Properties

Label 728.2.h.b.27.3
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.3
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39580 - 0.227483i) q^{2} -1.35635i q^{3} +(1.89650 + 0.635042i) q^{4} -2.01767 q^{5} +(-0.308546 + 1.89318i) q^{6} +(2.18534 - 1.49140i) q^{7} +(-2.50267 - 1.31781i) q^{8} +1.16033 q^{9} +(2.81626 + 0.458986i) q^{10} -4.92824 q^{11} +(0.861336 - 2.57231i) q^{12} +1.00000 q^{13} +(-3.38957 + 1.58456i) q^{14} +2.73666i q^{15} +(3.19344 + 2.40872i) q^{16} -4.50218i q^{17} +(-1.61958 - 0.263955i) q^{18} -4.26085i q^{19} +(-3.82651 - 1.28130i) q^{20} +(-2.02285 - 2.96408i) q^{21} +(6.87883 + 1.12109i) q^{22} +9.28723i q^{23} +(-1.78741 + 3.39449i) q^{24} -0.929012 q^{25} +(-1.39580 - 0.227483i) q^{26} -5.64284i q^{27} +(5.09161 - 1.44066i) q^{28} -6.03717i q^{29} +(0.622544 - 3.81982i) q^{30} -2.67926 q^{31} +(-3.90946 - 4.08854i) q^{32} +6.68440i q^{33} +(-1.02417 + 6.28413i) q^{34} +(-4.40930 + 3.00915i) q^{35} +(2.20056 + 0.736856i) q^{36} +1.91540i q^{37} +(-0.969273 + 5.94728i) q^{38} -1.35635i q^{39} +(5.04956 + 2.65891i) q^{40} -9.84828i q^{41} +(2.14922 + 4.59742i) q^{42} -1.98858 q^{43} +(-9.34643 - 3.12964i) q^{44} -2.34116 q^{45} +(2.11269 - 12.9631i) q^{46} -6.61191 q^{47} +(3.26705 - 4.33141i) q^{48} +(2.55145 - 6.51844i) q^{49} +(1.29671 + 0.211335i) q^{50} -6.10651 q^{51} +(1.89650 + 0.635042i) q^{52} +7.90627i q^{53} +(-1.28365 + 7.87626i) q^{54} +9.94356 q^{55} +(-7.43458 + 0.852612i) q^{56} -5.77918 q^{57} +(-1.37336 + 8.42666i) q^{58} +9.77831i q^{59} +(-1.73789 + 5.19007i) q^{60} -10.0807 q^{61} +(3.73971 + 0.609487i) q^{62} +(2.53571 - 1.73051i) q^{63} +(4.52674 + 6.59611i) q^{64} -2.01767 q^{65} +(1.52059 - 9.33007i) q^{66} -15.8803 q^{67} +(2.85907 - 8.53839i) q^{68} +12.5967 q^{69} +(6.83902 - 3.19712i) q^{70} +2.17824i q^{71} +(-2.90392 - 1.52909i) q^{72} +7.87181i q^{73} +(0.435723 - 2.67351i) q^{74} +1.26006i q^{75} +(2.70582 - 8.08071i) q^{76} +(-10.7699 + 7.34998i) q^{77} +(-0.308546 + 1.89318i) q^{78} -6.79571i q^{79} +(-6.44331 - 4.85999i) q^{80} -4.17266 q^{81} +(-2.24032 + 13.7462i) q^{82} -15.5710i q^{83} +(-1.95403 - 6.90598i) q^{84} +9.08390i q^{85} +(2.77565 + 0.452369i) q^{86} -8.18848 q^{87} +(12.3338 + 6.49450i) q^{88} -5.33818i q^{89} +(3.26778 + 0.532574i) q^{90} +(2.18534 - 1.49140i) q^{91} +(-5.89778 + 17.6132i) q^{92} +3.63400i q^{93} +(9.22889 + 1.50410i) q^{94} +8.59698i q^{95} +(-5.54547 + 5.30258i) q^{96} +5.40946i q^{97} +(-5.04415 + 8.51801i) q^{98} -5.71838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39580 0.227483i −0.986978 0.160855i
\(3\) 1.35635i 0.783086i −0.920160 0.391543i \(-0.871941\pi\)
0.920160 0.391543i \(-0.128059\pi\)
\(4\) 1.89650 + 0.635042i 0.948251 + 0.317521i
\(5\) −2.01767 −0.902329 −0.451164 0.892441i \(-0.648991\pi\)
−0.451164 + 0.892441i \(0.648991\pi\)
\(6\) −0.308546 + 1.89318i −0.125963 + 0.772889i
\(7\) 2.18534 1.49140i 0.825982 0.563696i
\(8\) −2.50267 1.31781i −0.884828 0.465917i
\(9\) 1.16033 0.386776
\(10\) 2.81626 + 0.458986i 0.890579 + 0.145144i
\(11\) −4.92824 −1.48592 −0.742961 0.669335i \(-0.766579\pi\)
−0.742961 + 0.669335i \(0.766579\pi\)
\(12\) 0.861336 2.57231i 0.248646 0.742563i
\(13\) 1.00000 0.277350
\(14\) −3.38957 + 1.58456i −0.905900 + 0.423492i
\(15\) 2.73666i 0.706601i
\(16\) 3.19344 + 2.40872i 0.798361 + 0.602179i
\(17\) 4.50218i 1.09194i −0.837805 0.545969i \(-0.816162\pi\)
0.837805 0.545969i \(-0.183838\pi\)
\(18\) −1.61958 0.263955i −0.381739 0.0622149i
\(19\) 4.26085i 0.977506i −0.872422 0.488753i \(-0.837452\pi\)
0.872422 0.488753i \(-0.162548\pi\)
\(20\) −3.82651 1.28130i −0.855635 0.286508i
\(21\) −2.02285 2.96408i −0.441423 0.646815i
\(22\) 6.87883 + 1.12109i 1.46657 + 0.239018i
\(23\) 9.28723i 1.93652i 0.249944 + 0.968260i \(0.419588\pi\)
−0.249944 + 0.968260i \(0.580412\pi\)
\(24\) −1.78741 + 3.39449i −0.364853 + 0.692897i
\(25\) −0.929012 −0.185802
\(26\) −1.39580 0.227483i −0.273738 0.0446132i
\(27\) 5.64284i 1.08597i
\(28\) 5.09161 1.44066i 0.962224 0.272259i
\(29\) 6.03717i 1.12107i −0.828130 0.560537i \(-0.810595\pi\)
0.828130 0.560537i \(-0.189405\pi\)
\(30\) 0.622544 3.81982i 0.113660 0.697400i
\(31\) −2.67926 −0.481209 −0.240605 0.970623i \(-0.577346\pi\)
−0.240605 + 0.970623i \(0.577346\pi\)
\(32\) −3.90946 4.08854i −0.691101 0.722758i
\(33\) 6.68440i 1.16360i
\(34\) −1.02417 + 6.28413i −0.175644 + 1.07772i
\(35\) −4.40930 + 3.00915i −0.745308 + 0.508639i
\(36\) 2.20056 + 0.736856i 0.366761 + 0.122809i
\(37\) 1.91540i 0.314890i 0.987528 + 0.157445i \(0.0503257\pi\)
−0.987528 + 0.157445i \(0.949674\pi\)
\(38\) −0.969273 + 5.94728i −0.157237 + 0.964777i
\(39\) 1.35635i 0.217189i
\(40\) 5.04956 + 2.65891i 0.798406 + 0.420411i
\(41\) 9.84828i 1.53804i −0.639223 0.769022i \(-0.720744\pi\)
0.639223 0.769022i \(-0.279256\pi\)
\(42\) 2.14922 + 4.59742i 0.331631 + 0.709398i
\(43\) −1.98858 −0.303255 −0.151628 0.988438i \(-0.548451\pi\)
−0.151628 + 0.988438i \(0.548451\pi\)
\(44\) −9.34643 3.12964i −1.40903 0.471811i
\(45\) −2.34116 −0.348999
\(46\) 2.11269 12.9631i 0.311499 1.91130i
\(47\) −6.61191 −0.964446 −0.482223 0.876048i \(-0.660171\pi\)
−0.482223 + 0.876048i \(0.660171\pi\)
\(48\) 3.26705 4.33141i 0.471558 0.625186i
\(49\) 2.55145 6.51844i 0.364493 0.931206i
\(50\) 1.29671 + 0.211335i 0.183383 + 0.0298873i
\(51\) −6.10651 −0.855082
\(52\) 1.89650 + 0.635042i 0.262998 + 0.0880645i
\(53\) 7.90627i 1.08601i 0.839730 + 0.543005i \(0.182713\pi\)
−0.839730 + 0.543005i \(0.817287\pi\)
\(54\) −1.28365 + 7.87626i −0.174683 + 1.07182i
\(55\) 9.94356 1.34079
\(56\) −7.43458 + 0.852612i −0.993488 + 0.113935i
\(57\) −5.77918 −0.765471
\(58\) −1.37336 + 8.42666i −0.180330 + 1.10647i
\(59\) 9.77831i 1.27303i 0.771265 + 0.636514i \(0.219624\pi\)
−0.771265 + 0.636514i \(0.780376\pi\)
\(60\) −1.73789 + 5.19007i −0.224361 + 0.670036i
\(61\) −10.0807 −1.29070 −0.645352 0.763885i \(-0.723289\pi\)
−0.645352 + 0.763885i \(0.723289\pi\)
\(62\) 3.73971 + 0.609487i 0.474943 + 0.0774050i
\(63\) 2.53571 1.73051i 0.319470 0.218024i
\(64\) 4.52674 + 6.59611i 0.565842 + 0.824514i
\(65\) −2.01767 −0.250261
\(66\) 1.52059 9.33007i 0.187172 1.14845i
\(67\) −15.8803 −1.94008 −0.970041 0.242942i \(-0.921888\pi\)
−0.970041 + 0.242942i \(0.921888\pi\)
\(68\) 2.85907 8.53839i 0.346713 1.03543i
\(69\) 12.5967 1.51646
\(70\) 6.83902 3.19712i 0.817419 0.382129i
\(71\) 2.17824i 0.258510i 0.991611 + 0.129255i \(0.0412586\pi\)
−0.991611 + 0.129255i \(0.958741\pi\)
\(72\) −2.90392 1.52909i −0.342230 0.180205i
\(73\) 7.87181i 0.921326i 0.887575 + 0.460663i \(0.152388\pi\)
−0.887575 + 0.460663i \(0.847612\pi\)
\(74\) 0.435723 2.67351i 0.0506517 0.310790i
\(75\) 1.26006i 0.145499i
\(76\) 2.70582 8.08071i 0.310379 0.926921i
\(77\) −10.7699 + 7.34998i −1.22734 + 0.837608i
\(78\) −0.308546 + 1.89318i −0.0349360 + 0.214361i
\(79\) 6.79571i 0.764577i −0.924043 0.382289i \(-0.875136\pi\)
0.924043 0.382289i \(-0.124864\pi\)
\(80\) −6.44331 4.85999i −0.720384 0.543364i
\(81\) −4.17266 −0.463629
\(82\) −2.24032 + 13.7462i −0.247402 + 1.51801i
\(83\) 15.5710i 1.70913i −0.519340 0.854567i \(-0.673822\pi\)
0.519340 0.854567i \(-0.326178\pi\)
\(84\) −1.95403 6.90598i −0.213202 0.753504i
\(85\) 9.08390i 0.985288i
\(86\) 2.77565 + 0.452369i 0.299306 + 0.0487802i
\(87\) −8.18848 −0.877897
\(88\) 12.3338 + 6.49450i 1.31479 + 0.692316i
\(89\) 5.33818i 0.565846i −0.959143 0.282923i \(-0.908696\pi\)
0.959143 0.282923i \(-0.0913041\pi\)
\(90\) 3.26778 + 0.532574i 0.344454 + 0.0561383i
\(91\) 2.18534 1.49140i 0.229086 0.156341i
\(92\) −5.89778 + 17.6132i −0.614886 + 1.83631i
\(93\) 3.63400i 0.376828i
\(94\) 9.22889 + 1.50410i 0.951887 + 0.155136i
\(95\) 8.59698i 0.882032i
\(96\) −5.54547 + 5.30258i −0.565982 + 0.541192i
\(97\) 5.40946i 0.549248i 0.961552 + 0.274624i \(0.0885533\pi\)
−0.961552 + 0.274624i \(0.911447\pi\)
\(98\) −5.04415 + 8.51801i −0.509536 + 0.860449i
\(99\) −5.71838 −0.574718
\(100\) −1.76187 0.589962i −0.176187 0.0589962i
\(101\) 14.7053 1.46323 0.731617 0.681716i \(-0.238766\pi\)
0.731617 + 0.681716i \(0.238766\pi\)
\(102\) 8.52345 + 1.38913i 0.843947 + 0.137544i
\(103\) −15.8101 −1.55782 −0.778909 0.627136i \(-0.784227\pi\)
−0.778909 + 0.627136i \(0.784227\pi\)
\(104\) −2.50267 1.31781i −0.245407 0.129222i
\(105\) 4.08145 + 5.98053i 0.398309 + 0.583640i
\(106\) 1.79855 11.0356i 0.174690 1.07187i
\(107\) −5.79170 −0.559904 −0.279952 0.960014i \(-0.590319\pi\)
−0.279952 + 0.960014i \(0.590319\pi\)
\(108\) 3.58344 10.7017i 0.344817 1.02977i
\(109\) 14.0192i 1.34279i −0.741099 0.671396i \(-0.765695\pi\)
0.741099 0.671396i \(-0.234305\pi\)
\(110\) −13.8792 2.26200i −1.32333 0.215673i
\(111\) 2.59795 0.246586
\(112\) 10.5711 + 0.501172i 0.998878 + 0.0473563i
\(113\) −2.00196 −0.188328 −0.0941641 0.995557i \(-0.530018\pi\)
−0.0941641 + 0.995557i \(0.530018\pi\)
\(114\) 8.06657 + 1.31467i 0.755503 + 0.123130i
\(115\) 18.7385i 1.74738i
\(116\) 3.83385 11.4495i 0.355964 1.06306i
\(117\) 1.16033 0.107272
\(118\) 2.22440 13.6485i 0.204773 1.25645i
\(119\) −6.71455 9.83880i −0.615522 0.901922i
\(120\) 3.60640 6.84895i 0.329218 0.625221i
\(121\) 13.2876 1.20796
\(122\) 14.0706 + 2.29320i 1.27390 + 0.207616i
\(123\) −13.3577 −1.20442
\(124\) −5.08122 1.70144i −0.456307 0.152794i
\(125\) 11.9628 1.06998
\(126\) −3.93301 + 1.83861i −0.350380 + 0.163797i
\(127\) 13.9958i 1.24193i −0.783839 0.620964i \(-0.786741\pi\)
0.783839 0.620964i \(-0.213259\pi\)
\(128\) −4.81790 10.2366i −0.425847 0.904795i
\(129\) 2.69720i 0.237475i
\(130\) 2.81626 + 0.458986i 0.247002 + 0.0402558i
\(131\) 0.946942i 0.0827347i −0.999144 0.0413674i \(-0.986829\pi\)
0.999144 0.0413674i \(-0.0131714\pi\)
\(132\) −4.24487 + 12.6770i −0.369469 + 1.10339i
\(133\) −6.35463 9.31142i −0.551016 0.807402i
\(134\) 22.1656 + 3.61250i 1.91482 + 0.312072i
\(135\) 11.3854i 0.979898i
\(136\) −5.93303 + 11.2675i −0.508753 + 0.966178i
\(137\) 13.4840 1.15201 0.576007 0.817445i \(-0.304610\pi\)
0.576007 + 0.817445i \(0.304610\pi\)
\(138\) −17.5824 2.86554i −1.49672 0.243931i
\(139\) 10.4050i 0.882544i 0.897373 + 0.441272i \(0.145473\pi\)
−0.897373 + 0.441272i \(0.854527\pi\)
\(140\) −10.2732 + 2.90677i −0.868243 + 0.245667i
\(141\) 8.96803i 0.755245i
\(142\) 0.495514 3.04039i 0.0415826 0.255144i
\(143\) −4.92824 −0.412120
\(144\) 3.70544 + 2.79490i 0.308787 + 0.232908i
\(145\) 12.1810i 1.01158i
\(146\) 1.79071 10.9875i 0.148200 0.909328i
\(147\) −8.84126 3.46065i −0.729215 0.285430i
\(148\) −1.21636 + 3.63257i −0.0999843 + 0.298595i
\(149\) 4.85942i 0.398100i 0.979989 + 0.199050i \(0.0637855\pi\)
−0.979989 + 0.199050i \(0.936214\pi\)
\(150\) 0.286643 1.75879i 0.0234043 0.143605i
\(151\) 1.05783i 0.0860854i −0.999073 0.0430427i \(-0.986295\pi\)
0.999073 0.0430427i \(-0.0137051\pi\)
\(152\) −5.61500 + 10.6635i −0.455437 + 0.864925i
\(153\) 5.22400i 0.422335i
\(154\) 16.7046 7.80911i 1.34610 0.629276i
\(155\) 5.40586 0.434209
\(156\) 0.861336 2.57231i 0.0689621 0.205950i
\(157\) 8.12606 0.648531 0.324265 0.945966i \(-0.394883\pi\)
0.324265 + 0.945966i \(0.394883\pi\)
\(158\) −1.54591 + 9.48544i −0.122986 + 0.754621i
\(159\) 10.7236 0.850439
\(160\) 7.88799 + 8.24931i 0.623600 + 0.652166i
\(161\) 13.8510 + 20.2958i 1.09161 + 1.59953i
\(162\) 5.82419 + 0.949211i 0.457591 + 0.0745771i
\(163\) 9.36955 0.733880 0.366940 0.930245i \(-0.380405\pi\)
0.366940 + 0.930245i \(0.380405\pi\)
\(164\) 6.25407 18.6773i 0.488361 1.45845i
\(165\) 13.4869i 1.04995i
\(166\) −3.54214 + 21.7339i −0.274923 + 1.68688i
\(167\) 15.0871 1.16747 0.583737 0.811942i \(-0.301590\pi\)
0.583737 + 0.811942i \(0.301590\pi\)
\(168\) 1.15644 + 10.0839i 0.0892210 + 0.777987i
\(169\) 1.00000 0.0769231
\(170\) 2.06644 12.6793i 0.158489 0.972457i
\(171\) 4.94398i 0.378075i
\(172\) −3.77134 1.26283i −0.287562 0.0962900i
\(173\) 9.07705 0.690116 0.345058 0.938581i \(-0.387859\pi\)
0.345058 + 0.938581i \(0.387859\pi\)
\(174\) 11.4295 + 1.86274i 0.866465 + 0.141214i
\(175\) −2.03021 + 1.38553i −0.153470 + 0.104736i
\(176\) −15.7381 11.8707i −1.18630 0.894791i
\(177\) 13.2628 0.996891
\(178\) −1.21435 + 7.45102i −0.0910192 + 0.558478i
\(179\) 16.7901 1.25495 0.627476 0.778636i \(-0.284088\pi\)
0.627476 + 0.778636i \(0.284088\pi\)
\(180\) −4.44001 1.48673i −0.330939 0.110814i
\(181\) 3.66980 0.272774 0.136387 0.990656i \(-0.456451\pi\)
0.136387 + 0.990656i \(0.456451\pi\)
\(182\) −3.38957 + 1.58456i −0.251251 + 0.117456i
\(183\) 13.6729i 1.01073i
\(184\) 12.2388 23.2429i 0.902258 1.71349i
\(185\) 3.86465i 0.284135i
\(186\) 0.826676 5.07233i 0.0606148 0.371921i
\(187\) 22.1878i 1.62253i
\(188\) −12.5395 4.19884i −0.914537 0.306232i
\(189\) −8.41573 12.3315i −0.612155 0.896988i
\(190\) 1.95567 11.9996i 0.141879 0.870546i
\(191\) 25.9830i 1.88007i −0.341082 0.940033i \(-0.610794\pi\)
0.341082 0.940033i \(-0.389206\pi\)
\(192\) 8.94660 6.13982i 0.645665 0.443103i
\(193\) 18.2177 1.31134 0.655669 0.755049i \(-0.272387\pi\)
0.655669 + 0.755049i \(0.272387\pi\)
\(194\) 1.23056 7.55052i 0.0883493 0.542095i
\(195\) 2.73666i 0.195976i
\(196\) 8.97832 10.7420i 0.641308 0.767283i
\(197\) 6.35885i 0.453049i −0.974005 0.226525i \(-0.927264\pi\)
0.974005 0.226525i \(-0.0727363\pi\)
\(198\) 7.98170 + 1.30084i 0.567234 + 0.0924464i
\(199\) 7.66867 0.543617 0.271809 0.962351i \(-0.412378\pi\)
0.271809 + 0.962351i \(0.412378\pi\)
\(200\) 2.32501 + 1.22426i 0.164403 + 0.0865686i
\(201\) 21.5391i 1.51925i
\(202\) −20.5257 3.34522i −1.44418 0.235369i
\(203\) −9.00383 13.1933i −0.631945 0.925987i
\(204\) −11.5810 3.87789i −0.810833 0.271507i
\(205\) 19.8706i 1.38782i
\(206\) 22.0677 + 3.59654i 1.53753 + 0.250583i
\(207\) 10.7762i 0.748999i
\(208\) 3.19344 + 2.40872i 0.221425 + 0.167014i
\(209\) 20.9985i 1.45250i
\(210\) −4.33640 9.27608i −0.299240 0.640110i
\(211\) 18.9359 1.30360 0.651801 0.758390i \(-0.274014\pi\)
0.651801 + 0.758390i \(0.274014\pi\)
\(212\) −5.02081 + 14.9943i −0.344831 + 1.02981i
\(213\) 2.95445 0.202436
\(214\) 8.08404 + 1.31752i 0.552613 + 0.0900635i
\(215\) 4.01229 0.273636
\(216\) −7.43621 + 14.1222i −0.505970 + 0.960893i
\(217\) −5.85510 + 3.99585i −0.397470 + 0.271256i
\(218\) −3.18913 + 19.5679i −0.215995 + 1.32531i
\(219\) 10.6769 0.721478
\(220\) 18.8580 + 6.31458i 1.27141 + 0.425729i
\(221\) 4.50218i 0.302849i
\(222\) −3.62621 0.590990i −0.243375 0.0396647i
\(223\) 0.523181 0.0350348 0.0175174 0.999847i \(-0.494424\pi\)
0.0175174 + 0.999847i \(0.494424\pi\)
\(224\) −14.6412 3.10429i −0.978253 0.207414i
\(225\) −1.07796 −0.0718639
\(226\) 2.79433 + 0.455412i 0.185876 + 0.0302936i
\(227\) 6.25764i 0.415334i −0.978200 0.207667i \(-0.933413\pi\)
0.978200 0.207667i \(-0.0665870\pi\)
\(228\) −10.9602 3.67002i −0.725859 0.243053i
\(229\) 9.29723 0.614379 0.307189 0.951648i \(-0.400612\pi\)
0.307189 + 0.951648i \(0.400612\pi\)
\(230\) −4.26271 + 26.1552i −0.281075 + 1.72462i
\(231\) 9.96912 + 14.6077i 0.655920 + 0.961117i
\(232\) −7.95586 + 15.1090i −0.522328 + 0.991958i
\(233\) −0.709761 −0.0464980 −0.0232490 0.999730i \(-0.507401\pi\)
−0.0232490 + 0.999730i \(0.507401\pi\)
\(234\) −1.61958 0.263955i −0.105875 0.0172553i
\(235\) 13.3406 0.870248
\(236\) −6.20964 + 18.5446i −0.404213 + 1.20715i
\(237\) −9.21733 −0.598730
\(238\) 7.13399 + 15.2604i 0.462428 + 0.989187i
\(239\) 3.28084i 0.212220i 0.994354 + 0.106110i \(0.0338395\pi\)
−0.994354 + 0.106110i \(0.966160\pi\)
\(240\) −6.59183 + 8.73936i −0.425501 + 0.564123i
\(241\) 10.9276i 0.703907i −0.936017 0.351954i \(-0.885517\pi\)
0.936017 0.351954i \(-0.114483\pi\)
\(242\) −18.5468 3.02271i −1.19223 0.194307i
\(243\) 11.2690i 0.722904i
\(244\) −19.1181 6.40168i −1.22391 0.409826i
\(245\) −5.14798 + 13.1521i −0.328893 + 0.840254i
\(246\) 18.6446 + 3.03865i 1.18874 + 0.193737i
\(247\) 4.26085i 0.271111i
\(248\) 6.70531 + 3.53076i 0.425788 + 0.224204i
\(249\) −21.1196 −1.33840
\(250\) −16.6976 2.72134i −1.05605 0.172112i
\(251\) 11.2022i 0.707078i −0.935420 0.353539i \(-0.884978\pi\)
0.935420 0.353539i \(-0.115022\pi\)
\(252\) 5.90793 1.67164i 0.372165 0.105303i
\(253\) 45.7697i 2.87752i
\(254\) −3.18382 + 19.5353i −0.199770 + 1.22576i
\(255\) 12.3209 0.771565
\(256\) 4.39616 + 15.3842i 0.274760 + 0.961513i
\(257\) 19.9074i 1.24179i −0.783894 0.620894i \(-0.786770\pi\)
0.783894 0.620894i \(-0.213230\pi\)
\(258\) 0.613568 3.76475i 0.0381991 0.234383i
\(259\) 2.85663 + 4.18581i 0.177502 + 0.260094i
\(260\) −3.82651 1.28130i −0.237310 0.0794631i
\(261\) 7.00509i 0.433604i
\(262\) −0.215414 + 1.32174i −0.0133083 + 0.0816574i
\(263\) 25.7281i 1.58646i 0.608919 + 0.793232i \(0.291603\pi\)
−0.608919 + 0.793232i \(0.708397\pi\)
\(264\) 8.80879 16.7289i 0.542144 1.02959i
\(265\) 15.9522i 0.979938i
\(266\) 6.75158 + 14.4424i 0.413966 + 0.885522i
\(267\) −7.24042 −0.443106
\(268\) −30.1169 10.0846i −1.83968 0.616017i
\(269\) −22.5092 −1.37241 −0.686206 0.727407i \(-0.740725\pi\)
−0.686206 + 0.727407i \(0.740725\pi\)
\(270\) 2.58999 15.8917i 0.157622 0.967138i
\(271\) −26.5569 −1.61322 −0.806608 0.591086i \(-0.798699\pi\)
−0.806608 + 0.591086i \(0.798699\pi\)
\(272\) 10.8445 14.3775i 0.657543 0.871761i
\(273\) −2.02285 2.96408i −0.122429 0.179394i
\(274\) −18.8209 3.06738i −1.13701 0.185307i
\(275\) 4.57840 0.276088
\(276\) 23.8896 + 7.99942i 1.43799 + 0.481509i
\(277\) 0.199021i 0.0119580i −0.999982 0.00597902i \(-0.998097\pi\)
0.999982 0.00597902i \(-0.00190319\pi\)
\(278\) 2.36697 14.5233i 0.141962 0.871052i
\(279\) −3.10882 −0.186120
\(280\) 15.0005 1.72029i 0.896453 0.102807i
\(281\) −2.06373 −0.123112 −0.0615558 0.998104i \(-0.519606\pi\)
−0.0615558 + 0.998104i \(0.519606\pi\)
\(282\) 2.04008 12.5176i 0.121485 0.745410i
\(283\) 4.87971i 0.290069i −0.989427 0.145034i \(-0.953671\pi\)
0.989427 0.145034i \(-0.0463293\pi\)
\(284\) −1.38328 + 4.13104i −0.0820823 + 0.245132i
\(285\) 11.6605 0.690707
\(286\) 6.87883 + 1.12109i 0.406754 + 0.0662917i
\(287\) −14.6877 21.5219i −0.866989 1.27040i
\(288\) −4.53625 4.74404i −0.267301 0.279545i
\(289\) −3.26961 −0.192330
\(290\) 2.77098 17.0022i 0.162717 0.998404i
\(291\) 7.33710 0.430108
\(292\) −4.99893 + 14.9289i −0.292540 + 0.873648i
\(293\) −24.0764 −1.40656 −0.703280 0.710913i \(-0.748282\pi\)
−0.703280 + 0.710913i \(0.748282\pi\)
\(294\) 11.5534 + 6.84161i 0.673806 + 0.399011i
\(295\) 19.7294i 1.14869i
\(296\) 2.52414 4.79363i 0.146713 0.278624i
\(297\) 27.8093i 1.61366i
\(298\) 1.10544 6.78277i 0.0640363 0.392915i
\(299\) 9.28723i 0.537094i
\(300\) −0.800192 + 2.38971i −0.0461991 + 0.137970i
\(301\) −4.34573 + 2.96577i −0.250484 + 0.170944i
\(302\) −0.240640 + 1.47652i −0.0138473 + 0.0849644i
\(303\) 19.9455i 1.14584i
\(304\) 10.2632 13.6068i 0.588634 0.780402i
\(305\) 20.3396 1.16464
\(306\) −1.18837 + 7.29165i −0.0679348 + 0.416836i
\(307\) 13.1626i 0.751229i 0.926776 + 0.375615i \(0.122568\pi\)
−0.926776 + 0.375615i \(0.877432\pi\)
\(308\) −25.0927 + 7.09992i −1.42979 + 0.404556i
\(309\) 21.4440i 1.21991i
\(310\) −7.54549 1.22974i −0.428555 0.0698448i
\(311\) −11.0951 −0.629146 −0.314573 0.949233i \(-0.601861\pi\)
−0.314573 + 0.949233i \(0.601861\pi\)
\(312\) −1.78741 + 3.39449i −0.101192 + 0.192175i
\(313\) 11.4566i 0.647563i −0.946132 0.323782i \(-0.895046\pi\)
0.946132 0.323782i \(-0.104954\pi\)
\(314\) −11.3423 1.84855i −0.640085 0.104319i
\(315\) −5.11623 + 3.49160i −0.288267 + 0.196729i
\(316\) 4.31556 12.8881i 0.242769 0.725011i
\(317\) 4.30825i 0.241975i 0.992654 + 0.120988i \(0.0386061\pi\)
−0.992654 + 0.120988i \(0.961394\pi\)
\(318\) −14.9680 2.43945i −0.839365 0.136798i
\(319\) 29.7526i 1.66583i
\(320\) −9.13346 13.3088i −0.510576 0.743982i
\(321\) 7.85554i 0.438453i
\(322\) −14.7162 31.4797i −0.820102 1.75429i
\(323\) −19.1831 −1.06738
\(324\) −7.91346 2.64981i −0.439637 0.147212i
\(325\) −0.929012 −0.0515323
\(326\) −13.0780 2.13142i −0.724323 0.118048i
\(327\) −19.0148 −1.05152
\(328\) −12.9782 + 24.6470i −0.716601 + 1.36090i
\(329\) −14.4493 + 9.86100i −0.796615 + 0.543655i
\(330\) −3.06805 + 18.8250i −0.168891 + 1.03628i
\(331\) −1.04258 −0.0573055 −0.0286527 0.999589i \(-0.509122\pi\)
−0.0286527 + 0.999589i \(0.509122\pi\)
\(332\) 9.88821 29.5304i 0.542686 1.62069i
\(333\) 2.22249i 0.121792i
\(334\) −21.0585 3.43207i −1.15227 0.187794i
\(335\) 32.0411 1.75059
\(336\) 0.679762 14.3381i 0.0370840 0.782208i
\(337\) −3.99839 −0.217806 −0.108903 0.994052i \(-0.534734\pi\)
−0.108903 + 0.994052i \(0.534734\pi\)
\(338\) −1.39580 0.227483i −0.0759214 0.0123735i
\(339\) 2.71534i 0.147477i
\(340\) −5.76866 + 17.2276i −0.312850 + 0.934300i
\(341\) 13.2040 0.715039
\(342\) −1.12467 + 6.90079i −0.0608154 + 0.373152i
\(343\) −4.14581 18.0503i −0.223853 0.974623i
\(344\) 4.97676 + 2.62058i 0.268329 + 0.141292i
\(345\) −25.4159 −1.36835
\(346\) −12.6697 2.06488i −0.681129 0.111009i
\(347\) −3.26373 −0.175206 −0.0876030 0.996155i \(-0.527921\pi\)
−0.0876030 + 0.996155i \(0.527921\pi\)
\(348\) −15.5295 5.20003i −0.832467 0.278751i
\(349\) −3.99174 −0.213673 −0.106837 0.994277i \(-0.534072\pi\)
−0.106837 + 0.994277i \(0.534072\pi\)
\(350\) 3.14895 1.47208i 0.168318 0.0786859i
\(351\) 5.64284i 0.301193i
\(352\) 19.2668 + 20.1493i 1.02692 + 1.07396i
\(353\) 4.75882i 0.253286i 0.991948 + 0.126643i \(0.0404203\pi\)
−0.991948 + 0.126643i \(0.959580\pi\)
\(354\) −18.5121 3.01706i −0.983909 0.160355i
\(355\) 4.39497i 0.233261i
\(356\) 3.38997 10.1239i 0.179668 0.536564i
\(357\) −13.3448 + 9.10725i −0.706283 + 0.482007i
\(358\) −23.4356 3.81948i −1.23861 0.201866i
\(359\) 15.2984i 0.807418i 0.914887 + 0.403709i \(0.132279\pi\)
−0.914887 + 0.403709i \(0.867721\pi\)
\(360\) 5.85915 + 3.08521i 0.308804 + 0.162605i
\(361\) 0.845169 0.0444826
\(362\) −5.12229 0.834818i −0.269222 0.0438771i
\(363\) 18.0226i 0.945939i
\(364\) 5.09161 1.44066i 0.266873 0.0755111i
\(365\) 15.8827i 0.831339i
\(366\) 3.11037 19.0847i 0.162582 0.997571i
\(367\) 24.0456 1.25517 0.627585 0.778548i \(-0.284044\pi\)
0.627585 + 0.778548i \(0.284044\pi\)
\(368\) −22.3703 + 29.6582i −1.16613 + 1.54604i
\(369\) 11.4272i 0.594878i
\(370\) −0.879144 + 5.39427i −0.0457045 + 0.280435i
\(371\) 11.7914 + 17.2779i 0.612180 + 0.897025i
\(372\) −2.30774 + 6.89189i −0.119651 + 0.357328i
\(373\) 7.07711i 0.366439i 0.983072 + 0.183219i \(0.0586519\pi\)
−0.983072 + 0.183219i \(0.941348\pi\)
\(374\) 5.04737 30.9697i 0.260993 1.60141i
\(375\) 16.2257i 0.837890i
\(376\) 16.5474 + 8.71326i 0.853369 + 0.449352i
\(377\) 6.03717i 0.310930i
\(378\) 8.94144 + 19.1268i 0.459898 + 0.983775i
\(379\) 19.0848 0.980322 0.490161 0.871632i \(-0.336938\pi\)
0.490161 + 0.871632i \(0.336938\pi\)
\(380\) −5.45944 + 16.3042i −0.280064 + 0.836388i
\(381\) −18.9832 −0.972536
\(382\) −5.91071 + 36.2671i −0.302418 + 1.85558i
\(383\) −16.0328 −0.819236 −0.409618 0.912257i \(-0.634338\pi\)
−0.409618 + 0.912257i \(0.634338\pi\)
\(384\) −13.8844 + 6.53474i −0.708533 + 0.333475i
\(385\) 21.7301 14.8298i 1.10747 0.755798i
\(386\) −25.4282 4.14422i −1.29426 0.210935i
\(387\) −2.30740 −0.117292
\(388\) −3.43524 + 10.2591i −0.174398 + 0.520825i
\(389\) 23.9199i 1.21279i −0.795164 0.606395i \(-0.792615\pi\)
0.795164 0.606395i \(-0.207385\pi\)
\(390\) 0.622544 3.81982i 0.0315237 0.193424i
\(391\) 41.8128 2.11456
\(392\) −14.9755 + 12.9512i −0.756379 + 0.654134i
\(393\) −1.28438 −0.0647884
\(394\) −1.44653 + 8.87566i −0.0728753 + 0.447149i
\(395\) 13.7115i 0.689900i
\(396\) −10.8449 3.63141i −0.544977 0.182485i
\(397\) 20.5439 1.03107 0.515535 0.856869i \(-0.327593\pi\)
0.515535 + 0.856869i \(0.327593\pi\)
\(398\) −10.7039 1.74450i −0.536538 0.0874436i
\(399\) −12.6295 + 8.61907i −0.632266 + 0.431493i
\(400\) −2.96675 2.23773i −0.148337 0.111886i
\(401\) 31.3007 1.56308 0.781542 0.623852i \(-0.214433\pi\)
0.781542 + 0.623852i \(0.214433\pi\)
\(402\) 4.89979 30.0642i 0.244379 1.49947i
\(403\) −2.67926 −0.133463
\(404\) 27.8887 + 9.33849i 1.38751 + 0.464607i
\(405\) 8.41904 0.418346
\(406\) 9.56627 + 20.4634i 0.474766 + 1.01558i
\(407\) 9.43957i 0.467902i
\(408\) 15.2826 + 8.04724i 0.756601 + 0.398398i
\(409\) 15.6476i 0.773722i −0.922138 0.386861i \(-0.873559\pi\)
0.922138 0.386861i \(-0.126441\pi\)
\(410\) 4.52023 27.7353i 0.223238 1.36975i
\(411\) 18.2889i 0.902126i
\(412\) −29.9840 10.0401i −1.47720 0.494640i
\(413\) 14.5834 + 21.3690i 0.717601 + 1.05150i
\(414\) 2.45141 15.0414i 0.120480 0.739246i
\(415\) 31.4170i 1.54220i
\(416\) −3.90946 4.08854i −0.191677 0.200457i
\(417\) 14.1128 0.691108
\(418\) 4.77681 29.3097i 0.233642 1.43358i
\(419\) 20.5740i 1.00511i −0.864546 0.502553i \(-0.832394\pi\)
0.864546 0.502553i \(-0.167606\pi\)
\(420\) 3.94259 + 13.9340i 0.192379 + 0.679909i
\(421\) 21.4079i 1.04336i 0.853141 + 0.521680i \(0.174694\pi\)
−0.853141 + 0.521680i \(0.825306\pi\)
\(422\) −26.4307 4.30761i −1.28663 0.209691i
\(423\) −7.67198 −0.373024
\(424\) 10.4190 19.7868i 0.505991 0.960932i
\(425\) 4.18258i 0.202885i
\(426\) −4.12381 0.672089i −0.199799 0.0325628i
\(427\) −22.0298 + 15.0344i −1.06610 + 0.727565i
\(428\) −10.9840 3.67797i −0.530930 0.177781i
\(429\) 6.68440i 0.322726i
\(430\) −5.60035 0.912731i −0.270073 0.0440158i
\(431\) 10.3475i 0.498422i −0.968449 0.249211i \(-0.919829\pi\)
0.968449 0.249211i \(-0.0801712\pi\)
\(432\) 13.5920 18.0201i 0.653946 0.866992i
\(433\) 9.33066i 0.448403i 0.974543 + 0.224201i \(0.0719773\pi\)
−0.974543 + 0.224201i \(0.928023\pi\)
\(434\) 9.08153 4.24546i 0.435927 0.203788i
\(435\) 16.5216 0.792152
\(436\) 8.90275 26.5874i 0.426364 1.27330i
\(437\) 39.5715 1.89296
\(438\) −14.9028 2.42882i −0.712083 0.116053i
\(439\) 1.46740 0.0700351 0.0350176 0.999387i \(-0.488851\pi\)
0.0350176 + 0.999387i \(0.488851\pi\)
\(440\) −24.8855 13.1038i −1.18637 0.624697i
\(441\) 2.96052 7.56353i 0.140977 0.360168i
\(442\) −1.02417 + 6.28413i −0.0487149 + 0.298906i
\(443\) −15.1974 −0.722049 −0.361024 0.932556i \(-0.617573\pi\)
−0.361024 + 0.932556i \(0.617573\pi\)
\(444\) 4.92701 + 1.64981i 0.233826 + 0.0782963i
\(445\) 10.7707i 0.510579i
\(446\) −0.730255 0.119015i −0.0345786 0.00563552i
\(447\) 6.59106 0.311746
\(448\) 19.7299 + 7.66358i 0.932151 + 0.362070i
\(449\) 2.85625 0.134795 0.0673974 0.997726i \(-0.478530\pi\)
0.0673974 + 0.997726i \(0.478530\pi\)
\(450\) 1.50461 + 0.245218i 0.0709281 + 0.0115597i
\(451\) 48.5347i 2.28541i
\(452\) −3.79672 1.27133i −0.178583 0.0597982i
\(453\) −1.43479 −0.0674123
\(454\) −1.42351 + 8.73440i −0.0668086 + 0.409926i
\(455\) −4.40930 + 3.00915i −0.206711 + 0.141071i
\(456\) 14.4634 + 7.61588i 0.677311 + 0.356646i
\(457\) −18.5765 −0.868972 −0.434486 0.900679i \(-0.643070\pi\)
−0.434486 + 0.900679i \(0.643070\pi\)
\(458\) −12.9771 2.11497i −0.606378 0.0988259i
\(459\) −25.4051 −1.18581
\(460\) 11.8998 35.5377i 0.554829 1.65695i
\(461\) 15.7972 0.735751 0.367875 0.929875i \(-0.380085\pi\)
0.367875 + 0.929875i \(0.380085\pi\)
\(462\) −10.5919 22.6572i −0.492778 1.05411i
\(463\) 29.8412i 1.38684i 0.720534 + 0.693420i \(0.243897\pi\)
−0.720534 + 0.693420i \(0.756103\pi\)
\(464\) 14.5418 19.2793i 0.675087 0.895021i
\(465\) 7.33221i 0.340023i
\(466\) 0.990683 + 0.161459i 0.0458925 + 0.00747944i
\(467\) 28.2989i 1.30952i 0.755838 + 0.654759i \(0.227230\pi\)
−0.755838 + 0.654759i \(0.772770\pi\)
\(468\) 2.20056 + 0.736856i 0.101721 + 0.0340612i
\(469\) −34.7038 + 23.6838i −1.60247 + 1.09362i
\(470\) −18.6208 3.03478i −0.858915 0.139984i
\(471\) 11.0218i 0.507855i
\(472\) 12.8860 24.4719i 0.593126 1.12641i
\(473\) 9.80020 0.450614
\(474\) 12.8655 + 2.09679i 0.590933 + 0.0963088i
\(475\) 3.95838i 0.181623i
\(476\) −6.48611 22.9233i −0.297290 1.05069i
\(477\) 9.17386i 0.420042i
\(478\) 0.746336 4.57938i 0.0341366 0.209456i
\(479\) −34.1779 −1.56163 −0.780814 0.624763i \(-0.785196\pi\)
−0.780814 + 0.624763i \(0.785196\pi\)
\(480\) 11.1889 10.6988i 0.510702 0.488333i
\(481\) 1.91540i 0.0873349i
\(482\) −2.48584 + 15.2527i −0.113227 + 0.694741i
\(483\) 27.5281 18.7867i 1.25257 0.854825i
\(484\) 25.1999 + 8.43817i 1.14545 + 0.383553i
\(485\) 10.9145i 0.495602i
\(486\) −2.56350 + 15.7292i −0.116283 + 0.713490i
\(487\) 19.3724i 0.877846i −0.898525 0.438923i \(-0.855360\pi\)
0.898525 0.438923i \(-0.144640\pi\)
\(488\) 25.2287 + 13.2845i 1.14205 + 0.601361i
\(489\) 12.7083i 0.574691i
\(490\) 10.1774 17.1865i 0.459769 0.776408i
\(491\) 7.16183 0.323209 0.161604 0.986856i \(-0.448333\pi\)
0.161604 + 0.986856i \(0.448333\pi\)
\(492\) −25.3329 8.48268i −1.14209 0.382429i
\(493\) −27.1804 −1.22414
\(494\) −0.969273 + 5.94728i −0.0436096 + 0.267581i
\(495\) 11.5378 0.518585
\(496\) −8.55607 6.45358i −0.384179 0.289774i
\(497\) 3.24863 + 4.76021i 0.145721 + 0.213525i
\(498\) 29.4787 + 4.80436i 1.32097 + 0.215289i
\(499\) −3.75215 −0.167969 −0.0839846 0.996467i \(-0.526765\pi\)
−0.0839846 + 0.996467i \(0.526765\pi\)
\(500\) 22.6874 + 7.59687i 1.01461 + 0.339742i
\(501\) 20.4633i 0.914234i
\(502\) −2.54832 + 15.6360i −0.113737 + 0.697871i
\(503\) 16.8477 0.751200 0.375600 0.926782i \(-0.377437\pi\)
0.375600 + 0.926782i \(0.377437\pi\)
\(504\) −8.62655 + 0.989309i −0.384257 + 0.0440673i
\(505\) −29.6705 −1.32032
\(506\) −10.4119 + 63.8853i −0.462863 + 2.84005i
\(507\) 1.35635i 0.0602374i
\(508\) 8.88793 26.5431i 0.394338 1.17766i
\(509\) 27.6736 1.22661 0.613305 0.789846i \(-0.289840\pi\)
0.613305 + 0.789846i \(0.289840\pi\)
\(510\) −17.1975 2.80280i −0.761518 0.124110i
\(511\) 11.7400 + 17.2026i 0.519348 + 0.760999i
\(512\) −2.63650 22.4733i −0.116518 0.993189i
\(513\) −24.0433 −1.06154
\(514\) −4.52860 + 27.7867i −0.199748 + 1.22562i
\(515\) 31.8996 1.40567
\(516\) −1.71283 + 5.11525i −0.0754034 + 0.225186i
\(517\) 32.5851 1.43309
\(518\) −3.03508 6.49238i −0.133354 0.285259i
\(519\) 12.3116i 0.540420i
\(520\) 5.04956 + 2.65891i 0.221438 + 0.116601i
\(521\) 17.6143i 0.771696i −0.922562 0.385848i \(-0.873909\pi\)
0.922562 0.385848i \(-0.126091\pi\)
\(522\) −1.59354 + 9.77769i −0.0697474 + 0.427958i
\(523\) 11.0393i 0.482714i 0.970436 + 0.241357i \(0.0775926\pi\)
−0.970436 + 0.241357i \(0.922407\pi\)
\(524\) 0.601348 1.79588i 0.0262700 0.0784533i
\(525\) 1.87926 + 2.75367i 0.0820175 + 0.120180i
\(526\) 5.85273 35.9113i 0.255191 1.56581i
\(527\) 12.0625i 0.525451i
\(528\) −16.1008 + 21.3463i −0.700699 + 0.928977i
\(529\) −63.2526 −2.75011
\(530\) −3.62887 + 22.2661i −0.157628 + 0.967177i
\(531\) 11.3460i 0.492376i
\(532\) −6.13843 21.6946i −0.266135 0.940579i
\(533\) 9.84828i 0.426576i
\(534\) 10.1062 + 1.64708i 0.437336 + 0.0712759i
\(535\) 11.6857 0.505218
\(536\) 39.7431 + 20.9272i 1.71664 + 0.903918i
\(537\) 22.7732i 0.982736i
\(538\) 31.4183 + 5.12048i 1.35454 + 0.220759i
\(539\) −12.5742 + 32.1245i −0.541608 + 1.38370i
\(540\) −7.23020 + 21.5924i −0.311138 + 0.929189i
\(541\) 2.04925i 0.0881043i −0.999029 0.0440522i \(-0.985973\pi\)
0.999029 0.0440522i \(-0.0140268\pi\)
\(542\) 37.0681 + 6.04126i 1.59221 + 0.259494i
\(543\) 4.97751i 0.213606i
\(544\) −18.4073 + 17.6011i −0.789207 + 0.754640i
\(545\) 28.2860i 1.21164i
\(546\) 2.14922 + 4.59742i 0.0919779 + 0.196752i
\(547\) −4.74971 −0.203083 −0.101542 0.994831i \(-0.532377\pi\)
−0.101542 + 0.994831i \(0.532377\pi\)
\(548\) 25.5724 + 8.56289i 1.09240 + 0.365788i
\(549\) −11.6969 −0.499213
\(550\) −6.39052 1.04151i −0.272493 0.0444101i
\(551\) −25.7234 −1.09586
\(552\) −31.5254 16.6001i −1.34181 0.706546i
\(553\) −10.1351 14.8510i −0.430989 0.631527i
\(554\) −0.0452741 + 0.277794i −0.00192351 + 0.0118023i
\(555\) −5.24180 −0.222502
\(556\) −6.60764 + 19.7332i −0.280226 + 0.836873i
\(557\) 3.12828i 0.132550i −0.997801 0.0662748i \(-0.978889\pi\)
0.997801 0.0662748i \(-0.0211114\pi\)
\(558\) 4.33928 + 0.707205i 0.183696 + 0.0299384i
\(559\) −1.98858 −0.0841079
\(560\) −21.3290 1.01120i −0.901317 0.0427309i
\(561\) 30.0944 1.27058
\(562\) 2.88054 + 0.469464i 0.121508 + 0.0198031i
\(563\) 3.85763i 0.162580i −0.996691 0.0812898i \(-0.974096\pi\)
0.996691 0.0812898i \(-0.0259039\pi\)
\(564\) −5.69508 + 17.0079i −0.239806 + 0.716162i
\(565\) 4.03929 0.169934
\(566\) −1.11005 + 6.81109i −0.0466590 + 0.286291i
\(567\) −9.11869 + 6.22310i −0.382949 + 0.261346i
\(568\) 2.87052 5.45143i 0.120444 0.228737i
\(569\) −31.1969 −1.30784 −0.653922 0.756562i \(-0.726877\pi\)
−0.653922 + 0.756562i \(0.726877\pi\)
\(570\) −16.2757 2.65257i −0.681713 0.111104i
\(571\) 26.0516 1.09023 0.545113 0.838363i \(-0.316487\pi\)
0.545113 + 0.838363i \(0.316487\pi\)
\(572\) −9.34643 3.12964i −0.390794 0.130857i
\(573\) −35.2420 −1.47225
\(574\) 15.6052 + 33.3814i 0.651350 + 1.39331i
\(575\) 8.62795i 0.359810i
\(576\) 5.25250 + 7.65364i 0.218854 + 0.318902i
\(577\) 3.98708i 0.165984i −0.996550 0.0829921i \(-0.973552\pi\)
0.996550 0.0829921i \(-0.0264476\pi\)
\(578\) 4.56371 + 0.743782i 0.189825 + 0.0309372i
\(579\) 24.7095i 1.02689i
\(580\) −7.73545 + 23.1013i −0.321197 + 0.959229i
\(581\) −23.2225 34.0279i −0.963433 1.41171i
\(582\) −10.2411 1.66907i −0.424508 0.0691851i
\(583\) 38.9640i 1.61373i
\(584\) 10.3736 19.7006i 0.429262 0.815215i
\(585\) −2.34116 −0.0967949
\(586\) 33.6058 + 5.47699i 1.38824 + 0.226252i
\(587\) 27.6198i 1.13999i 0.821648 + 0.569996i \(0.193055\pi\)
−0.821648 + 0.569996i \(0.806945\pi\)
\(588\) −14.5698 12.1777i −0.600849 0.502200i
\(589\) 11.4159i 0.470385i
\(590\) −4.48811 + 27.5382i −0.184773 + 1.13373i
\(591\) −8.62479 −0.354777
\(592\) −4.61366 + 6.11673i −0.189620 + 0.251396i
\(593\) 28.0907i 1.15355i 0.816904 + 0.576774i \(0.195689\pi\)
−0.816904 + 0.576774i \(0.804311\pi\)
\(594\) 6.32616 38.8161i 0.259565 1.59265i
\(595\) 13.5477 + 19.8515i 0.555403 + 0.813830i
\(596\) −3.08594 + 9.21591i −0.126405 + 0.377498i
\(597\) 10.4014i 0.425699i
\(598\) 2.11269 12.9631i 0.0863944 0.530100i
\(599\) 26.7663i 1.09364i −0.837250 0.546821i \(-0.815838\pi\)
0.837250 0.546821i \(-0.184162\pi\)
\(600\) 1.66053 3.15352i 0.0677907 0.128742i
\(601\) 35.5607i 1.45055i −0.688458 0.725276i \(-0.741712\pi\)
0.688458 0.725276i \(-0.258288\pi\)
\(602\) 6.74042 3.15103i 0.274719 0.128426i
\(603\) −18.4263 −0.750377
\(604\) 0.671769 2.00619i 0.0273339 0.0816306i
\(605\) −26.8099 −1.08998
\(606\) −4.53727 + 27.8399i −0.184314 + 1.13092i
\(607\) −33.7272 −1.36895 −0.684473 0.729038i \(-0.739968\pi\)
−0.684473 + 0.729038i \(0.739968\pi\)
\(608\) −17.4206 + 16.6576i −0.706500 + 0.675555i
\(609\) −17.8946 + 12.2123i −0.725128 + 0.494868i
\(610\) −28.3899 4.62691i −1.14947 0.187338i
\(611\) −6.61191 −0.267489
\(612\) 3.31746 9.90733i 0.134100 0.400480i
\(613\) 40.6244i 1.64080i 0.571788 + 0.820401i \(0.306250\pi\)
−0.571788 + 0.820401i \(0.693750\pi\)
\(614\) 2.99427 18.3723i 0.120839 0.741447i
\(615\) 26.9514 1.08678
\(616\) 36.6394 4.20188i 1.47625 0.169299i
\(617\) 16.6113 0.668745 0.334372 0.942441i \(-0.391476\pi\)
0.334372 + 0.942441i \(0.391476\pi\)
\(618\) 4.87816 29.9315i 0.196228 1.20402i
\(619\) 7.83199i 0.314794i −0.987535 0.157397i \(-0.949690\pi\)
0.987535 0.157397i \(-0.0503103\pi\)
\(620\) 10.2522 + 3.43295i 0.411739 + 0.137870i
\(621\) 52.4063 2.10299
\(622\) 15.4865 + 2.52396i 0.620954 + 0.101201i
\(623\) −7.96136 11.6658i −0.318965 0.467379i
\(624\) 3.26705 4.33141i 0.130787 0.173395i
\(625\) −19.4919 −0.779675
\(626\) −2.60618 + 15.9910i −0.104164 + 0.639131i
\(627\) 28.4812 1.13743
\(628\) 15.4111 + 5.16039i 0.614970 + 0.205922i
\(629\) 8.62348 0.343841
\(630\) 7.93550 3.70971i 0.316158 0.147798i
\(631\) 23.8991i 0.951407i 0.879606 + 0.475703i \(0.157806\pi\)
−0.879606 + 0.475703i \(0.842194\pi\)
\(632\) −8.95547 + 17.0074i −0.356230 + 0.676519i
\(633\) 25.6836i 1.02083i
\(634\) 0.980055 6.01344i 0.0389230 0.238824i
\(635\) 28.2389i 1.12063i
\(636\) 20.3374 + 6.80996i 0.806430 + 0.270032i
\(637\) 2.55145 6.51844i 0.101092 0.258270i
\(638\) 6.76823 41.5286i 0.267957 1.64413i
\(639\) 2.52747i 0.0999854i
\(640\) 9.72094 + 20.6541i 0.384254 + 0.816423i
\(641\) 43.1306 1.70356 0.851778 0.523902i \(-0.175524\pi\)
0.851778 + 0.523902i \(0.175524\pi\)
\(642\) 1.78701 10.9647i 0.0705275 0.432744i
\(643\) 27.6333i 1.08975i −0.838517 0.544876i \(-0.816577\pi\)
0.838517 0.544876i \(-0.183423\pi\)
\(644\) 13.3797 + 47.2869i 0.527235 + 1.86337i
\(645\) 5.44206i 0.214281i
\(646\) 26.7757 + 4.36384i 1.05348 + 0.171693i
\(647\) −1.50328 −0.0591000 −0.0295500 0.999563i \(-0.509407\pi\)
−0.0295500 + 0.999563i \(0.509407\pi\)
\(648\) 10.4428 + 5.49878i 0.410232 + 0.216013i
\(649\) 48.1899i 1.89162i
\(650\) 1.29671 + 0.211335i 0.0508613 + 0.00828924i
\(651\) 5.41975 + 7.94154i 0.212417 + 0.311254i
\(652\) 17.7694 + 5.95006i 0.695903 + 0.233022i
\(653\) 13.8056i 0.540254i −0.962825 0.270127i \(-0.912934\pi\)
0.962825 0.270127i \(-0.0870658\pi\)
\(654\) 26.5408 + 4.32556i 1.03783 + 0.169143i
\(655\) 1.91062i 0.0746539i
\(656\) 23.7217 31.4499i 0.926178 1.22791i
\(657\) 9.13388i 0.356346i
\(658\) 22.4115 10.4770i 0.873692 0.408436i
\(659\) 7.47530 0.291197 0.145598 0.989344i \(-0.453489\pi\)
0.145598 + 0.989344i \(0.453489\pi\)
\(660\) 8.56475 25.5780i 0.333382 0.995620i
\(661\) 3.90310 0.151813 0.0759065 0.997115i \(-0.475815\pi\)
0.0759065 + 0.997115i \(0.475815\pi\)
\(662\) 1.45523 + 0.237170i 0.0565593 + 0.00921788i
\(663\) −6.10651 −0.237157
\(664\) −20.5196 + 38.9690i −0.796315 + 1.51229i
\(665\) 12.8215 + 18.7874i 0.497198 + 0.728542i
\(666\) 0.505581 3.10215i 0.0195909 0.120206i
\(667\) 56.0685 2.17098
\(668\) 28.6127 + 9.58094i 1.10706 + 0.370698i
\(669\) 0.709614i 0.0274353i
\(670\) −44.7229 7.28882i −1.72780 0.281592i
\(671\) 49.6803 1.91789
\(672\) −4.21049 + 19.8585i −0.162423 + 0.766057i
\(673\) 23.7338 0.914871 0.457436 0.889243i \(-0.348768\pi\)
0.457436 + 0.889243i \(0.348768\pi\)
\(674\) 5.58094 + 0.909567i 0.214970 + 0.0350352i
\(675\) 5.24227i 0.201775i
\(676\) 1.89650 + 0.635042i 0.0729424 + 0.0244247i
\(677\) −36.7018 −1.41056 −0.705282 0.708927i \(-0.749179\pi\)
−0.705282 + 0.708927i \(0.749179\pi\)
\(678\) 0.617696 3.79007i 0.0237225 0.145557i
\(679\) 8.06767 + 11.8215i 0.309609 + 0.453669i
\(680\) 11.9709 22.7340i 0.459063 0.871810i
\(681\) −8.48752 −0.325242
\(682\) −18.4302 3.00370i −0.705728 0.115018i
\(683\) −6.55245 −0.250722 −0.125361 0.992111i \(-0.540009\pi\)
−0.125361 + 0.992111i \(0.540009\pi\)
\(684\) 3.13963 9.37627i 0.120047 0.358511i
\(685\) −27.2062 −1.03950
\(686\) 1.68057 + 26.1376i 0.0641646 + 0.997939i
\(687\) 12.6103i 0.481111i
\(688\) −6.35041 4.78992i −0.242107 0.182614i
\(689\) 7.90627i 0.301205i
\(690\) 35.4755 + 5.78171i 1.35053 + 0.220106i
\(691\) 30.3755i 1.15554i 0.816200 + 0.577770i \(0.196077\pi\)
−0.816200 + 0.577770i \(0.803923\pi\)
\(692\) 17.2147 + 5.76431i 0.654403 + 0.219126i
\(693\) −12.4966 + 8.52839i −0.474707 + 0.323967i
\(694\) 4.55550 + 0.742444i 0.172924 + 0.0281828i
\(695\) 20.9939i 0.796345i
\(696\) 20.4931 + 10.7909i 0.776788 + 0.409028i
\(697\) −44.3387 −1.67945
\(698\) 5.57167 + 0.908056i 0.210891 + 0.0343704i
\(699\) 0.962681i 0.0364119i
\(700\) −4.73017 + 1.33839i −0.178784 + 0.0505864i
\(701\) 14.6155i 0.552021i −0.961155 0.276010i \(-0.910988\pi\)
0.961155 0.276010i \(-0.0890124\pi\)
\(702\) −1.28365 + 7.87626i −0.0484484 + 0.297270i
\(703\) 8.16124 0.307807
\(704\) −22.3089 32.5072i −0.840797 1.22516i
\(705\) 18.0945i 0.681479i
\(706\) 1.08255 6.64235i 0.0407424 0.249988i
\(707\) 32.1362 21.9315i 1.20861 0.824820i
\(708\) 25.1529 + 8.42241i 0.945303 + 0.316534i
\(709\) 11.8485i 0.444981i −0.974935 0.222490i \(-0.928581\pi\)
0.974935 0.222490i \(-0.0714186\pi\)
\(710\) −0.999784 + 6.13449i −0.0375212 + 0.230223i
\(711\) 7.88525i 0.295720i
\(712\) −7.03472 + 13.3597i −0.263637 + 0.500677i
\(713\) 24.8829i 0.931872i
\(714\) 20.6984 9.67615i 0.774619 0.362121i
\(715\) 9.94356 0.371868
\(716\) 31.8425 + 10.6624i 1.19001 + 0.398474i
\(717\) 4.44995 0.166186
\(718\) 3.48013 21.3534i 0.129877 0.796904i
\(719\) 28.6394 1.06807 0.534035 0.845463i \(-0.320675\pi\)
0.534035 + 0.845463i \(0.320675\pi\)
\(720\) −7.47635 5.63918i −0.278627 0.210160i
\(721\) −34.5506 + 23.5792i −1.28673 + 0.878137i
\(722\) −1.17969 0.192262i −0.0439033 0.00715525i
\(723\) −14.8216 −0.551220
\(724\) 6.95978 + 2.33048i 0.258658 + 0.0866114i
\(725\) 5.60860i 0.208298i
\(726\) −4.09983 + 25.1558i −0.152159 + 0.933621i
\(727\) −23.6706 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(728\) −7.43458 + 0.852612i −0.275544 + 0.0315999i
\(729\) −27.8026 −1.02972
\(730\) −3.61305 + 22.1690i −0.133725 + 0.820513i
\(731\) 8.95294i 0.331136i
\(732\) −8.68289 + 25.9308i −0.320929 + 0.958429i
\(733\) 33.9964 1.25569 0.627844 0.778340i \(-0.283938\pi\)
0.627844 + 0.778340i \(0.283938\pi\)
\(734\) −33.5628 5.46997i −1.23882 0.201900i
\(735\) 17.8387 + 6.98244i 0.657992 + 0.257551i
\(736\) 37.9712 36.3080i 1.39964 1.33833i
\(737\) 78.2618 2.88281
\(738\) −2.59951 + 15.9501i −0.0956891 + 0.587131i
\(739\) 17.0248 0.626267 0.313134 0.949709i \(-0.398621\pi\)
0.313134 + 0.949709i \(0.398621\pi\)
\(740\) 2.45421 7.32932i 0.0902187 0.269431i
\(741\) −5.77918 −0.212304
\(742\) −12.5280 26.7988i −0.459917 0.983816i
\(743\) 34.0743i 1.25006i 0.780599 + 0.625032i \(0.214914\pi\)
−0.780599 + 0.625032i \(0.785086\pi\)
\(744\) 4.78894 9.09472i 0.175571 0.333429i
\(745\) 9.80471i 0.359217i
\(746\) 1.60993 9.87821i 0.0589436 0.361667i
\(747\) 18.0674i 0.661052i
\(748\) −14.0902 + 42.0793i −0.515189 + 1.53857i
\(749\) −12.6568 + 8.63774i −0.462471 + 0.315616i
\(750\) −3.69107 + 22.6477i −0.134779 + 0.826979i
\(751\) 21.2437i 0.775193i −0.921829 0.387596i \(-0.873305\pi\)
0.921829 0.387596i \(-0.126695\pi\)
\(752\) −21.1148 15.9262i −0.769976 0.580770i
\(753\) −15.1941 −0.553703
\(754\) −1.37336 + 8.42666i −0.0500147 + 0.306881i
\(755\) 2.13436i 0.0776773i
\(756\) −8.12941 28.7311i −0.295664 1.04494i
\(757\) 12.9931i 0.472243i −0.971724 0.236122i \(-0.924124\pi\)
0.971724 0.236122i \(-0.0758764\pi\)
\(758\) −26.6386 4.34149i −0.967556 0.157690i
\(759\) −62.0795 −2.25334
\(760\) 11.3292 21.5154i 0.410954 0.780447i
\(761\) 7.45111i 0.270103i −0.990839 0.135051i \(-0.956880\pi\)
0.990839 0.135051i \(-0.0431199\pi\)
\(762\) 26.4966 + 4.31835i 0.959872 + 0.156437i
\(763\) −20.9082 30.6367i −0.756926 1.10912i
\(764\) 16.5003 49.2769i 0.596961 1.78278i
\(765\) 10.5403i 0.381085i
\(766\) 22.3785 + 3.64719i 0.808568 + 0.131778i
\(767\) 9.77831i 0.353074i
\(768\) 20.8663 5.96272i 0.752948 0.215161i
\(769\) 41.8737i 1.51000i −0.655723 0.755001i \(-0.727636\pi\)
0.655723 0.755001i \(-0.272364\pi\)
\(770\) −33.7044 + 15.7562i −1.21462 + 0.567814i
\(771\) −27.0013 −0.972427
\(772\) 34.5499 + 11.5690i 1.24348 + 0.416377i
\(773\) 40.7234 1.46472 0.732360 0.680918i \(-0.238419\pi\)
0.732360 + 0.680918i \(0.238419\pi\)
\(774\) 3.22067 + 0.524896i 0.115764 + 0.0188670i
\(775\) 2.48907 0.0894099
\(776\) 7.12866 13.5381i 0.255904 0.485990i
\(777\) 5.67741 3.87458i 0.203676 0.139000i
\(778\) −5.44139 + 33.3874i −0.195083 + 1.19700i
\(779\) −41.9620 −1.50345
\(780\) −1.73789 + 5.19007i −0.0622265 + 0.185834i
\(781\) 10.7349i 0.384125i
\(782\) −58.3621 9.51171i −2.08703 0.340138i
\(783\) −34.0668 −1.21745
\(784\) 23.8490 14.6706i 0.851750 0.523948i
\(785\) −16.3957 −0.585188
\(786\) 1.79274 + 0.292175i 0.0639448 + 0.0104216i
\(787\) 53.4793i 1.90633i −0.302447 0.953166i \(-0.597804\pi\)
0.302447 0.953166i \(-0.402196\pi\)
\(788\) 4.03813 12.0596i 0.143853 0.429604i
\(789\) 34.8962 1.24234
\(790\) 3.11914 19.1385i 0.110974 0.680916i
\(791\) −4.37496 + 2.98572i −0.155556 + 0.106160i
\(792\) 14.3112 + 7.53575i 0.508527 + 0.267771i
\(793\) −10.0807 −0.357977
\(794\) −28.6751 4.67340i −1.01764 0.165853i
\(795\) −21.6367 −0.767376
\(796\) 14.5436 + 4.86992i 0.515486 + 0.172610i
\(797\) −31.1556 −1.10359 −0.551793 0.833981i \(-0.686056\pi\)
−0.551793 + 0.833981i \(0.686056\pi\)
\(798\) 19.5889 9.15748i 0.693440 0.324171i
\(799\) 29.7680i 1.05312i
\(800\) 3.63193 + 3.79830i 0.128408 + 0.134290i
\(801\) 6.19404i 0.218856i
\(802\) −43.6895 7.12040i −1.54273 0.251430i
\(803\) 38.7942i 1.36902i
\(804\) −13.6782 + 40.8490i −0.482394 + 1.44063i
\(805\) −27.9467 40.9502i −0.984991 1.44330i
\(806\) 3.73971 + 0.609487i 0.131726 + 0.0214683i
\(807\) 30.5303i 1.07472i
\(808\) −36.8026 19.3789i −1.29471 0.681746i
\(809\) −36.8766 −1.29651 −0.648256 0.761423i \(-0.724501\pi\)
−0.648256 + 0.761423i \(0.724501\pi\)
\(810\) −11.7513 1.91519i −0.412898 0.0672930i
\(811\) 2.50108i 0.0878247i 0.999035 + 0.0439123i \(0.0139822\pi\)
−0.999035 + 0.0439123i \(0.986018\pi\)
\(812\) −8.69750 30.7389i −0.305222 1.07872i
\(813\) 36.0203i 1.26329i
\(814\) −2.14735 + 13.1757i −0.0752645 + 0.461809i
\(815\) −18.9047 −0.662201
\(816\) −19.5008 14.7089i −0.682664 0.514913i
\(817\) 8.47303i 0.296434i
\(818\) −3.55956 + 21.8408i −0.124457 + 0.763647i
\(819\) 2.53571 1.73051i 0.0886050 0.0604690i
\(820\) −12.6186 + 37.6846i −0.440662 + 1.31600i
\(821\) 0.865705i 0.0302133i −0.999886 0.0151067i \(-0.995191\pi\)
0.999886 0.0151067i \(-0.00480878\pi\)
\(822\) −4.16043 + 25.5276i −0.145112 + 0.890379i
\(823\) 32.1222i 1.11971i 0.828590 + 0.559856i \(0.189143\pi\)
−0.828590 + 0.559856i \(0.810857\pi\)
\(824\) 39.5676 + 20.8348i 1.37840 + 0.725815i
\(825\) 6.20989i 0.216201i
\(826\) −15.4944 33.1442i −0.539118 1.15324i
\(827\) 34.3275 1.19369 0.596843 0.802358i \(-0.296422\pi\)
0.596843 + 0.802358i \(0.296422\pi\)
\(828\) −6.84335 + 20.4371i −0.237823 + 0.710239i
\(829\) −2.07242 −0.0719781 −0.0359891 0.999352i \(-0.511458\pi\)
−0.0359891 + 0.999352i \(0.511458\pi\)
\(830\) 7.14686 43.8518i 0.248071 1.52212i
\(831\) −0.269942 −0.00936417
\(832\) 4.52674 + 6.59611i 0.156936 + 0.228679i
\(833\) −29.3472 11.4871i −1.01682 0.398004i
\(834\) −19.6987 3.21044i −0.682109 0.111168i
\(835\) −30.4408 −1.05345
\(836\) −13.3349 + 39.8237i −0.461198 + 1.37733i
\(837\) 15.1186i 0.522577i
\(838\) −4.68025 + 28.7172i −0.161677 + 0.992018i
\(839\) 56.4106 1.94751 0.973754 0.227602i \(-0.0730884\pi\)
0.973754 + 0.227602i \(0.0730884\pi\)
\(840\) −2.33331 20.3459i −0.0805067 0.702000i
\(841\) −7.44737 −0.256806
\(842\) 4.86995 29.8812i 0.167830 1.02977i
\(843\) 2.79913i 0.0964070i
\(844\) 35.9120 + 12.0251i 1.23614 + 0.413921i
\(845\) −2.01767 −0.0694099
\(846\) 10.7085 + 1.74525i 0.368167 + 0.0600029i
\(847\) 29.0379 19.8171i 0.997755 0.680924i
\(848\) −19.0440 + 25.2482i −0.653973 + 0.867028i
\(849\) −6.61857 −0.227149
\(850\) 0.951468 5.83803i 0.0326351 0.200243i
\(851\) −17.7888 −0.609792
\(852\) 5.60312 + 1.87620i 0.191960 + 0.0642775i
\(853\) −13.1684 −0.450877 −0.225439 0.974257i \(-0.572381\pi\)
−0.225439 + 0.974257i \(0.572381\pi\)
\(854\) 34.1693 15.9735i 1.16925 0.546603i
\(855\) 9.97531i 0.341148i
\(856\) 14.4947 + 7.63237i 0.495419 + 0.260869i
\(857\) 40.7607i 1.39236i 0.717867 + 0.696180i \(0.245118\pi\)
−0.717867 + 0.696180i \(0.754882\pi\)
\(858\) 1.52059 9.33007i 0.0519121 0.318523i
\(859\) 13.0322i 0.444653i −0.974972 0.222327i \(-0.928635\pi\)
0.974972 0.222327i \(-0.0713651\pi\)
\(860\) 7.60933 + 2.54797i 0.259476 + 0.0868852i
\(861\) −29.1911 + 19.9216i −0.994830 + 0.678927i
\(862\) −2.35389 + 14.4430i −0.0801737 + 0.491931i
\(863\) 1.78583i 0.0607905i −0.999538 0.0303952i \(-0.990323\pi\)
0.999538 0.0303952i \(-0.00967659\pi\)
\(864\) −23.0710 + 22.0604i −0.784890 + 0.750512i
\(865\) −18.3145 −0.622711
\(866\) 2.12257 13.0237i 0.0721279 0.442564i
\(867\) 4.43472i 0.150611i
\(868\) −13.6418 + 3.85990i −0.463031 + 0.131014i
\(869\) 33.4909i 1.13610i
\(870\) −23.0609 3.75840i −0.781837 0.127422i
\(871\) −15.8803 −0.538082
\(872\) −18.4746 + 35.0853i −0.625630 + 1.18814i
\(873\) 6.27675i 0.212436i
\(874\) −55.2338 9.00186i −1.86831 0.304492i
\(875\) 26.1428 17.8413i 0.883788 0.603146i
\(876\) 20.2488 + 6.78027i 0.684142 + 0.229084i
\(877\) 14.4070i 0.486488i 0.969965 + 0.243244i \(0.0782116\pi\)
−0.969965 + 0.243244i \(0.921788\pi\)
\(878\) −2.04819 0.333809i −0.0691231 0.0112655i
\(879\) 32.6559i 1.10146i
\(880\) 31.7542 + 23.9512i 1.07043 + 0.807396i
\(881\) 10.1248i 0.341112i 0.985348 + 0.170556i \(0.0545564\pi\)
−0.985348 + 0.170556i \(0.945444\pi\)
\(882\) −5.85286 + 9.88368i −0.197076 + 0.332801i
\(883\) −0.613830 −0.0206570 −0.0103285 0.999947i \(-0.503288\pi\)
−0.0103285 + 0.999947i \(0.503288\pi\)
\(884\) 2.85907 8.53839i 0.0961610 0.287177i
\(885\) −26.7599 −0.899523
\(886\) 21.2125 + 3.45715i 0.712646 + 0.116145i
\(887\) −4.17783 −0.140278 −0.0701389 0.997537i \(-0.522344\pi\)
−0.0701389 + 0.997537i \(0.522344\pi\)
\(888\) −6.50181 3.42361i −0.218187 0.114889i
\(889\) −20.8734 30.5857i −0.700070 1.02581i
\(890\) 2.45015 15.0337i 0.0821293 0.503931i
\(891\) 20.5639 0.688916
\(892\) 0.992214 + 0.332242i 0.0332218 + 0.0111243i
\(893\) 28.1724i 0.942752i
\(894\) −9.19978 1.49936i −0.307687 0.0501460i
\(895\) −33.8769 −1.13238
\(896\) −25.7956 15.1850i −0.861771 0.507297i
\(897\) 12.5967 0.420591
\(898\) −3.98675 0.649750i −0.133039 0.0216824i
\(899\) 16.1751i 0.539471i
\(900\) −2.04435 0.684549i −0.0681450 0.0228183i
\(901\) 35.5954 1.18586
\(902\) 11.0409 67.7447i 0.367620 2.25565i
\(903\) 4.02260 + 5.89431i 0.133864 + 0.196150i
\(904\) 5.01024 + 2.63820i 0.166638 + 0.0877454i
\(905\) −7.40444 −0.246132
\(906\) 2.00268 + 0.326391i 0.0665345 + 0.0108436i
\(907\) 17.4110 0.578123 0.289061 0.957311i \(-0.406657\pi\)
0.289061 + 0.957311i \(0.406657\pi\)
\(908\) 3.97386 11.8676i 0.131877 0.393841i
\(909\) 17.0630 0.565943
\(910\) 6.83902 3.19712i 0.226711 0.105984i
\(911\) 15.7090i 0.520462i 0.965546 + 0.260231i \(0.0837987\pi\)
−0.965546 + 0.260231i \(0.916201\pi\)
\(912\) −18.4555 13.9204i −0.611122 0.460951i
\(913\) 76.7375i 2.53964i
\(914\) 25.9290 + 4.22585i 0.857656 + 0.139779i
\(915\) 27.5875i 0.912014i
\(916\) 17.6322 + 5.90413i 0.582585 + 0.195078i
\(917\) −1.41227 2.06939i −0.0466373 0.0683374i
\(918\) 35.4603 + 5.77923i 1.17037 + 0.190743i
\(919\) 42.1694i 1.39104i −0.718507 0.695520i \(-0.755174\pi\)
0.718507 0.695520i \(-0.244826\pi\)
\(920\) −24.6939 + 46.8964i −0.814134 + 1.54613i
\(921\) 17.8530 0.588278
\(922\) −22.0498 3.59361i −0.726170 0.118349i
\(923\) 2.17824i 0.0716977i
\(924\) 9.62995 + 34.0344i 0.316802 + 1.11965i
\(925\) 1.77943i 0.0585074i
\(926\) 6.78839 41.6523i 0.223080 1.36878i
\(927\) −18.3449 −0.602527
\(928\) −24.6832 + 23.6020i −0.810265 + 0.774775i
\(929\) 52.3499i 1.71754i −0.512359 0.858772i \(-0.671228\pi\)
0.512359 0.858772i \(-0.328772\pi\)
\(930\) −1.66796 + 10.2343i −0.0546945 + 0.335595i
\(931\) −27.7741 10.8713i −0.910259 0.356294i
\(932\) −1.34606 0.450728i −0.0440918 0.0147641i
\(933\) 15.0488i 0.492676i
\(934\) 6.43753 39.4995i 0.210643 1.29246i
\(935\) 44.7677i 1.46406i
\(936\) −2.90392 1.52909i −0.0949176 0.0499800i
\(937\) 8.53783i 0.278919i 0.990228 + 0.139459i \(0.0445365\pi\)
−0.990228 + 0.139459i \(0.955464\pi\)
\(938\) 53.8272 25.1633i 1.75752 0.821610i
\(939\) −15.5391 −0.507098
\(940\) 25.3006 + 8.47187i 0.825214 + 0.276322i
\(941\) 35.4337 1.15511 0.577553 0.816353i \(-0.304008\pi\)
0.577553 + 0.816353i \(0.304008\pi\)
\(942\) −2.50727 + 15.3841i −0.0816911 + 0.501242i
\(943\) 91.4632 2.97845
\(944\) −23.5532 + 31.2265i −0.766591 + 1.01634i
\(945\) 16.9802 + 24.8810i 0.552365 + 0.809378i
\(946\) −13.6791 2.22938i −0.444746 0.0724835i
\(947\) 12.5985 0.409397 0.204698 0.978825i \(-0.434379\pi\)
0.204698 + 0.978825i \(0.434379\pi\)
\(948\) −17.4807 5.85339i −0.567746 0.190109i
\(949\) 7.87181i 0.255530i
\(950\) 0.900466 5.52510i 0.0292150 0.179258i
\(951\) 5.84347 0.189488
\(952\) 3.83861 + 33.4718i 0.124410 + 1.08483i
\(953\) −21.7924 −0.705927 −0.352963 0.935637i \(-0.614826\pi\)
−0.352963 + 0.935637i \(0.614826\pi\)
\(954\) 2.08690 12.8049i 0.0675659 0.414572i
\(955\) 52.4252i 1.69644i
\(956\) −2.08347 + 6.22212i −0.0673842 + 0.201238i
\(957\) 40.3548 1.30449
\(958\) 47.7055 + 7.77491i 1.54129 + 0.251196i
\(959\) 29.4671 20.1100i 0.951543 0.649386i
\(960\) −18.0513 + 12.3881i −0.582603 + 0.399825i
\(961\) −23.8216 −0.768438
\(962\) 0.435723 2.67351i 0.0140483 0.0861976i
\(963\) −6.72026 −0.216557
\(964\) 6.93947 20.7242i 0.223505 0.667481i
\(965\) −36.7572 −1.18326
\(966\) −42.6973 + 19.9603i −1.37376 + 0.642211i
\(967\) 30.2075i 0.971408i −0.874123 0.485704i \(-0.838563\pi\)
0.874123 0.485704i \(-0.161437\pi\)
\(968\) −33.2545 17.5106i −1.06884 0.562811i
\(969\) 26.0189i 0.835848i
\(970\) −2.48287 + 15.2344i −0.0797201 + 0.489148i
\(971\) 26.3321i 0.845037i −0.906354 0.422518i \(-0.861146\pi\)
0.906354 0.422518i \(-0.138854\pi\)
\(972\) 7.15626 21.3716i 0.229537 0.685494i
\(973\) 15.5181 + 22.7386i 0.497487 + 0.728966i
\(974\) −4.40690 + 27.0399i −0.141206 + 0.866415i
\(975\) 1.26006i 0.0403543i
\(976\) −32.1922 24.2816i −1.03045 0.777235i
\(977\) 24.2718 0.776523 0.388261 0.921549i \(-0.373076\pi\)
0.388261 + 0.921549i \(0.373076\pi\)
\(978\) −2.89094 + 17.7383i −0.0924421 + 0.567208i
\(979\) 26.3079i 0.840803i
\(980\) −18.1153 + 21.6737i −0.578671 + 0.692342i
\(981\) 16.2668i 0.519359i
\(982\) −9.99646 1.62920i −0.319000 0.0519898i
\(983\) −50.3405 −1.60561 −0.802806 0.596240i \(-0.796661\pi\)
−0.802806 + 0.596240i \(0.796661\pi\)
\(984\) 33.4299 + 17.6029i 1.06571 + 0.561160i
\(985\) 12.8300i 0.408799i
\(986\) 37.9383 + 6.18309i 1.20820 + 0.196910i
\(987\) 13.3749 + 19.5982i 0.425729 + 0.623819i
\(988\) 2.70582 8.08071i 0.0860835 0.257082i
\(989\) 18.4684i 0.587260i
\(990\) −16.1044 2.62466i −0.511832 0.0834171i
\(991\) 32.0033i 1.01662i −0.861175 0.508309i \(-0.830271\pi\)
0.861175 0.508309i \(-0.169729\pi\)
\(992\) 10.4745 + 10.9543i 0.332564 + 0.347798i
\(993\) 1.41410i 0.0448752i
\(994\) −3.45156 7.38330i −0.109477 0.234184i
\(995\) −15.4728 −0.490522
\(996\) −40.0534 13.4118i −1.26914 0.424970i
\(997\) −15.9693 −0.505752 −0.252876 0.967499i \(-0.581376\pi\)
−0.252876 + 0.967499i \(0.581376\pi\)
\(998\) 5.23724 + 0.853552i 0.165782 + 0.0270187i
\(999\) 10.8083 0.341960
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.3 yes 48
4.3 odd 2 2912.2.h.b.2575.33 48
7.6 odd 2 728.2.h.a.27.3 48
8.3 odd 2 728.2.h.a.27.4 yes 48
8.5 even 2 2912.2.h.a.2575.33 48
28.27 even 2 2912.2.h.a.2575.16 48
56.13 odd 2 2912.2.h.b.2575.16 48
56.27 even 2 inner 728.2.h.b.27.4 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.3 48 7.6 odd 2
728.2.h.a.27.4 yes 48 8.3 odd 2
728.2.h.b.27.3 yes 48 1.1 even 1 trivial
728.2.h.b.27.4 yes 48 56.27 even 2 inner
2912.2.h.a.2575.16 48 28.27 even 2
2912.2.h.a.2575.33 48 8.5 even 2
2912.2.h.b.2575.16 48 56.13 odd 2
2912.2.h.b.2575.33 48 4.3 odd 2