210i
\(825\) 8.41259i 0.292889i
\(826\) −12.0992 48.1641i −0.420987 1.67584i
\(827\) 0.985448 0.0342674 0.0171337 0.999853i \(-0.494546\pi\)
0.0171337 + 0.999853i \(0.494546\pi\)
\(828\) 18.8898 22.1916i 0.656467 0.771213i
\(829\) 54.4732 1.89193 0.945967 0.324264i \(-0.105117\pi\)
0.945967 + 0.324264i \(0.105117\pi\)
\(830\) 4.54630 12.3548i 0.157804 0.428843i
\(831\) −6.93319 −0.240510
\(832\) 4.14597 6.84185i 0.143736 0.237198i
\(833\) −29.1517 11.4199i −1.01005 0.395675i
\(834\) 14.6500 + 5.39086i 0.507288 + 0.186670i
\(835\) −17.6430 −0.610561
\(836\) −7.84149 + 9.21212i −0.271204 + 0.318608i
\(837\) 19.8205i 0.685096i
\(838\) −3.43635 + 9.33850i −0.118707 + 0.322593i
\(839\) 18.5284 0.639672 0.319836 0.947473i \(-0.396372\pi\)
0.319836 + 0.947473i \(0.396372\pi\)
\(840\) 1.58139 3.19922i 0.0545633 0.110383i
\(841\) 23.0347 0.794301
\(842\) 6.46855 17.5787i 0.222921 0.605802i
\(843\) 3.88028i 0.133644i
\(844\) −17.1931 14.6350i −0.591811 0.503758i
\(845\) 0.780706 0.0268571
\(846\) −42.7740 15.7398i −1.47060 0.541147i
\(847\) −2.53655 + 1.73057i −0.0871568 + 0.0594630i
\(848\) 30.0133 4.85581i 1.03066 0.166749i
\(849\) 14.2792 0.490063
\(850\) 9.59049 26.0627i 0.328951 0.893945i
\(851\) 0.275705 0.00945105
\(852\) 12.1068 + 10.3055i 0.414771 + 0.353059i
\(853\) 54.5504 1.86777 0.933886 0.357571i \(-0.116395\pi\)
0.933886 + 0.357571i \(0.116395\pi\)
\(854\) 30.3031 7.61242i 1.03695 0.260492i
\(855\) 3.95467i 0.135247i
\(856\) −22.5667 40.0614i −0.771313 1.36927i
\(857\) 17.4890i 0.597413i 0.954345 + 0.298706i \(0.0965551\pi\)
−0.954345 + 0.298706i \(0.903445\pi\)
\(858\) −0.935784 + 2.54305i −0.0319472 + 0.0868183i
\(859\) 32.4405i 1.10686i 0.832897 + 0.553428i \(0.186681\pi\)
−0.832897 + 0.553428i \(0.813319\pi\)
\(860\) 11.1130 + 9.45952i 0.378949 + 0.322567i
\(861\) −12.9674 + 8.84706i −0.441928 + 0.301507i
\(862\) 13.7953 37.4895i 0.469869 1.27690i
\(863\) 2.87423i 0.0978400i −0.998803 0.0489200i \(-0.984422\pi\)
0.998803 0.0489200i \(-0.0155779\pi\)
\(864\) 19.0854 + 3.71407i 0.649299 + 0.126355i
\(865\) −1.10856 −0.0376922
\(866\) −6.53526 + 17.7600i −0.222077 + 0.603508i
\(867\) 1.83547i 0.0623360i
\(868\) −30.3409 3.24306i −1.02984 0.110077i
\(869\) 12.6590i 0.429429i
\(870\) −1.54587 0.568846i −0.0524100 0.0192857i
\(871\) −0.937154 −0.0317542
\(872\) 9.14992 5.15417i 0.309855 0.174542i
\(873\) 18.6631i 0.631651i
\(874\) −14.1966 5.22404i −0.480208 0.176706i
\(875\) −16.0227 + 10.9316i −0.541667 + 0.369554i
\(876\) −0.378174 0.321907i −0.0127773 0.0108762i
\(877\) 11.8009i 0.398489i −0.979950 0.199244i \(-0.936151\pi\)
0.979950 0.199244i \(-0.0638487\pi\)
\(878\) −21.1601 7.78644i −0.714119 0.262780i
\(879\) 0.183689i 0.00619567i
\(880\) 1.56448 + 9.66988i 0.0527385 + 0.325971i
\(881\) 11.1084i 0.374252i −0.982336 0.187126i \(-0.940083\pi\)
0.982336 0.187126i \(-0.0599173\pi\)
\(882\) −17.2634 + 19.4478i −0.581288 + 0.654843i
\(883\) −2.08414 −0.0701370 −0.0350685 0.999385i \(-0.511165\pi\)
−0.0350685 + 0.999385i \(0.511165\pi\)
\(884\) −5.79824 + 6.81173i −0.195016 + 0.229103i
\(885\) −6.32946 −0.212762
\(886\) 20.5239 + 7.55231i 0.689513 + 0.253725i
\(887\) 40.7788 1.36922 0.684609 0.728911i \(-0.259973\pi\)
0.684609 + 0.728911i \(0.259973\pi\)
\(888\) 0.0421461 + 0.0748198i 0.00141433 + 0.00251079i
\(889\) 22.9578 + 33.6500i 0.769980 + 1.12858i
\(890\) −6.00987 + 16.3322i −0.201451 + 0.547457i
\(891\) 18.1338 0.607507
\(892\) −9.46085 8.05321i −0.316773 0.269641i
\(893\) 23.6585i 0.791702i
\(894\) 16.7956 + 6.18040i 0.561729 + 0.206703i
\(895\) 9.40791 0.314472
\(896\) 8.80823 28.6080i 0.294262 0.955725i
\(897\) −3.38838 −0.113135
\(898\) 8.72469 + 3.21048i 0.291147 + 0.107135i
\(899\) 14.0842i 0.469734i
\(900\) −17.5648 14.9514i −0.585492 0.498379i
\(901\) −33.9963 −1.13258
\(902\) 14.8801 40.4375i 0.495453 1.34642i
\(903\) 8.51315 + 12.4780i 0.283300 + 0.415242i
\(904\) 21.7039 + 38.5297i 0.721860 + 1.28148i
\(905\) −18.7132 −0.622047
\(906\) 10.3697 + 3.81580i 0.344509 + 0.126771i
\(907\) 28.4897 0.945984 0.472992 0.881067i \(-0.343174\pi\)
0.472992 + 0.881067i \(0.343174\pi\)
\(908\) −3.13363 + 3.68137i −0.103993 + 0.122170i
\(909\) 20.1742 0.669137
\(910\) 2.83311 0.711702i 0.0939166 0.0235927i
\(911\) 25.7994i 0.854772i 0.904069 + 0.427386i \(0.140565\pi\)
−0.904069 + 0.427386i \(0.859435\pi\)
\(912\) −0.752514 4.65121i −0.0249182 0.154017i
\(913\) 37.4020i 1.23783i
\(914\) −46.2355 17.0136i −1.52934 0.562760i
\(915\) 3.98227i 0.131650i
\(916\) −1.18369 1.00757i −0.0391102 0.0332911i
\(917\) −25.7034 37.6744i −0.848802 1.24412i
\(918\) −20.4035 7.50802i −0.673416 0.247802i
\(919\) 48.7196i 1.60711i −0.595230 0.803556i \(-0.702939\pi\)
0.595230 0.803556i \(-0.297061\pi\)
\(920\) −10.6721 + 6.01161i −0.351849 + 0.198197i
\(921\) 6.23626 0.205492
\(922\) 14.5684 + 5.36083i 0.479784 + 0.176550i
\(923\) 13.0139i 0.428357i
\(924\) −1.07759 + 10.0816i −0.0354502 + 0.331659i
\(925\) 0.218222i 0.00717508i
\(926\) −9.18425 + 24.9588i −0.301813 + 0.820196i
\(927\) 11.3891 0.374067
\(928\) −13.5619 2.63917i −0.445190 0.0866351i
\(929\) 16.1335i 0.529322i 0.964341 + 0.264661i \(0.0852601\pi\)
−0.964341 + 0.264661i \(0.914740\pi\)
\(930\) −1.34306 + 3.64984i −0.0440406 + 0.119683i
\(931\) 12.5685 + 4.92356i 0.411915 + 0.161363i
\(932\) 1.42529 + 1.21322i 0.0466868 + 0.0397405i
\(933\) 2.44320i 0.0799866i
\(934\) 7.00256 19.0299i 0.229131 0.622677i
\(935\) 10.9531i 0.358206i
\(936\) 3.64654 + 6.47350i 0.119191 + 0.211593i
\(937\) 11.6153i 0.379454i −0.981837 0.189727i \(-0.939240\pi\)
0.981837 0.189727i \(-0.0607604\pi\)
\(938\) −3.40084 + 0.854322i −0.111041 + 0.0278946i
\(939\) −8.72109 −0.284602
\(940\) 14.5875 + 12.4171i 0.475790 + 0.405000i
\(941\) −16.5828 −0.540584 −0.270292 0.962778i \(-0.587120\pi\)
−0.270292 + 0.962778i \(0.587120\pi\)
\(942\) −1.64789 + 4.47823i −0.0536911 + 0.145909i
\(943\) 53.8794 1.75455
\(944\) −52.4079 + 8.47901i −1.70573 + 0.275968i
\(945\) 4.00121 + 5.86471i 0.130159 + 0.190779i
\(946\) −38.9113 14.3185i −1.26512 0.465534i
\(947\) −20.6272 −0.670295 −0.335147 0.942166i \(-0.608786\pi\)
−0.335147 + 0.942166i \(0.608786\pi\)
\(948\) −3.75438 3.19578i −0.121937 0.103794i
\(949\) 0.406509i 0.0131958i
\(950\) −4.13484 + 11.2367i −0.134152 + 0.364566i
\(951\) −3.00803 −0.0975419
\(952\) −14.8316 + 30.0049i −0.480695 + 0.972464i
\(953\) −44.3425 −1.43640 −0.718198 0.695839i \(-0.755033\pi\)
−0.718198 + 0.695839i \(0.755033\pi\)
\(954\) −9.75129 + 26.4997i −0.315710 + 0.857960i
\(955\) 9.39899i 0.304144i
\(956\) 10.4687 12.2986i 0.338583 0.397765i
\(957\) 4.67985 0.151278
\(958\) 7.11468 + 2.61804i 0.229865 + 0.0845850i
\(959\) −24.0112 + 16.3817i −0.775363 + 0.528994i
\(960\) −3.26282 1.97718i −0.105307 0.0638131i
\(961\) 2.25310 0.0726807
\(962\) −0.0242741 + 0.0659665i −0.000782630 + 0.00212684i
\(963\) 42.7035 1.37610
\(964\) 16.9724 19.9390i 0.546643 0.642192i
\(965\) 3.08168 0.0992028
\(966\) −12.2961 + 3.08890i −0.395622 + 0.0993837i
\(967\) 11.2213i 0.360852i 0.983589 + 0.180426i \(0.0577477\pi\)
−0.983589 + 0.180426i \(0.942252\pi\)
\(968\) 1.61111 + 2.86012i 0.0517830 + 0.0919276i
\(969\) 5.26846i 0.169247i
\(970\) 2.70890 7.36160i 0.0869776 0.236367i
\(971\) 53.3628i 1.71249i −0.516566 0.856247i \(-0.672790\pi\)
0.516566 0.856247i \(-0.327210\pi\)
\(972\) −17.9454 + 21.0821i −0.575597 + 0.676207i
\(973\) 26.9447 + 39.4937i 0.863806 + 1.26611i
\(974\) 7.21788 19.6150i 0.231276 0.628506i
\(975\) 2.68192i 0.0858901i
\(976\) −5.33469 32.9732i −0.170759 1.05545i
\(977\) −61.6226 −1.97148 −0.985741 0.168270i \(-0.946182\pi\)
−0.985741 + 0.168270i \(0.946182\pi\)
\(978\) −0.261563 + 0.710812i −0.00836385 + 0.0227293i
\(979\) 49.4427i 1.58020i
\(980\) 9.63229 5.16540i 0.307692 0.165003i
\(981\) 9.75336i 0.311401i
\(982\) 27.8800 + 10.2592i 0.889688 + 0.327385i
\(983\) 19.3693 0.617786 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(984\) 8.23636 + 14.6216i 0.262565 + 0.466119i
\(985\) 13.1925i 0.420348i
\(986\) 14.4985 + 5.33510i 0.461725 + 0.169904i
\(987\) 11.1748 + 16.3793i 0.355698 + 0.521358i
\(988\) 2.49985 2.93681i 0.0795309 0.0934323i
\(989\) 51.8458i 1.64860i
\(990\) −8.53786 3.14174i −0.271351 0.0998509i
\(991\) 10.3242i 0.327958i 0.986464 + 0.163979i \(0.0524329\pi\)
−0.986464 + 0.163979i \(0.947567\pi\)
\(992\) −6.23115 + 32.0199i −0.197839 + 1.01663i
\(993\) 6.23869i 0.197979i
\(994\) 11.8636 + 47.2261i 0.376291 + 1.49792i
\(995\) 9.28157 0.294245
\(996\) −11.0926 9.44216i −0.351482 0.299186i
\(997\) 44.2145 1.40029 0.700143 0.714002i \(-0.253119\pi\)
0.700143 + 0.714002i \(0.253119\pi\)
\(998\) 18.8568 + 6.93886i 0.596901 + 0.219646i
\(999\) −0.170837 −0.00540505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.a.27.5 48
4.3 odd 2 2912.2.h.a.2575.21 48
7.6 odd 2 728.2.h.b.27.5 yes 48
8.3 odd 2 728.2.h.b.27.6 yes 48
8.5 even 2 2912.2.h.b.2575.21 48
28.27 even 2 2912.2.h.b.2575.28 48
56.13 odd 2 2912.2.h.a.2575.28 48
56.27 even 2 inner 728.2.h.a.27.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.5 48 1.1 even 1 trivial
728.2.h.a.27.6 yes 48 56.27 even 2 inner
728.2.h.b.27.5 yes 48 7.6 odd 2
728.2.h.b.27.6 yes 48 8.3 odd 2
2912.2.h.a.2575.21 48 4.3 odd 2
2912.2.h.a.2575.28 48 56.13 odd 2
2912.2.h.b.2575.21 48 8.5 even 2
2912.2.h.b.2575.28 48 28.27 even 2