Properties

Label 2912.2.h.b.2575.33
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.33
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.b.2575.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35635i q^{3} -2.01767 q^{5} +(-2.18534 + 1.49140i) q^{7} +1.16033 q^{9} +4.92824 q^{11} +1.00000 q^{13} -2.73666i q^{15} -4.50218i q^{17} +4.26085i q^{19} +(-2.02285 - 2.96408i) q^{21} -9.28723i q^{23} -0.929012 q^{25} +5.64284i q^{27} -6.03717i q^{29} +2.67926 q^{31} +6.68440i q^{33} +(4.40930 - 3.00915i) q^{35} +1.91540i q^{37} +1.35635i q^{39} -9.84828i q^{41} +1.98858 q^{43} -2.34116 q^{45} +6.61191 q^{47} +(2.55145 - 6.51844i) q^{49} +6.10651 q^{51} +7.90627i q^{53} -9.94356 q^{55} -5.77918 q^{57} -9.77831i q^{59} -10.0807 q^{61} +(-2.53571 + 1.73051i) q^{63} -2.01767 q^{65} +15.8803 q^{67} +12.5967 q^{69} -2.17824i q^{71} +7.87181i q^{73} -1.26006i q^{75} +(-10.7699 + 7.34998i) q^{77} +6.79571i q^{79} -4.17266 q^{81} +15.5710i q^{83} +9.08390i q^{85} +8.18848 q^{87} -5.33818i q^{89} +(-2.18534 + 1.49140i) q^{91} +3.63400i q^{93} -8.59698i q^{95} +5.40946i q^{97} +5.71838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} + 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} - 24 q^{45} + 40 q^{51} + 20 q^{63} + 4 q^{67} + 20 q^{77} + 64 q^{81} - 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.35635i 0.783086i 0.920160 + 0.391543i \(0.128059\pi\)
−0.920160 + 0.391543i \(0.871941\pi\)
\(4\) 0 0
\(5\) −2.01767 −0.902329 −0.451164 0.892441i \(-0.648991\pi\)
−0.451164 + 0.892441i \(0.648991\pi\)
\(6\) 0 0
\(7\) −2.18534 + 1.49140i −0.825982 + 0.563696i
\(8\) 0 0
\(9\) 1.16033 0.386776
\(10\) 0 0
\(11\) 4.92824 1.48592 0.742961 0.669335i \(-0.233421\pi\)
0.742961 + 0.669335i \(0.233421\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 2.73666i 0.706601i
\(16\) 0 0
\(17\) 4.50218i 1.09194i −0.837805 0.545969i \(-0.816162\pi\)
0.837805 0.545969i \(-0.183838\pi\)
\(18\) 0 0
\(19\) 4.26085i 0.977506i 0.872422 + 0.488753i \(0.162548\pi\)
−0.872422 + 0.488753i \(0.837452\pi\)
\(20\) 0 0
\(21\) −2.02285 2.96408i −0.441423 0.646815i
\(22\) 0 0
\(23\) 9.28723i 1.93652i −0.249944 0.968260i \(-0.580412\pi\)
0.249944 0.968260i \(-0.419588\pi\)
\(24\) 0 0
\(25\) −0.929012 −0.185802
\(26\) 0 0
\(27\) 5.64284i 1.08597i
\(28\) 0 0
\(29\) 6.03717i 1.12107i −0.828130 0.560537i \(-0.810595\pi\)
0.828130 0.560537i \(-0.189405\pi\)
\(30\) 0 0
\(31\) 2.67926 0.481209 0.240605 0.970623i \(-0.422654\pi\)
0.240605 + 0.970623i \(0.422654\pi\)
\(32\) 0 0
\(33\) 6.68440i 1.16360i
\(34\) 0 0
\(35\) 4.40930 3.00915i 0.745308 0.508639i
\(36\) 0 0
\(37\) 1.91540i 0.314890i 0.987528 + 0.157445i \(0.0503257\pi\)
−0.987528 + 0.157445i \(0.949674\pi\)
\(38\) 0 0
\(39\) 1.35635i 0.217189i
\(40\) 0 0
\(41\) 9.84828i 1.53804i −0.639223 0.769022i \(-0.720744\pi\)
0.639223 0.769022i \(-0.279256\pi\)
\(42\) 0 0
\(43\) 1.98858 0.303255 0.151628 0.988438i \(-0.451549\pi\)
0.151628 + 0.988438i \(0.451549\pi\)
\(44\) 0 0
\(45\) −2.34116 −0.348999
\(46\) 0 0
\(47\) 6.61191 0.964446 0.482223 0.876048i \(-0.339829\pi\)
0.482223 + 0.876048i \(0.339829\pi\)
\(48\) 0 0
\(49\) 2.55145 6.51844i 0.364493 0.931206i
\(50\) 0 0
\(51\) 6.10651 0.855082
\(52\) 0 0
\(53\) 7.90627i 1.08601i 0.839730 + 0.543005i \(0.182713\pi\)
−0.839730 + 0.543005i \(0.817287\pi\)
\(54\) 0 0
\(55\) −9.94356 −1.34079
\(56\) 0 0
\(57\) −5.77918 −0.765471
\(58\) 0 0
\(59\) 9.77831i 1.27303i −0.771265 0.636514i \(-0.780376\pi\)
0.771265 0.636514i \(-0.219624\pi\)
\(60\) 0 0
\(61\) −10.0807 −1.29070 −0.645352 0.763885i \(-0.723289\pi\)
−0.645352 + 0.763885i \(0.723289\pi\)
\(62\) 0 0
\(63\) −2.53571 + 1.73051i −0.319470 + 0.218024i
\(64\) 0 0
\(65\) −2.01767 −0.250261
\(66\) 0 0
\(67\) 15.8803 1.94008 0.970041 0.242942i \(-0.0781125\pi\)
0.970041 + 0.242942i \(0.0781125\pi\)
\(68\) 0 0
\(69\) 12.5967 1.51646
\(70\) 0 0
\(71\) 2.17824i 0.258510i −0.991611 0.129255i \(-0.958741\pi\)
0.991611 0.129255i \(-0.0412586\pi\)
\(72\) 0 0
\(73\) 7.87181i 0.921326i 0.887575 + 0.460663i \(0.152388\pi\)
−0.887575 + 0.460663i \(0.847612\pi\)
\(74\) 0 0
\(75\) 1.26006i 0.145499i
\(76\) 0 0
\(77\) −10.7699 + 7.34998i −1.22734 + 0.837608i
\(78\) 0 0
\(79\) 6.79571i 0.764577i 0.924043 + 0.382289i \(0.124864\pi\)
−0.924043 + 0.382289i \(0.875136\pi\)
\(80\) 0 0
\(81\) −4.17266 −0.463629
\(82\) 0 0
\(83\) 15.5710i 1.70913i 0.519340 + 0.854567i \(0.326178\pi\)
−0.519340 + 0.854567i \(0.673822\pi\)
\(84\) 0 0
\(85\) 9.08390i 0.985288i
\(86\) 0 0
\(87\) 8.18848 0.877897
\(88\) 0 0
\(89\) 5.33818i 0.565846i −0.959143 0.282923i \(-0.908696\pi\)
0.959143 0.282923i \(-0.0913041\pi\)
\(90\) 0 0
\(91\) −2.18534 + 1.49140i −0.229086 + 0.156341i
\(92\) 0 0
\(93\) 3.63400i 0.376828i
\(94\) 0 0
\(95\) 8.59698i 0.882032i
\(96\) 0 0
\(97\) 5.40946i 0.549248i 0.961552 + 0.274624i \(0.0885533\pi\)
−0.961552 + 0.274624i \(0.911447\pi\)
\(98\) 0 0
\(99\) 5.71838 0.574718
\(100\) 0 0
\(101\) 14.7053 1.46323 0.731617 0.681716i \(-0.238766\pi\)
0.731617 + 0.681716i \(0.238766\pi\)
\(102\) 0 0
\(103\) 15.8101 1.55782 0.778909 0.627136i \(-0.215773\pi\)
0.778909 + 0.627136i \(0.215773\pi\)
\(104\) 0 0
\(105\) 4.08145 + 5.98053i 0.398309 + 0.583640i
\(106\) 0 0
\(107\) 5.79170 0.559904 0.279952 0.960014i \(-0.409681\pi\)
0.279952 + 0.960014i \(0.409681\pi\)
\(108\) 0 0
\(109\) 14.0192i 1.34279i −0.741099 0.671396i \(-0.765695\pi\)
0.741099 0.671396i \(-0.234305\pi\)
\(110\) 0 0
\(111\) −2.59795 −0.246586
\(112\) 0 0
\(113\) −2.00196 −0.188328 −0.0941641 0.995557i \(-0.530018\pi\)
−0.0941641 + 0.995557i \(0.530018\pi\)
\(114\) 0 0
\(115\) 18.7385i 1.74738i
\(116\) 0 0
\(117\) 1.16033 0.107272
\(118\) 0 0
\(119\) 6.71455 + 9.83880i 0.615522 + 0.901922i
\(120\) 0 0
\(121\) 13.2876 1.20796
\(122\) 0 0
\(123\) 13.3577 1.20442
\(124\) 0 0
\(125\) 11.9628 1.06998
\(126\) 0 0
\(127\) 13.9958i 1.24193i 0.783839 + 0.620964i \(0.213259\pi\)
−0.783839 + 0.620964i \(0.786741\pi\)
\(128\) 0 0
\(129\) 2.69720i 0.237475i
\(130\) 0 0
\(131\) 0.946942i 0.0827347i 0.999144 + 0.0413674i \(0.0131714\pi\)
−0.999144 + 0.0413674i \(0.986829\pi\)
\(132\) 0 0
\(133\) −6.35463 9.31142i −0.551016 0.807402i
\(134\) 0 0
\(135\) 11.3854i 0.979898i
\(136\) 0 0
\(137\) 13.4840 1.15201 0.576007 0.817445i \(-0.304610\pi\)
0.576007 + 0.817445i \(0.304610\pi\)
\(138\) 0 0
\(139\) 10.4050i 0.882544i −0.897373 0.441272i \(-0.854527\pi\)
0.897373 0.441272i \(-0.145473\pi\)
\(140\) 0 0
\(141\) 8.96803i 0.755245i
\(142\) 0 0
\(143\) 4.92824 0.412120
\(144\) 0 0
\(145\) 12.1810i 1.01158i
\(146\) 0 0
\(147\) 8.84126 + 3.46065i 0.729215 + 0.285430i
\(148\) 0 0
\(149\) 4.85942i 0.398100i 0.979989 + 0.199050i \(0.0637855\pi\)
−0.979989 + 0.199050i \(0.936214\pi\)
\(150\) 0 0
\(151\) 1.05783i 0.0860854i 0.999073 + 0.0430427i \(0.0137051\pi\)
−0.999073 + 0.0430427i \(0.986295\pi\)
\(152\) 0 0
\(153\) 5.22400i 0.422335i
\(154\) 0 0
\(155\) −5.40586 −0.434209
\(156\) 0 0
\(157\) 8.12606 0.648531 0.324265 0.945966i \(-0.394883\pi\)
0.324265 + 0.945966i \(0.394883\pi\)
\(158\) 0 0
\(159\) −10.7236 −0.850439
\(160\) 0 0
\(161\) 13.8510 + 20.2958i 1.09161 + 1.59953i
\(162\) 0 0
\(163\) −9.36955 −0.733880 −0.366940 0.930245i \(-0.619595\pi\)
−0.366940 + 0.930245i \(0.619595\pi\)
\(164\) 0 0
\(165\) 13.4869i 1.04995i
\(166\) 0 0
\(167\) −15.0871 −1.16747 −0.583737 0.811942i \(-0.698410\pi\)
−0.583737 + 0.811942i \(0.698410\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.94398i 0.378075i
\(172\) 0 0
\(173\) 9.07705 0.690116 0.345058 0.938581i \(-0.387859\pi\)
0.345058 + 0.938581i \(0.387859\pi\)
\(174\) 0 0
\(175\) 2.03021 1.38553i 0.153470 0.104736i
\(176\) 0 0
\(177\) 13.2628 0.996891
\(178\) 0 0
\(179\) −16.7901 −1.25495 −0.627476 0.778636i \(-0.715912\pi\)
−0.627476 + 0.778636i \(0.715912\pi\)
\(180\) 0 0
\(181\) 3.66980 0.272774 0.136387 0.990656i \(-0.456451\pi\)
0.136387 + 0.990656i \(0.456451\pi\)
\(182\) 0 0
\(183\) 13.6729i 1.01073i
\(184\) 0 0
\(185\) 3.86465i 0.284135i
\(186\) 0 0
\(187\) 22.1878i 1.62253i
\(188\) 0 0
\(189\) −8.41573 12.3315i −0.612155 0.896988i
\(190\) 0 0
\(191\) 25.9830i 1.88007i 0.341082 + 0.940033i \(0.389206\pi\)
−0.341082 + 0.940033i \(0.610794\pi\)
\(192\) 0 0
\(193\) 18.2177 1.31134 0.655669 0.755049i \(-0.272387\pi\)
0.655669 + 0.755049i \(0.272387\pi\)
\(194\) 0 0
\(195\) 2.73666i 0.195976i
\(196\) 0 0
\(197\) 6.35885i 0.453049i −0.974005 0.226525i \(-0.927264\pi\)
0.974005 0.226525i \(-0.0727363\pi\)
\(198\) 0 0
\(199\) −7.66867 −0.543617 −0.271809 0.962351i \(-0.587622\pi\)
−0.271809 + 0.962351i \(0.587622\pi\)
\(200\) 0 0
\(201\) 21.5391i 1.51925i
\(202\) 0 0
\(203\) 9.00383 + 13.1933i 0.631945 + 0.925987i
\(204\) 0 0
\(205\) 19.8706i 1.38782i
\(206\) 0 0
\(207\) 10.7762i 0.748999i
\(208\) 0 0
\(209\) 20.9985i 1.45250i
\(210\) 0 0
\(211\) −18.9359 −1.30360 −0.651801 0.758390i \(-0.725986\pi\)
−0.651801 + 0.758390i \(0.725986\pi\)
\(212\) 0 0
\(213\) 2.95445 0.202436
\(214\) 0 0
\(215\) −4.01229 −0.273636
\(216\) 0 0
\(217\) −5.85510 + 3.99585i −0.397470 + 0.271256i
\(218\) 0 0
\(219\) −10.6769 −0.721478
\(220\) 0 0
\(221\) 4.50218i 0.302849i
\(222\) 0 0
\(223\) −0.523181 −0.0350348 −0.0175174 0.999847i \(-0.505576\pi\)
−0.0175174 + 0.999847i \(0.505576\pi\)
\(224\) 0 0
\(225\) −1.07796 −0.0718639
\(226\) 0 0
\(227\) 6.25764i 0.415334i 0.978200 + 0.207667i \(0.0665870\pi\)
−0.978200 + 0.207667i \(0.933413\pi\)
\(228\) 0 0
\(229\) 9.29723 0.614379 0.307189 0.951648i \(-0.400612\pi\)
0.307189 + 0.951648i \(0.400612\pi\)
\(230\) 0 0
\(231\) −9.96912 14.6077i −0.655920 0.961117i
\(232\) 0 0
\(233\) −0.709761 −0.0464980 −0.0232490 0.999730i \(-0.507401\pi\)
−0.0232490 + 0.999730i \(0.507401\pi\)
\(234\) 0 0
\(235\) −13.3406 −0.870248
\(236\) 0 0
\(237\) −9.21733 −0.598730
\(238\) 0 0
\(239\) 3.28084i 0.212220i −0.994354 0.106110i \(-0.966160\pi\)
0.994354 0.106110i \(-0.0338395\pi\)
\(240\) 0 0
\(241\) 10.9276i 0.703907i −0.936017 0.351954i \(-0.885517\pi\)
0.936017 0.351954i \(-0.114483\pi\)
\(242\) 0 0
\(243\) 11.2690i 0.722904i
\(244\) 0 0
\(245\) −5.14798 + 13.1521i −0.328893 + 0.840254i
\(246\) 0 0
\(247\) 4.26085i 0.271111i
\(248\) 0 0
\(249\) −21.1196 −1.33840
\(250\) 0 0
\(251\) 11.2022i 0.707078i 0.935420 + 0.353539i \(0.115022\pi\)
−0.935420 + 0.353539i \(0.884978\pi\)
\(252\) 0 0
\(253\) 45.7697i 2.87752i
\(254\) 0 0
\(255\) −12.3209 −0.771565
\(256\) 0 0
\(257\) 19.9074i 1.24179i −0.783894 0.620894i \(-0.786770\pi\)
0.783894 0.620894i \(-0.213230\pi\)
\(258\) 0 0
\(259\) −2.85663 4.18581i −0.177502 0.260094i
\(260\) 0 0
\(261\) 7.00509i 0.433604i
\(262\) 0 0
\(263\) 25.7281i 1.58646i −0.608919 0.793232i \(-0.708397\pi\)
0.608919 0.793232i \(-0.291603\pi\)
\(264\) 0 0
\(265\) 15.9522i 0.979938i
\(266\) 0 0
\(267\) 7.24042 0.443106
\(268\) 0 0
\(269\) −22.5092 −1.37241 −0.686206 0.727407i \(-0.740725\pi\)
−0.686206 + 0.727407i \(0.740725\pi\)
\(270\) 0 0
\(271\) 26.5569 1.61322 0.806608 0.591086i \(-0.201301\pi\)
0.806608 + 0.591086i \(0.201301\pi\)
\(272\) 0 0
\(273\) −2.02285 2.96408i −0.122429 0.179394i
\(274\) 0 0
\(275\) −4.57840 −0.276088
\(276\) 0 0
\(277\) 0.199021i 0.0119580i −0.999982 0.00597902i \(-0.998097\pi\)
0.999982 0.00597902i \(-0.00190319\pi\)
\(278\) 0 0
\(279\) 3.10882 0.186120
\(280\) 0 0
\(281\) −2.06373 −0.123112 −0.0615558 0.998104i \(-0.519606\pi\)
−0.0615558 + 0.998104i \(0.519606\pi\)
\(282\) 0 0
\(283\) 4.87971i 0.290069i 0.989427 + 0.145034i \(0.0463293\pi\)
−0.989427 + 0.145034i \(0.953671\pi\)
\(284\) 0 0
\(285\) 11.6605 0.690707
\(286\) 0 0
\(287\) 14.6877 + 21.5219i 0.866989 + 1.27040i
\(288\) 0 0
\(289\) −3.26961 −0.192330
\(290\) 0 0
\(291\) −7.33710 −0.430108
\(292\) 0 0
\(293\) −24.0764 −1.40656 −0.703280 0.710913i \(-0.748282\pi\)
−0.703280 + 0.710913i \(0.748282\pi\)
\(294\) 0 0
\(295\) 19.7294i 1.14869i
\(296\) 0 0
\(297\) 27.8093i 1.61366i
\(298\) 0 0
\(299\) 9.28723i 0.537094i
\(300\) 0 0
\(301\) −4.34573 + 2.96577i −0.250484 + 0.170944i
\(302\) 0 0
\(303\) 19.9455i 1.14584i
\(304\) 0 0
\(305\) 20.3396 1.16464
\(306\) 0 0
\(307\) 13.1626i 0.751229i −0.926776 0.375615i \(-0.877432\pi\)
0.926776 0.375615i \(-0.122568\pi\)
\(308\) 0 0
\(309\) 21.4440i 1.21991i
\(310\) 0 0
\(311\) 11.0951 0.629146 0.314573 0.949233i \(-0.398139\pi\)
0.314573 + 0.949233i \(0.398139\pi\)
\(312\) 0 0
\(313\) 11.4566i 0.647563i −0.946132 0.323782i \(-0.895046\pi\)
0.946132 0.323782i \(-0.104954\pi\)
\(314\) 0 0
\(315\) 5.11623 3.49160i 0.288267 0.196729i
\(316\) 0 0
\(317\) 4.30825i 0.241975i 0.992654 + 0.120988i \(0.0386061\pi\)
−0.992654 + 0.120988i \(0.961394\pi\)
\(318\) 0 0
\(319\) 29.7526i 1.66583i
\(320\) 0 0
\(321\) 7.85554i 0.438453i
\(322\) 0 0
\(323\) 19.1831 1.06738
\(324\) 0 0
\(325\) −0.929012 −0.0515323
\(326\) 0 0
\(327\) 19.0148 1.05152
\(328\) 0 0
\(329\) −14.4493 + 9.86100i −0.796615 + 0.543655i
\(330\) 0 0
\(331\) 1.04258 0.0573055 0.0286527 0.999589i \(-0.490878\pi\)
0.0286527 + 0.999589i \(0.490878\pi\)
\(332\) 0 0
\(333\) 2.22249i 0.121792i
\(334\) 0 0
\(335\) −32.0411 −1.75059
\(336\) 0 0
\(337\) −3.99839 −0.217806 −0.108903 0.994052i \(-0.534734\pi\)
−0.108903 + 0.994052i \(0.534734\pi\)
\(338\) 0 0
\(339\) 2.71534i 0.147477i
\(340\) 0 0
\(341\) 13.2040 0.715039
\(342\) 0 0
\(343\) 4.14581 + 18.0503i 0.223853 + 0.974623i
\(344\) 0 0
\(345\) −25.4159 −1.36835
\(346\) 0 0
\(347\) 3.26373 0.175206 0.0876030 0.996155i \(-0.472079\pi\)
0.0876030 + 0.996155i \(0.472079\pi\)
\(348\) 0 0
\(349\) −3.99174 −0.213673 −0.106837 0.994277i \(-0.534072\pi\)
−0.106837 + 0.994277i \(0.534072\pi\)
\(350\) 0 0
\(351\) 5.64284i 0.301193i
\(352\) 0 0
\(353\) 4.75882i 0.253286i 0.991948 + 0.126643i \(0.0404203\pi\)
−0.991948 + 0.126643i \(0.959580\pi\)
\(354\) 0 0
\(355\) 4.39497i 0.233261i
\(356\) 0 0
\(357\) −13.3448 + 9.10725i −0.706283 + 0.482007i
\(358\) 0 0
\(359\) 15.2984i 0.807418i −0.914887 0.403709i \(-0.867721\pi\)
0.914887 0.403709i \(-0.132279\pi\)
\(360\) 0 0
\(361\) 0.845169 0.0444826
\(362\) 0 0
\(363\) 18.0226i 0.945939i
\(364\) 0 0
\(365\) 15.8827i 0.831339i
\(366\) 0 0
\(367\) −24.0456 −1.25517 −0.627585 0.778548i \(-0.715956\pi\)
−0.627585 + 0.778548i \(0.715956\pi\)
\(368\) 0 0
\(369\) 11.4272i 0.594878i
\(370\) 0 0
\(371\) −11.7914 17.2779i −0.612180 0.897025i
\(372\) 0 0
\(373\) 7.07711i 0.366439i 0.983072 + 0.183219i \(0.0586519\pi\)
−0.983072 + 0.183219i \(0.941348\pi\)
\(374\) 0 0
\(375\) 16.2257i 0.837890i
\(376\) 0 0
\(377\) 6.03717i 0.310930i
\(378\) 0 0
\(379\) −19.0848 −0.980322 −0.490161 0.871632i \(-0.663062\pi\)
−0.490161 + 0.871632i \(0.663062\pi\)
\(380\) 0 0
\(381\) −18.9832 −0.972536
\(382\) 0 0
\(383\) 16.0328 0.819236 0.409618 0.912257i \(-0.365662\pi\)
0.409618 + 0.912257i \(0.365662\pi\)
\(384\) 0 0
\(385\) 21.7301 14.8298i 1.10747 0.755798i
\(386\) 0 0
\(387\) 2.30740 0.117292
\(388\) 0 0
\(389\) 23.9199i 1.21279i −0.795164 0.606395i \(-0.792615\pi\)
0.795164 0.606395i \(-0.207385\pi\)
\(390\) 0 0
\(391\) −41.8128 −2.11456
\(392\) 0 0
\(393\) −1.28438 −0.0647884
\(394\) 0 0
\(395\) 13.7115i 0.689900i
\(396\) 0 0
\(397\) 20.5439 1.03107 0.515535 0.856869i \(-0.327593\pi\)
0.515535 + 0.856869i \(0.327593\pi\)
\(398\) 0 0
\(399\) 12.6295 8.61907i 0.632266 0.431493i
\(400\) 0 0
\(401\) 31.3007 1.56308 0.781542 0.623852i \(-0.214433\pi\)
0.781542 + 0.623852i \(0.214433\pi\)
\(402\) 0 0
\(403\) 2.67926 0.133463
\(404\) 0 0
\(405\) 8.41904 0.418346
\(406\) 0 0
\(407\) 9.43957i 0.467902i
\(408\) 0 0
\(409\) 15.6476i 0.773722i −0.922138 0.386861i \(-0.873559\pi\)
0.922138 0.386861i \(-0.126441\pi\)
\(410\) 0 0
\(411\) 18.2889i 0.902126i
\(412\) 0 0
\(413\) 14.5834 + 21.3690i 0.717601 + 1.05150i
\(414\) 0 0
\(415\) 31.4170i 1.54220i
\(416\) 0 0
\(417\) 14.1128 0.691108
\(418\) 0 0
\(419\) 20.5740i 1.00511i 0.864546 + 0.502553i \(0.167606\pi\)
−0.864546 + 0.502553i \(0.832394\pi\)
\(420\) 0 0
\(421\) 21.4079i 1.04336i 0.853141 + 0.521680i \(0.174694\pi\)
−0.853141 + 0.521680i \(0.825306\pi\)
\(422\) 0 0
\(423\) 7.67198 0.373024
\(424\) 0 0
\(425\) 4.18258i 0.202885i
\(426\) 0 0
\(427\) 22.0298 15.0344i 1.06610 0.727565i
\(428\) 0 0
\(429\) 6.68440i 0.322726i
\(430\) 0 0
\(431\) 10.3475i 0.498422i 0.968449 + 0.249211i \(0.0801712\pi\)
−0.968449 + 0.249211i \(0.919829\pi\)
\(432\) 0 0
\(433\) 9.33066i 0.448403i 0.974543 + 0.224201i \(0.0719773\pi\)
−0.974543 + 0.224201i \(0.928023\pi\)
\(434\) 0 0
\(435\) −16.5216 −0.792152
\(436\) 0 0
\(437\) 39.5715 1.89296
\(438\) 0 0
\(439\) −1.46740 −0.0700351 −0.0350176 0.999387i \(-0.511149\pi\)
−0.0350176 + 0.999387i \(0.511149\pi\)
\(440\) 0 0
\(441\) 2.96052 7.56353i 0.140977 0.360168i
\(442\) 0 0
\(443\) 15.1974 0.722049 0.361024 0.932556i \(-0.382427\pi\)
0.361024 + 0.932556i \(0.382427\pi\)
\(444\) 0 0
\(445\) 10.7707i 0.510579i
\(446\) 0 0
\(447\) −6.59106 −0.311746
\(448\) 0 0
\(449\) 2.85625 0.134795 0.0673974 0.997726i \(-0.478530\pi\)
0.0673974 + 0.997726i \(0.478530\pi\)
\(450\) 0 0
\(451\) 48.5347i 2.28541i
\(452\) 0 0
\(453\) −1.43479 −0.0674123
\(454\) 0 0
\(455\) 4.40930 3.00915i 0.206711 0.141071i
\(456\) 0 0
\(457\) −18.5765 −0.868972 −0.434486 0.900679i \(-0.643070\pi\)
−0.434486 + 0.900679i \(0.643070\pi\)
\(458\) 0 0
\(459\) 25.4051 1.18581
\(460\) 0 0
\(461\) 15.7972 0.735751 0.367875 0.929875i \(-0.380085\pi\)
0.367875 + 0.929875i \(0.380085\pi\)
\(462\) 0 0
\(463\) 29.8412i 1.38684i −0.720534 0.693420i \(-0.756103\pi\)
0.720534 0.693420i \(-0.243897\pi\)
\(464\) 0 0
\(465\) 7.33221i 0.340023i
\(466\) 0 0
\(467\) 28.2989i 1.30952i −0.755838 0.654759i \(-0.772770\pi\)
0.755838 0.654759i \(-0.227230\pi\)
\(468\) 0 0
\(469\) −34.7038 + 23.6838i −1.60247 + 1.09362i
\(470\) 0 0
\(471\) 11.0218i 0.507855i
\(472\) 0 0
\(473\) 9.80020 0.450614
\(474\) 0 0
\(475\) 3.95838i 0.181623i
\(476\) 0 0
\(477\) 9.17386i 0.420042i
\(478\) 0 0
\(479\) 34.1779 1.56163 0.780814 0.624763i \(-0.214804\pi\)
0.780814 + 0.624763i \(0.214804\pi\)
\(480\) 0 0
\(481\) 1.91540i 0.0873349i
\(482\) 0 0
\(483\) −27.5281 + 18.7867i −1.25257 + 0.854825i
\(484\) 0 0
\(485\) 10.9145i 0.495602i
\(486\) 0 0
\(487\) 19.3724i 0.877846i 0.898525 + 0.438923i \(0.144640\pi\)
−0.898525 + 0.438923i \(0.855360\pi\)
\(488\) 0 0
\(489\) 12.7083i 0.574691i
\(490\) 0 0
\(491\) −7.16183 −0.323209 −0.161604 0.986856i \(-0.551667\pi\)
−0.161604 + 0.986856i \(0.551667\pi\)
\(492\) 0 0
\(493\) −27.1804 −1.22414
\(494\) 0 0
\(495\) −11.5378 −0.518585
\(496\) 0 0
\(497\) 3.24863 + 4.76021i 0.145721 + 0.213525i
\(498\) 0 0
\(499\) 3.75215 0.167969 0.0839846 0.996467i \(-0.473235\pi\)
0.0839846 + 0.996467i \(0.473235\pi\)
\(500\) 0 0
\(501\) 20.4633i 0.914234i
\(502\) 0 0
\(503\) −16.8477 −0.751200 −0.375600 0.926782i \(-0.622563\pi\)
−0.375600 + 0.926782i \(0.622563\pi\)
\(504\) 0 0
\(505\) −29.6705 −1.32032
\(506\) 0 0
\(507\) 1.35635i 0.0602374i
\(508\) 0 0
\(509\) 27.6736 1.22661 0.613305 0.789846i \(-0.289840\pi\)
0.613305 + 0.789846i \(0.289840\pi\)
\(510\) 0 0
\(511\) −11.7400 17.2026i −0.519348 0.760999i
\(512\) 0 0
\(513\) −24.0433 −1.06154
\(514\) 0 0
\(515\) −31.8996 −1.40567
\(516\) 0 0
\(517\) 32.5851 1.43309
\(518\) 0 0
\(519\) 12.3116i 0.540420i
\(520\) 0 0
\(521\) 17.6143i 0.771696i −0.922562 0.385848i \(-0.873909\pi\)
0.922562 0.385848i \(-0.126091\pi\)
\(522\) 0 0
\(523\) 11.0393i 0.482714i −0.970436 0.241357i \(-0.922407\pi\)
0.970436 0.241357i \(-0.0775926\pi\)
\(524\) 0 0
\(525\) 1.87926 + 2.75367i 0.0820175 + 0.120180i
\(526\) 0 0
\(527\) 12.0625i 0.525451i
\(528\) 0 0
\(529\) −63.2526 −2.75011
\(530\) 0 0
\(531\) 11.3460i 0.492376i
\(532\) 0 0
\(533\) 9.84828i 0.426576i
\(534\) 0 0
\(535\) −11.6857 −0.505218
\(536\) 0 0
\(537\) 22.7732i 0.982736i
\(538\) 0 0
\(539\) 12.5742 32.1245i 0.541608 1.38370i
\(540\) 0 0
\(541\) 2.04925i 0.0881043i −0.999029 0.0440522i \(-0.985973\pi\)
0.999029 0.0440522i \(-0.0140268\pi\)
\(542\) 0 0
\(543\) 4.97751i 0.213606i
\(544\) 0 0
\(545\) 28.2860i 1.21164i
\(546\) 0 0
\(547\) 4.74971 0.203083 0.101542 0.994831i \(-0.467623\pi\)
0.101542 + 0.994831i \(0.467623\pi\)
\(548\) 0 0
\(549\) −11.6969 −0.499213
\(550\) 0 0
\(551\) 25.7234 1.09586
\(552\) 0 0
\(553\) −10.1351 14.8510i −0.430989 0.631527i
\(554\) 0 0
\(555\) 5.24180 0.222502
\(556\) 0 0
\(557\) 3.12828i 0.132550i −0.997801 0.0662748i \(-0.978889\pi\)
0.997801 0.0662748i \(-0.0211114\pi\)
\(558\) 0 0
\(559\) 1.98858 0.0841079
\(560\) 0 0
\(561\) 30.0944 1.27058
\(562\) 0 0
\(563\) 3.85763i 0.162580i 0.996691 + 0.0812898i \(0.0259039\pi\)
−0.996691 + 0.0812898i \(0.974096\pi\)
\(564\) 0 0
\(565\) 4.03929 0.169934
\(566\) 0 0
\(567\) 9.11869 6.22310i 0.382949 0.261346i
\(568\) 0 0
\(569\) −31.1969 −1.30784 −0.653922 0.756562i \(-0.726877\pi\)
−0.653922 + 0.756562i \(0.726877\pi\)
\(570\) 0 0
\(571\) −26.0516 −1.09023 −0.545113 0.838363i \(-0.683513\pi\)
−0.545113 + 0.838363i \(0.683513\pi\)
\(572\) 0 0
\(573\) −35.2420 −1.47225
\(574\) 0 0
\(575\) 8.62795i 0.359810i
\(576\) 0 0
\(577\) 3.98708i 0.165984i −0.996550 0.0829921i \(-0.973552\pi\)
0.996550 0.0829921i \(-0.0264476\pi\)
\(578\) 0 0
\(579\) 24.7095i 1.02689i
\(580\) 0 0
\(581\) −23.2225 34.0279i −0.963433 1.41171i
\(582\) 0 0
\(583\) 38.9640i 1.61373i
\(584\) 0 0
\(585\) −2.34116 −0.0967949
\(586\) 0 0
\(587\) 27.6198i 1.13999i −0.821648 0.569996i \(-0.806945\pi\)
0.821648 0.569996i \(-0.193055\pi\)
\(588\) 0 0
\(589\) 11.4159i 0.470385i
\(590\) 0 0
\(591\) 8.62479 0.354777
\(592\) 0 0
\(593\) 28.0907i 1.15355i 0.816904 + 0.576774i \(0.195689\pi\)
−0.816904 + 0.576774i \(0.804311\pi\)
\(594\) 0 0
\(595\) −13.5477 19.8515i −0.555403 0.813830i
\(596\) 0 0
\(597\) 10.4014i 0.425699i
\(598\) 0 0
\(599\) 26.7663i 1.09364i 0.837250 + 0.546821i \(0.184162\pi\)
−0.837250 + 0.546821i \(0.815838\pi\)
\(600\) 0 0
\(601\) 35.5607i 1.45055i −0.688458 0.725276i \(-0.741712\pi\)
0.688458 0.725276i \(-0.258288\pi\)
\(602\) 0 0
\(603\) 18.4263 0.750377
\(604\) 0 0
\(605\) −26.8099 −1.08998
\(606\) 0 0
\(607\) 33.7272 1.36895 0.684473 0.729038i \(-0.260032\pi\)
0.684473 + 0.729038i \(0.260032\pi\)
\(608\) 0 0
\(609\) −17.8946 + 12.2123i −0.725128 + 0.494868i
\(610\) 0 0
\(611\) 6.61191 0.267489
\(612\) 0 0
\(613\) 40.6244i 1.64080i 0.571788 + 0.820401i \(0.306250\pi\)
−0.571788 + 0.820401i \(0.693750\pi\)
\(614\) 0 0
\(615\) −26.9514 −1.08678
\(616\) 0 0
\(617\) 16.6113 0.668745 0.334372 0.942441i \(-0.391476\pi\)
0.334372 + 0.942441i \(0.391476\pi\)
\(618\) 0 0
\(619\) 7.83199i 0.314794i 0.987535 + 0.157397i \(0.0503103\pi\)
−0.987535 + 0.157397i \(0.949690\pi\)
\(620\) 0 0
\(621\) 52.4063 2.10299
\(622\) 0 0
\(623\) 7.96136 + 11.6658i 0.318965 + 0.467379i
\(624\) 0 0
\(625\) −19.4919 −0.779675
\(626\) 0 0
\(627\) −28.4812 −1.13743
\(628\) 0 0
\(629\) 8.62348 0.343841
\(630\) 0 0
\(631\) 23.8991i 0.951407i −0.879606 0.475703i \(-0.842194\pi\)
0.879606 0.475703i \(-0.157806\pi\)
\(632\) 0 0
\(633\) 25.6836i 1.02083i
\(634\) 0 0
\(635\) 28.2389i 1.12063i
\(636\) 0 0
\(637\) 2.55145 6.51844i 0.101092 0.258270i
\(638\) 0 0
\(639\) 2.52747i 0.0999854i
\(640\) 0 0
\(641\) 43.1306 1.70356 0.851778 0.523902i \(-0.175524\pi\)
0.851778 + 0.523902i \(0.175524\pi\)
\(642\) 0 0
\(643\) 27.6333i 1.08975i 0.838517 + 0.544876i \(0.183423\pi\)
−0.838517 + 0.544876i \(0.816577\pi\)
\(644\) 0 0
\(645\) 5.44206i 0.214281i
\(646\) 0 0
\(647\) 1.50328 0.0591000 0.0295500 0.999563i \(-0.490593\pi\)
0.0295500 + 0.999563i \(0.490593\pi\)
\(648\) 0 0
\(649\) 48.1899i 1.89162i
\(650\) 0 0
\(651\) −5.41975 7.94154i −0.212417 0.311254i
\(652\) 0 0
\(653\) 13.8056i 0.540254i −0.962825 0.270127i \(-0.912934\pi\)
0.962825 0.270127i \(-0.0870658\pi\)
\(654\) 0 0
\(655\) 1.91062i 0.0746539i
\(656\) 0 0
\(657\) 9.13388i 0.356346i
\(658\) 0 0
\(659\) −7.47530 −0.291197 −0.145598 0.989344i \(-0.546511\pi\)
−0.145598 + 0.989344i \(0.546511\pi\)
\(660\) 0 0
\(661\) 3.90310 0.151813 0.0759065 0.997115i \(-0.475815\pi\)
0.0759065 + 0.997115i \(0.475815\pi\)
\(662\) 0 0
\(663\) 6.10651 0.237157
\(664\) 0 0
\(665\) 12.8215 + 18.7874i 0.497198 + 0.728542i
\(666\) 0 0
\(667\) −56.0685 −2.17098
\(668\) 0 0
\(669\) 0.709614i 0.0274353i
\(670\) 0 0
\(671\) −49.6803 −1.91789
\(672\) 0 0
\(673\) 23.7338 0.914871 0.457436 0.889243i \(-0.348768\pi\)
0.457436 + 0.889243i \(0.348768\pi\)
\(674\) 0 0
\(675\) 5.24227i 0.201775i
\(676\) 0 0
\(677\) −36.7018 −1.41056 −0.705282 0.708927i \(-0.749179\pi\)
−0.705282 + 0.708927i \(0.749179\pi\)
\(678\) 0 0
\(679\) −8.06767 11.8215i −0.309609 0.453669i
\(680\) 0 0
\(681\) −8.48752 −0.325242
\(682\) 0 0
\(683\) 6.55245 0.250722 0.125361 0.992111i \(-0.459991\pi\)
0.125361 + 0.992111i \(0.459991\pi\)
\(684\) 0 0
\(685\) −27.2062 −1.03950
\(686\) 0 0
\(687\) 12.6103i 0.481111i
\(688\) 0 0
\(689\) 7.90627i 0.301205i
\(690\) 0 0
\(691\) 30.3755i 1.15554i −0.816200 0.577770i \(-0.803923\pi\)
0.816200 0.577770i \(-0.196077\pi\)
\(692\) 0 0
\(693\) −12.4966 + 8.52839i −0.474707 + 0.323967i
\(694\) 0 0
\(695\) 20.9939i 0.796345i
\(696\) 0 0
\(697\) −44.3387 −1.67945
\(698\) 0 0
\(699\) 0.962681i 0.0364119i
\(700\) 0 0
\(701\) 14.6155i 0.552021i −0.961155 0.276010i \(-0.910988\pi\)
0.961155 0.276010i \(-0.0890124\pi\)
\(702\) 0 0
\(703\) −8.16124 −0.307807
\(704\) 0 0
\(705\) 18.0945i 0.681479i
\(706\) 0 0
\(707\) −32.1362 + 21.9315i −1.20861 + 0.824820i
\(708\) 0 0
\(709\) 11.8485i 0.444981i −0.974935 0.222490i \(-0.928581\pi\)
0.974935 0.222490i \(-0.0714186\pi\)
\(710\) 0 0
\(711\) 7.88525i 0.295720i
\(712\) 0 0
\(713\) 24.8829i 0.931872i
\(714\) 0 0
\(715\) −9.94356 −0.371868
\(716\) 0 0
\(717\) 4.44995 0.166186
\(718\) 0 0
\(719\) −28.6394 −1.06807 −0.534035 0.845463i \(-0.679325\pi\)
−0.534035 + 0.845463i \(0.679325\pi\)
\(720\) 0 0
\(721\) −34.5506 + 23.5792i −1.28673 + 0.878137i
\(722\) 0 0
\(723\) 14.8216 0.551220
\(724\) 0 0
\(725\) 5.60860i 0.208298i
\(726\) 0 0
\(727\) 23.6706 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(728\) 0 0
\(729\) −27.8026 −1.02972
\(730\) 0 0
\(731\) 8.95294i 0.331136i
\(732\) 0 0
\(733\) 33.9964 1.25569 0.627844 0.778340i \(-0.283938\pi\)
0.627844 + 0.778340i \(0.283938\pi\)
\(734\) 0 0
\(735\) −17.8387 6.98244i −0.657992 0.257551i
\(736\) 0 0
\(737\) 78.2618 2.88281
\(738\) 0 0
\(739\) −17.0248 −0.626267 −0.313134 0.949709i \(-0.601379\pi\)
−0.313134 + 0.949709i \(0.601379\pi\)
\(740\) 0 0
\(741\) −5.77918 −0.212304
\(742\) 0 0
\(743\) 34.0743i 1.25006i −0.780599 0.625032i \(-0.785086\pi\)
0.780599 0.625032i \(-0.214914\pi\)
\(744\) 0 0
\(745\) 9.80471i 0.359217i
\(746\) 0 0
\(747\) 18.0674i 0.661052i
\(748\) 0 0
\(749\) −12.6568 + 8.63774i −0.462471 + 0.315616i
\(750\) 0 0
\(751\) 21.2437i 0.775193i 0.921829 + 0.387596i \(0.126695\pi\)
−0.921829 + 0.387596i \(0.873305\pi\)
\(752\) 0 0
\(753\) −15.1941 −0.553703
\(754\) 0 0
\(755\) 2.13436i 0.0776773i
\(756\) 0 0
\(757\) 12.9931i 0.472243i −0.971724 0.236122i \(-0.924124\pi\)
0.971724 0.236122i \(-0.0758764\pi\)
\(758\) 0 0
\(759\) 62.0795 2.25334
\(760\) 0 0
\(761\) 7.45111i 0.270103i −0.990839 0.135051i \(-0.956880\pi\)
0.990839 0.135051i \(-0.0431199\pi\)
\(762\) 0 0
\(763\) 20.9082 + 30.6367i 0.756926 + 1.10912i
\(764\) 0 0
\(765\) 10.5403i 0.381085i
\(766\) 0 0
\(767\) 9.77831i 0.353074i
\(768\) 0 0
\(769\) 41.8737i 1.51000i −0.655723 0.755001i \(-0.727636\pi\)
0.655723 0.755001i \(-0.272364\pi\)
\(770\) 0 0
\(771\) 27.0013 0.972427
\(772\) 0 0
\(773\) 40.7234 1.46472 0.732360 0.680918i \(-0.238419\pi\)
0.732360 + 0.680918i \(0.238419\pi\)
\(774\) 0 0
\(775\) −2.48907 −0.0894099
\(776\) 0 0
\(777\) 5.67741 3.87458i 0.203676 0.139000i
\(778\) 0 0
\(779\) 41.9620 1.50345
\(780\) 0 0
\(781\) 10.7349i 0.384125i
\(782\) 0 0
\(783\) 34.0668 1.21745
\(784\) 0 0
\(785\) −16.3957 −0.585188
\(786\) 0 0
\(787\) 53.4793i 1.90633i 0.302447 + 0.953166i \(0.402196\pi\)
−0.302447 + 0.953166i \(0.597804\pi\)
\(788\) 0 0
\(789\) 34.8962 1.24234
\(790\) 0 0
\(791\) 4.37496 2.98572i 0.155556 0.106160i
\(792\) 0 0
\(793\) −10.0807 −0.357977
\(794\) 0 0
\(795\) 21.6367 0.767376
\(796\) 0 0
\(797\) −31.1556 −1.10359 −0.551793 0.833981i \(-0.686056\pi\)
−0.551793 + 0.833981i \(0.686056\pi\)
\(798\) 0 0
\(799\) 29.7680i 1.05312i
\(800\) 0 0
\(801\) 6.19404i 0.218856i
\(802\) 0 0
\(803\) 38.7942i 1.36902i
\(804\) 0 0
\(805\) −27.9467 40.9502i −0.984991 1.44330i
\(806\) 0 0
\(807\) 30.5303i 1.07472i
\(808\) 0 0
\(809\) −36.8766 −1.29651 −0.648256 0.761423i \(-0.724501\pi\)
−0.648256 + 0.761423i \(0.724501\pi\)
\(810\) 0 0
\(811\) 2.50108i 0.0878247i −0.999035 0.0439123i \(-0.986018\pi\)
0.999035 0.0439123i \(-0.0139822\pi\)
\(812\) 0 0
\(813\) 36.0203i 1.26329i
\(814\) 0 0
\(815\) 18.9047 0.662201
\(816\) 0 0
\(817\) 8.47303i 0.296434i
\(818\) 0 0
\(819\) −2.53571 + 1.73051i −0.0886050 + 0.0604690i
\(820\) 0 0
\(821\) 0.865705i 0.0302133i −0.999886 0.0151067i \(-0.995191\pi\)
0.999886 0.0151067i \(-0.00480878\pi\)
\(822\) 0 0
\(823\) 32.1222i 1.11971i −0.828590 0.559856i \(-0.810857\pi\)
0.828590 0.559856i \(-0.189143\pi\)
\(824\) 0 0
\(825\) 6.20989i 0.216201i
\(826\) 0 0
\(827\) −34.3275 −1.19369 −0.596843 0.802358i \(-0.703578\pi\)
−0.596843 + 0.802358i \(0.703578\pi\)
\(828\) 0 0
\(829\) −2.07242 −0.0719781 −0.0359891 0.999352i \(-0.511458\pi\)
−0.0359891 + 0.999352i \(0.511458\pi\)
\(830\) 0 0
\(831\) 0.269942 0.00936417
\(832\) 0 0
\(833\) −29.3472 11.4871i −1.01682 0.398004i
\(834\) 0 0
\(835\) 30.4408 1.05345
\(836\) 0 0
\(837\) 15.1186i 0.522577i
\(838\) 0 0
\(839\) −56.4106 −1.94751 −0.973754 0.227602i \(-0.926912\pi\)
−0.973754 + 0.227602i \(0.926912\pi\)
\(840\) 0 0
\(841\) −7.44737 −0.256806
\(842\) 0 0
\(843\) 2.79913i 0.0964070i
\(844\) 0 0
\(845\) −2.01767 −0.0694099
\(846\) 0 0
\(847\) −29.0379 + 19.8171i −0.997755 + 0.680924i
\(848\) 0 0
\(849\) −6.61857 −0.227149
\(850\) 0 0
\(851\) 17.7888 0.609792
\(852\) 0 0
\(853\) −13.1684 −0.450877 −0.225439 0.974257i \(-0.572381\pi\)
−0.225439 + 0.974257i \(0.572381\pi\)
\(854\) 0 0
\(855\) 9.97531i 0.341148i
\(856\) 0 0
\(857\) 40.7607i 1.39236i 0.717867 + 0.696180i \(0.245118\pi\)
−0.717867 + 0.696180i \(0.754882\pi\)
\(858\) 0 0
\(859\) 13.0322i 0.444653i 0.974972 + 0.222327i \(0.0713651\pi\)
−0.974972 + 0.222327i \(0.928635\pi\)
\(860\) 0 0
\(861\) −29.1911 + 19.9216i −0.994830 + 0.678927i
\(862\) 0 0
\(863\) 1.78583i 0.0607905i 0.999538 + 0.0303952i \(0.00967659\pi\)
−0.999538 + 0.0303952i \(0.990323\pi\)
\(864\) 0 0
\(865\) −18.3145 −0.622711
\(866\) 0 0
\(867\) 4.43472i 0.150611i
\(868\) 0 0
\(869\) 33.4909i 1.13610i
\(870\) 0 0
\(871\) 15.8803 0.538082
\(872\) 0 0
\(873\) 6.27675i 0.212436i
\(874\) 0 0
\(875\) −26.1428 + 17.8413i −0.883788 + 0.603146i
\(876\) 0 0
\(877\) 14.4070i 0.486488i 0.969965 + 0.243244i \(0.0782116\pi\)
−0.969965 + 0.243244i \(0.921788\pi\)
\(878\) 0 0
\(879\) 32.6559i 1.10146i
\(880\) 0 0
\(881\) 10.1248i 0.341112i 0.985348 + 0.170556i \(0.0545564\pi\)
−0.985348 + 0.170556i \(0.945444\pi\)
\(882\) 0 0
\(883\) 0.613830 0.0206570 0.0103285 0.999947i \(-0.496712\pi\)
0.0103285 + 0.999947i \(0.496712\pi\)
\(884\) 0 0
\(885\) −26.7599 −0.899523
\(886\) 0 0
\(887\) 4.17783 0.140278 0.0701389 0.997537i \(-0.477656\pi\)
0.0701389 + 0.997537i \(0.477656\pi\)
\(888\) 0 0
\(889\) −20.8734 30.5857i −0.700070 1.02581i
\(890\) 0 0
\(891\) −20.5639 −0.688916
\(892\) 0 0
\(893\) 28.1724i 0.942752i
\(894\) 0 0
\(895\) 33.8769 1.13238
\(896\) 0 0
\(897\) 12.5967 0.420591
\(898\) 0 0
\(899\) 16.1751i 0.539471i
\(900\) 0 0
\(901\) 35.5954 1.18586
\(902\) 0 0
\(903\) −4.02260 5.89431i −0.133864 0.196150i
\(904\) 0 0
\(905\) −7.40444 −0.246132
\(906\) 0 0
\(907\) −17.4110 −0.578123 −0.289061 0.957311i \(-0.593343\pi\)
−0.289061 + 0.957311i \(0.593343\pi\)
\(908\) 0 0
\(909\) 17.0630 0.565943
\(910\) 0 0
\(911\) 15.7090i 0.520462i −0.965546 0.260231i \(-0.916201\pi\)
0.965546 0.260231i \(-0.0837987\pi\)
\(912\) 0 0
\(913\) 76.7375i 2.53964i
\(914\) 0 0
\(915\) 27.5875i 0.912014i
\(916\) 0 0
\(917\) −1.41227 2.06939i −0.0466373 0.0683374i
\(918\) 0 0
\(919\) 42.1694i 1.39104i 0.718507 + 0.695520i \(0.244826\pi\)
−0.718507 + 0.695520i \(0.755174\pi\)
\(920\) 0 0
\(921\) 17.8530 0.588278
\(922\) 0 0
\(923\) 2.17824i 0.0716977i
\(924\) 0 0
\(925\) 1.77943i 0.0585074i
\(926\) 0 0
\(927\) 18.3449 0.602527
\(928\) 0 0
\(929\) 52.3499i 1.71754i −0.512359 0.858772i \(-0.671228\pi\)
0.512359 0.858772i \(-0.328772\pi\)
\(930\) 0 0
\(931\) 27.7741 + 10.8713i 0.910259 + 0.356294i
\(932\) 0 0
\(933\) 15.0488i 0.492676i
\(934\) 0 0
\(935\) 44.7677i 1.46406i
\(936\) 0 0
\(937\) 8.53783i 0.278919i 0.990228 + 0.139459i \(0.0445365\pi\)
−0.990228 + 0.139459i \(0.955464\pi\)
\(938\) 0 0
\(939\) 15.5391 0.507098
\(940\) 0 0
\(941\) 35.4337 1.15511 0.577553 0.816353i \(-0.304008\pi\)
0.577553 + 0.816353i \(0.304008\pi\)
\(942\) 0 0
\(943\) −91.4632 −2.97845
\(944\) 0 0
\(945\) 16.9802 + 24.8810i 0.552365 + 0.809378i
\(946\) 0 0
\(947\) −12.5985 −0.409397 −0.204698 0.978825i \(-0.565621\pi\)
−0.204698 + 0.978825i \(0.565621\pi\)
\(948\) 0 0
\(949\) 7.87181i 0.255530i
\(950\) 0 0
\(951\) −5.84347 −0.189488
\(952\) 0 0
\(953\) −21.7924 −0.705927 −0.352963 0.935637i \(-0.614826\pi\)
−0.352963 + 0.935637i \(0.614826\pi\)
\(954\) 0 0
\(955\) 52.4252i 1.69644i
\(956\) 0 0
\(957\) 40.3548 1.30449
\(958\) 0 0
\(959\) −29.4671 + 20.1100i −0.951543 + 0.649386i
\(960\) 0 0
\(961\) −23.8216 −0.768438
\(962\) 0 0
\(963\) 6.72026 0.216557
\(964\) 0 0
\(965\) −36.7572 −1.18326
\(966\) 0 0
\(967\) 30.2075i 0.971408i 0.874123 + 0.485704i \(0.161437\pi\)
−0.874123 + 0.485704i \(0.838563\pi\)
\(968\) 0 0
\(969\) 26.0189i 0.835848i
\(970\) 0 0
\(971\) 26.3321i 0.845037i 0.906354 + 0.422518i \(0.138854\pi\)
−0.906354 + 0.422518i \(0.861146\pi\)
\(972\) 0 0
\(973\) 15.5181 + 22.7386i 0.497487 + 0.728966i
\(974\) 0 0
\(975\) 1.26006i 0.0403543i
\(976\) 0 0
\(977\) 24.2718 0.776523 0.388261 0.921549i \(-0.373076\pi\)
0.388261 + 0.921549i \(0.373076\pi\)
\(978\) 0 0
\(979\) 26.3079i 0.840803i
\(980\) 0 0
\(981\) 16.2668i 0.519359i
\(982\) 0 0
\(983\) 50.3405 1.60561 0.802806 0.596240i \(-0.203339\pi\)
0.802806 + 0.596240i \(0.203339\pi\)
\(984\) 0 0
\(985\) 12.8300i 0.408799i
\(986\) 0 0
\(987\) −13.3749 19.5982i −0.425729 0.623819i
\(988\) 0 0
\(989\) 18.4684i 0.587260i
\(990\) 0 0
\(991\) 32.0033i 1.01662i 0.861175 + 0.508309i \(0.169729\pi\)
−0.861175 + 0.508309i \(0.830271\pi\)
\(992\) 0 0
\(993\) 1.41410i 0.0448752i
\(994\) 0 0
\(995\) 15.4728 0.490522
\(996\) 0 0
\(997\) −15.9693 −0.505752 −0.252876 0.967499i \(-0.581376\pi\)
−0.252876 + 0.967499i \(0.581376\pi\)
\(998\) 0 0
\(999\) −10.8083 −0.341960
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.b.2575.33 48
4.3 odd 2 728.2.h.b.27.3 yes 48
7.6 odd 2 2912.2.h.a.2575.16 48
8.3 odd 2 2912.2.h.a.2575.33 48
8.5 even 2 728.2.h.a.27.4 yes 48
28.27 even 2 728.2.h.a.27.3 48
56.13 odd 2 728.2.h.b.27.4 yes 48
56.27 even 2 inner 2912.2.h.b.2575.16 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.3 48 28.27 even 2
728.2.h.a.27.4 yes 48 8.5 even 2
728.2.h.b.27.3 yes 48 4.3 odd 2
728.2.h.b.27.4 yes 48 56.13 odd 2
2912.2.h.a.2575.16 48 7.6 odd 2
2912.2.h.a.2575.33 48 8.3 odd 2
2912.2.h.b.2575.16 48 56.27 even 2 inner
2912.2.h.b.2575.33 48 1.1 even 1 trivial