Properties

Label 2912.2.h.b.2575.41
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2912,2,Mod(2575,2912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2912.2575");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.41
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.b.2575.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38356i q^{3} +1.68057 q^{5} +(1.10198 - 2.40533i) q^{7} -2.68138 q^{9} -6.45771 q^{11} +1.00000 q^{13} +4.00574i q^{15} -0.816850i q^{17} +5.75603i q^{19} +(5.73327 + 2.62665i) q^{21} +0.878221i q^{23} -2.17570 q^{25} +0.759458i q^{27} -0.973834i q^{29} -3.89496 q^{31} -15.3924i q^{33} +(1.85195 - 4.04232i) q^{35} +2.19900i q^{37} +2.38356i q^{39} +4.21071i q^{41} -3.91987 q^{43} -4.50623 q^{45} -9.01192 q^{47} +(-4.57127 - 5.30128i) q^{49} +1.94702 q^{51} +9.57202i q^{53} -10.8526 q^{55} -13.7199 q^{57} +0.722834i q^{59} -1.45484 q^{61} +(-2.95483 + 6.44961i) q^{63} +1.68057 q^{65} +5.83289 q^{67} -2.09330 q^{69} +5.00020i q^{71} +8.53527i q^{73} -5.18592i q^{75} +(-7.11628 + 15.5329i) q^{77} +14.3010i q^{79} -9.85435 q^{81} +10.7679i q^{83} -1.37277i q^{85} +2.32119 q^{87} -17.9213i q^{89} +(1.10198 - 2.40533i) q^{91} -9.28389i q^{93} +9.67338i q^{95} +13.1424i q^{97} +17.3155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} + 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} - 24 q^{45} + 40 q^{51} + 20 q^{63} + 4 q^{67} + 20 q^{77} + 64 q^{81} - 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.38356i 1.37615i 0.725639 + 0.688076i \(0.241544\pi\)
−0.725639 + 0.688076i \(0.758456\pi\)
\(4\) 0 0
\(5\) 1.68057 0.751572 0.375786 0.926707i \(-0.377373\pi\)
0.375786 + 0.926707i \(0.377373\pi\)
\(6\) 0 0
\(7\) 1.10198 2.40533i 0.416510 0.909131i
\(8\) 0 0
\(9\) −2.68138 −0.893792
\(10\) 0 0
\(11\) −6.45771 −1.94707 −0.973536 0.228535i \(-0.926606\pi\)
−0.973536 + 0.228535i \(0.926606\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 4.00574i 1.03428i
\(16\) 0 0
\(17\) 0.816850i 0.198115i −0.995082 0.0990577i \(-0.968417\pi\)
0.995082 0.0990577i \(-0.0315828\pi\)
\(18\) 0 0
\(19\) 5.75603i 1.32052i 0.751036 + 0.660262i \(0.229555\pi\)
−0.751036 + 0.660262i \(0.770445\pi\)
\(20\) 0 0
\(21\) 5.73327 + 2.62665i 1.25110 + 0.573181i
\(22\) 0 0
\(23\) 0.878221i 0.183122i 0.995799 + 0.0915609i \(0.0291856\pi\)
−0.995799 + 0.0915609i \(0.970814\pi\)
\(24\) 0 0
\(25\) −2.17570 −0.435140
\(26\) 0 0
\(27\) 0.759458i 0.146158i
\(28\) 0 0
\(29\) 0.973834i 0.180836i −0.995904 0.0904182i \(-0.971180\pi\)
0.995904 0.0904182i \(-0.0288204\pi\)
\(30\) 0 0
\(31\) −3.89496 −0.699555 −0.349778 0.936833i \(-0.613743\pi\)
−0.349778 + 0.936833i \(0.613743\pi\)
\(32\) 0 0
\(33\) 15.3924i 2.67946i
\(34\) 0 0
\(35\) 1.85195 4.04232i 0.313037 0.683277i
\(36\) 0 0
\(37\) 2.19900i 0.361514i 0.983528 + 0.180757i \(0.0578547\pi\)
−0.983528 + 0.180757i \(0.942145\pi\)
\(38\) 0 0
\(39\) 2.38356i 0.381676i
\(40\) 0 0
\(41\) 4.21071i 0.657602i 0.944399 + 0.328801i \(0.106645\pi\)
−0.944399 + 0.328801i \(0.893355\pi\)
\(42\) 0 0
\(43\) −3.91987 −0.597775 −0.298887 0.954288i \(-0.596616\pi\)
−0.298887 + 0.954288i \(0.596616\pi\)
\(44\) 0 0
\(45\) −4.50623 −0.671749
\(46\) 0 0
\(47\) −9.01192 −1.31452 −0.657262 0.753662i \(-0.728285\pi\)
−0.657262 + 0.753662i \(0.728285\pi\)
\(48\) 0 0
\(49\) −4.57127 5.30128i −0.653038 0.757325i
\(50\) 0 0
\(51\) 1.94702 0.272637
\(52\) 0 0
\(53\) 9.57202i 1.31482i 0.753534 + 0.657409i \(0.228348\pi\)
−0.753534 + 0.657409i \(0.771652\pi\)
\(54\) 0 0
\(55\) −10.8526 −1.46336
\(56\) 0 0
\(57\) −13.7199 −1.81724
\(58\) 0 0
\(59\) 0.722834i 0.0941050i 0.998892 + 0.0470525i \(0.0149828\pi\)
−0.998892 + 0.0470525i \(0.985017\pi\)
\(60\) 0 0
\(61\) −1.45484 −0.186273 −0.0931365 0.995653i \(-0.529689\pi\)
−0.0931365 + 0.995653i \(0.529689\pi\)
\(62\) 0 0
\(63\) −2.95483 + 6.44961i −0.372274 + 0.812574i
\(64\) 0 0
\(65\) 1.68057 0.208449
\(66\) 0 0
\(67\) 5.83289 0.712600 0.356300 0.934372i \(-0.384038\pi\)
0.356300 + 0.934372i \(0.384038\pi\)
\(68\) 0 0
\(69\) −2.09330 −0.252003
\(70\) 0 0
\(71\) 5.00020i 0.593414i 0.954969 + 0.296707i \(0.0958885\pi\)
−0.954969 + 0.296707i \(0.904111\pi\)
\(72\) 0 0
\(73\) 8.53527i 0.998978i 0.866320 + 0.499489i \(0.166479\pi\)
−0.866320 + 0.499489i \(0.833521\pi\)
\(74\) 0 0
\(75\) 5.18592i 0.598818i
\(76\) 0 0
\(77\) −7.11628 + 15.5329i −0.810976 + 1.77014i
\(78\) 0 0
\(79\) 14.3010i 1.60899i 0.593962 + 0.804493i \(0.297563\pi\)
−0.593962 + 0.804493i \(0.702437\pi\)
\(80\) 0 0
\(81\) −9.85435 −1.09493
\(82\) 0 0
\(83\) 10.7679i 1.18193i 0.806696 + 0.590967i \(0.201254\pi\)
−0.806696 + 0.590967i \(0.798746\pi\)
\(84\) 0 0
\(85\) 1.37277i 0.148898i
\(86\) 0 0
\(87\) 2.32119 0.248858
\(88\) 0 0
\(89\) 17.9213i 1.89965i −0.312782 0.949825i \(-0.601261\pi\)
0.312782 0.949825i \(-0.398739\pi\)
\(90\) 0 0
\(91\) 1.10198 2.40533i 0.115519 0.252148i
\(92\) 0 0
\(93\) 9.28389i 0.962694i
\(94\) 0 0
\(95\) 9.67338i 0.992468i
\(96\) 0 0
\(97\) 13.1424i 1.33441i 0.744874 + 0.667206i \(0.232510\pi\)
−0.744874 + 0.667206i \(0.767490\pi\)
\(98\) 0 0
\(99\) 17.3155 1.74028
\(100\) 0 0
\(101\) −16.8120 −1.67286 −0.836429 0.548075i \(-0.815361\pi\)
−0.836429 + 0.548075i \(0.815361\pi\)
\(102\) 0 0
\(103\) 7.83407 0.771914 0.385957 0.922517i \(-0.373871\pi\)
0.385957 + 0.922517i \(0.373871\pi\)
\(104\) 0 0
\(105\) 9.63513 + 4.41425i 0.940293 + 0.430787i
\(106\) 0 0
\(107\) −9.20742 −0.890115 −0.445057 0.895502i \(-0.646817\pi\)
−0.445057 + 0.895502i \(0.646817\pi\)
\(108\) 0 0
\(109\) 2.51531i 0.240923i −0.992718 0.120461i \(-0.961563\pi\)
0.992718 0.120461i \(-0.0384374\pi\)
\(110\) 0 0
\(111\) −5.24146 −0.497498
\(112\) 0 0
\(113\) −4.54621 −0.427671 −0.213836 0.976870i \(-0.568596\pi\)
−0.213836 + 0.976870i \(0.568596\pi\)
\(114\) 0 0
\(115\) 1.47591i 0.137629i
\(116\) 0 0
\(117\) −2.68138 −0.247893
\(118\) 0 0
\(119\) −1.96480 0.900155i −0.180113 0.0825171i
\(120\) 0 0
\(121\) 30.7020 2.79109
\(122\) 0 0
\(123\) −10.0365 −0.904960
\(124\) 0 0
\(125\) −12.0592 −1.07861
\(126\) 0 0
\(127\) 15.5388i 1.37884i −0.724360 0.689422i \(-0.757865\pi\)
0.724360 0.689422i \(-0.242135\pi\)
\(128\) 0 0
\(129\) 9.34327i 0.822629i
\(130\) 0 0
\(131\) 13.0448i 1.13973i −0.821738 0.569865i \(-0.806995\pi\)
0.821738 0.569865i \(-0.193005\pi\)
\(132\) 0 0
\(133\) 13.8452 + 6.34304i 1.20053 + 0.550012i
\(134\) 0 0
\(135\) 1.27632i 0.109848i
\(136\) 0 0
\(137\) 5.11894 0.437341 0.218670 0.975799i \(-0.429828\pi\)
0.218670 + 0.975799i \(0.429828\pi\)
\(138\) 0 0
\(139\) 0.246340i 0.0208943i 0.999945 + 0.0104471i \(0.00332549\pi\)
−0.999945 + 0.0104471i \(0.996675\pi\)
\(140\) 0 0
\(141\) 21.4805i 1.80898i
\(142\) 0 0
\(143\) −6.45771 −0.540020
\(144\) 0 0
\(145\) 1.63659i 0.135912i
\(146\) 0 0
\(147\) 12.6359 10.8959i 1.04219 0.898679i
\(148\) 0 0
\(149\) 0.552841i 0.0452905i 0.999744 + 0.0226452i \(0.00720882\pi\)
−0.999744 + 0.0226452i \(0.992791\pi\)
\(150\) 0 0
\(151\) 5.10249i 0.415235i −0.978210 0.207617i \(-0.933429\pi\)
0.978210 0.207617i \(-0.0665709\pi\)
\(152\) 0 0
\(153\) 2.19028i 0.177074i
\(154\) 0 0
\(155\) −6.54574 −0.525766
\(156\) 0 0
\(157\) 19.7641 1.57735 0.788675 0.614810i \(-0.210767\pi\)
0.788675 + 0.614810i \(0.210767\pi\)
\(158\) 0 0
\(159\) −22.8155 −1.80939
\(160\) 0 0
\(161\) 2.11242 + 0.967785i 0.166482 + 0.0762721i
\(162\) 0 0
\(163\) 9.64780 0.755674 0.377837 0.925872i \(-0.376668\pi\)
0.377837 + 0.925872i \(0.376668\pi\)
\(164\) 0 0
\(165\) 25.8679i 2.01381i
\(166\) 0 0
\(167\) 20.9545 1.62150 0.810752 0.585390i \(-0.199058\pi\)
0.810752 + 0.585390i \(0.199058\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 15.4341i 1.18027i
\(172\) 0 0
\(173\) 12.0936 0.919456 0.459728 0.888060i \(-0.347947\pi\)
0.459728 + 0.888060i \(0.347947\pi\)
\(174\) 0 0
\(175\) −2.39758 + 5.23328i −0.181240 + 0.395599i
\(176\) 0 0
\(177\) −1.72292 −0.129503
\(178\) 0 0
\(179\) −2.49636 −0.186587 −0.0932934 0.995639i \(-0.529739\pi\)
−0.0932934 + 0.995639i \(0.529739\pi\)
\(180\) 0 0
\(181\) −13.0487 −0.969903 −0.484951 0.874541i \(-0.661163\pi\)
−0.484951 + 0.874541i \(0.661163\pi\)
\(182\) 0 0
\(183\) 3.46770i 0.256340i
\(184\) 0 0
\(185\) 3.69557i 0.271704i
\(186\) 0 0
\(187\) 5.27498i 0.385745i
\(188\) 0 0
\(189\) 1.82675 + 0.836909i 0.132876 + 0.0608762i
\(190\) 0 0
\(191\) 5.23967i 0.379129i 0.981868 + 0.189565i \(0.0607076\pi\)
−0.981868 + 0.189565i \(0.939292\pi\)
\(192\) 0 0
\(193\) −16.4515 −1.18420 −0.592102 0.805863i \(-0.701702\pi\)
−0.592102 + 0.805863i \(0.701702\pi\)
\(194\) 0 0
\(195\) 4.00574i 0.286857i
\(196\) 0 0
\(197\) 18.0122i 1.28331i 0.766991 + 0.641657i \(0.221753\pi\)
−0.766991 + 0.641657i \(0.778247\pi\)
\(198\) 0 0
\(199\) −9.12392 −0.646778 −0.323389 0.946266i \(-0.604822\pi\)
−0.323389 + 0.946266i \(0.604822\pi\)
\(200\) 0 0
\(201\) 13.9031i 0.980646i
\(202\) 0 0
\(203\) −2.34240 1.07315i −0.164404 0.0753202i
\(204\) 0 0
\(205\) 7.07637i 0.494235i
\(206\) 0 0
\(207\) 2.35484i 0.163673i
\(208\) 0 0
\(209\) 37.1707i 2.57115i
\(210\) 0 0
\(211\) −17.3894 −1.19713 −0.598567 0.801073i \(-0.704263\pi\)
−0.598567 + 0.801073i \(0.704263\pi\)
\(212\) 0 0
\(213\) −11.9183 −0.816628
\(214\) 0 0
\(215\) −6.58760 −0.449271
\(216\) 0 0
\(217\) −4.29218 + 9.36868i −0.291372 + 0.635987i
\(218\) 0 0
\(219\) −20.3444 −1.37474
\(220\) 0 0
\(221\) 0.816850i 0.0549473i
\(222\) 0 0
\(223\) −2.74027 −0.183502 −0.0917510 0.995782i \(-0.529246\pi\)
−0.0917510 + 0.995782i \(0.529246\pi\)
\(224\) 0 0
\(225\) 5.83387 0.388925
\(226\) 0 0
\(227\) 16.9588i 1.12559i −0.826595 0.562797i \(-0.809725\pi\)
0.826595 0.562797i \(-0.190275\pi\)
\(228\) 0 0
\(229\) 20.6306 1.36331 0.681655 0.731674i \(-0.261261\pi\)
0.681655 + 0.731674i \(0.261261\pi\)
\(230\) 0 0
\(231\) −37.0238 16.9621i −2.43598 1.11603i
\(232\) 0 0
\(233\) 20.2350 1.32564 0.662821 0.748778i \(-0.269359\pi\)
0.662821 + 0.748778i \(0.269359\pi\)
\(234\) 0 0
\(235\) −15.1451 −0.987959
\(236\) 0 0
\(237\) −34.0873 −2.21421
\(238\) 0 0
\(239\) 18.8318i 1.21813i −0.793122 0.609063i \(-0.791546\pi\)
0.793122 0.609063i \(-0.208454\pi\)
\(240\) 0 0
\(241\) 4.30150i 0.277084i 0.990357 + 0.138542i \(0.0442415\pi\)
−0.990357 + 0.138542i \(0.955758\pi\)
\(242\) 0 0
\(243\) 21.2101i 1.36063i
\(244\) 0 0
\(245\) −7.68231 8.90914i −0.490805 0.569184i
\(246\) 0 0
\(247\) 5.75603i 0.366247i
\(248\) 0 0
\(249\) −25.6661 −1.62652
\(250\) 0 0
\(251\) 7.40762i 0.467565i −0.972289 0.233782i \(-0.924890\pi\)
0.972289 0.233782i \(-0.0751103\pi\)
\(252\) 0 0
\(253\) 5.67129i 0.356551i
\(254\) 0 0
\(255\) 3.27209 0.204906
\(256\) 0 0
\(257\) 8.82159i 0.550276i 0.961405 + 0.275138i \(0.0887235\pi\)
−0.961405 + 0.275138i \(0.911277\pi\)
\(258\) 0 0
\(259\) 5.28933 + 2.42326i 0.328663 + 0.150574i
\(260\) 0 0
\(261\) 2.61122i 0.161630i
\(262\) 0 0
\(263\) 17.8426i 1.10022i −0.835092 0.550110i \(-0.814586\pi\)
0.835092 0.550110i \(-0.185414\pi\)
\(264\) 0 0
\(265\) 16.0864i 0.988181i
\(266\) 0 0
\(267\) 42.7165 2.61421
\(268\) 0 0
\(269\) −22.2065 −1.35395 −0.676976 0.736005i \(-0.736710\pi\)
−0.676976 + 0.736005i \(0.736710\pi\)
\(270\) 0 0
\(271\) 10.1511 0.616635 0.308318 0.951283i \(-0.400234\pi\)
0.308318 + 0.951283i \(0.400234\pi\)
\(272\) 0 0
\(273\) 5.73327 + 2.62665i 0.346993 + 0.158972i
\(274\) 0 0
\(275\) 14.0500 0.847248
\(276\) 0 0
\(277\) 18.4917i 1.11106i 0.831497 + 0.555530i \(0.187484\pi\)
−0.831497 + 0.555530i \(0.812516\pi\)
\(278\) 0 0
\(279\) 10.4439 0.625257
\(280\) 0 0
\(281\) −2.67691 −0.159691 −0.0798456 0.996807i \(-0.525443\pi\)
−0.0798456 + 0.996807i \(0.525443\pi\)
\(282\) 0 0
\(283\) 22.6633i 1.34719i −0.739100 0.673596i \(-0.764749\pi\)
0.739100 0.673596i \(-0.235251\pi\)
\(284\) 0 0
\(285\) −23.0571 −1.36579
\(286\) 0 0
\(287\) 10.1282 + 4.64013i 0.597846 + 0.273898i
\(288\) 0 0
\(289\) 16.3328 0.960750
\(290\) 0 0
\(291\) −31.3258 −1.83635
\(292\) 0 0
\(293\) −33.5920 −1.96247 −0.981234 0.192821i \(-0.938236\pi\)
−0.981234 + 0.192821i \(0.938236\pi\)
\(294\) 0 0
\(295\) 1.21477i 0.0707267i
\(296\) 0 0
\(297\) 4.90435i 0.284579i
\(298\) 0 0
\(299\) 0.878221i 0.0507888i
\(300\) 0 0
\(301\) −4.31963 + 9.42860i −0.248980 + 0.543456i
\(302\) 0 0
\(303\) 40.0725i 2.30211i
\(304\) 0 0
\(305\) −2.44495 −0.139997
\(306\) 0 0
\(307\) 22.5430i 1.28660i 0.765616 + 0.643298i \(0.222434\pi\)
−0.765616 + 0.643298i \(0.777566\pi\)
\(308\) 0 0
\(309\) 18.6730i 1.06227i
\(310\) 0 0
\(311\) 14.5078 0.822663 0.411332 0.911486i \(-0.365064\pi\)
0.411332 + 0.911486i \(0.365064\pi\)
\(312\) 0 0
\(313\) 28.4797i 1.60977i −0.593433 0.804883i \(-0.702228\pi\)
0.593433 0.804883i \(-0.297772\pi\)
\(314\) 0 0
\(315\) −4.96579 + 10.8390i −0.279791 + 0.610708i
\(316\) 0 0
\(317\) 9.99512i 0.561382i 0.959798 + 0.280691i \(0.0905636\pi\)
−0.959798 + 0.280691i \(0.909436\pi\)
\(318\) 0 0
\(319\) 6.28873i 0.352101i
\(320\) 0 0
\(321\) 21.9465i 1.22493i
\(322\) 0 0
\(323\) 4.70181 0.261616
\(324\) 0 0
\(325\) −2.17570 −0.120686
\(326\) 0 0
\(327\) 5.99540 0.331546
\(328\) 0 0
\(329\) −9.93098 + 21.6767i −0.547513 + 1.19507i
\(330\) 0 0
\(331\) 5.10543 0.280620 0.140310 0.990108i \(-0.455190\pi\)
0.140310 + 0.990108i \(0.455190\pi\)
\(332\) 0 0
\(333\) 5.89635i 0.323118i
\(334\) 0 0
\(335\) 9.80255 0.535570
\(336\) 0 0
\(337\) 12.5235 0.682200 0.341100 0.940027i \(-0.389200\pi\)
0.341100 + 0.940027i \(0.389200\pi\)
\(338\) 0 0
\(339\) 10.8362i 0.588540i
\(340\) 0 0
\(341\) 25.1525 1.36208
\(342\) 0 0
\(343\) −17.7888 + 5.15351i −0.960505 + 0.278263i
\(344\) 0 0
\(345\) −3.51792 −0.189399
\(346\) 0 0
\(347\) −27.2021 −1.46029 −0.730143 0.683295i \(-0.760546\pi\)
−0.730143 + 0.683295i \(0.760546\pi\)
\(348\) 0 0
\(349\) 16.8525 0.902096 0.451048 0.892500i \(-0.351050\pi\)
0.451048 + 0.892500i \(0.351050\pi\)
\(350\) 0 0
\(351\) 0.759458i 0.0405369i
\(352\) 0 0
\(353\) 5.53986i 0.294857i 0.989073 + 0.147429i \(0.0470996\pi\)
−0.989073 + 0.147429i \(0.952900\pi\)
\(354\) 0 0
\(355\) 8.40316i 0.445993i
\(356\) 0 0
\(357\) 2.14558 4.68322i 0.113556 0.247862i
\(358\) 0 0
\(359\) 18.2949i 0.965567i 0.875740 + 0.482784i \(0.160374\pi\)
−0.875740 + 0.482784i \(0.839626\pi\)
\(360\) 0 0
\(361\) −14.1319 −0.743782
\(362\) 0 0
\(363\) 73.1801i 3.84096i
\(364\) 0 0
\(365\) 14.3441i 0.750803i
\(366\) 0 0
\(367\) 32.4218 1.69240 0.846202 0.532862i \(-0.178884\pi\)
0.846202 + 0.532862i \(0.178884\pi\)
\(368\) 0 0
\(369\) 11.2905i 0.587760i
\(370\) 0 0
\(371\) 23.0239 + 10.5482i 1.19534 + 0.547636i
\(372\) 0 0
\(373\) 12.6232i 0.653604i −0.945093 0.326802i \(-0.894029\pi\)
0.945093 0.326802i \(-0.105971\pi\)
\(374\) 0 0
\(375\) 28.7440i 1.48433i
\(376\) 0 0
\(377\) 0.973834i 0.0501550i
\(378\) 0 0
\(379\) −18.1976 −0.934746 −0.467373 0.884060i \(-0.654800\pi\)
−0.467373 + 0.884060i \(0.654800\pi\)
\(380\) 0 0
\(381\) 37.0377 1.89750
\(382\) 0 0
\(383\) 18.4321 0.941835 0.470917 0.882177i \(-0.343923\pi\)
0.470917 + 0.882177i \(0.343923\pi\)
\(384\) 0 0
\(385\) −11.9594 + 26.1041i −0.609506 + 1.33039i
\(386\) 0 0
\(387\) 10.5107 0.534287
\(388\) 0 0
\(389\) 19.8567i 1.00678i −0.864060 0.503388i \(-0.832086\pi\)
0.864060 0.503388i \(-0.167914\pi\)
\(390\) 0 0
\(391\) 0.717375 0.0362792
\(392\) 0 0
\(393\) 31.0932 1.56844
\(394\) 0 0
\(395\) 24.0337i 1.20927i
\(396\) 0 0
\(397\) −7.46775 −0.374796 −0.187398 0.982284i \(-0.560005\pi\)
−0.187398 + 0.982284i \(0.560005\pi\)
\(398\) 0 0
\(399\) −15.1191 + 33.0008i −0.756899 + 1.65211i
\(400\) 0 0
\(401\) −3.95952 −0.197729 −0.0988644 0.995101i \(-0.531521\pi\)
−0.0988644 + 0.995101i \(0.531521\pi\)
\(402\) 0 0
\(403\) −3.89496 −0.194022
\(404\) 0 0
\(405\) −16.5609 −0.822917
\(406\) 0 0
\(407\) 14.2005i 0.703893i
\(408\) 0 0
\(409\) 18.5513i 0.917303i 0.888616 + 0.458652i \(0.151667\pi\)
−0.888616 + 0.458652i \(0.848333\pi\)
\(410\) 0 0
\(411\) 12.2013i 0.601847i
\(412\) 0 0
\(413\) 1.73866 + 0.796551i 0.0855538 + 0.0391957i
\(414\) 0 0
\(415\) 18.0962i 0.888309i
\(416\) 0 0
\(417\) −0.587167 −0.0287537
\(418\) 0 0
\(419\) 40.1301i 1.96048i −0.197800 0.980242i \(-0.563380\pi\)
0.197800 0.980242i \(-0.436620\pi\)
\(420\) 0 0
\(421\) 7.51607i 0.366311i 0.983084 + 0.183155i \(0.0586311\pi\)
−0.983084 + 0.183155i \(0.941369\pi\)
\(422\) 0 0
\(423\) 24.1644 1.17491
\(424\) 0 0
\(425\) 1.77722i 0.0862079i
\(426\) 0 0
\(427\) −1.60321 + 3.49937i −0.0775846 + 0.169346i
\(428\) 0 0
\(429\) 15.3924i 0.743150i
\(430\) 0 0
\(431\) 23.2557i 1.12019i 0.828429 + 0.560095i \(0.189235\pi\)
−0.828429 + 0.560095i \(0.810765\pi\)
\(432\) 0 0
\(433\) 12.0026i 0.576809i −0.957509 0.288404i \(-0.906875\pi\)
0.957509 0.288404i \(-0.0931247\pi\)
\(434\) 0 0
\(435\) 3.90092 0.187035
\(436\) 0 0
\(437\) −5.05506 −0.241817
\(438\) 0 0
\(439\) 19.8600 0.947867 0.473933 0.880561i \(-0.342834\pi\)
0.473933 + 0.880561i \(0.342834\pi\)
\(440\) 0 0
\(441\) 12.2573 + 14.2147i 0.583681 + 0.676891i
\(442\) 0 0
\(443\) 36.9563 1.75585 0.877924 0.478800i \(-0.158928\pi\)
0.877924 + 0.478800i \(0.158928\pi\)
\(444\) 0 0
\(445\) 30.1179i 1.42772i
\(446\) 0 0
\(447\) −1.31773 −0.0623266
\(448\) 0 0
\(449\) −27.0181 −1.27506 −0.637531 0.770425i \(-0.720044\pi\)
−0.637531 + 0.770425i \(0.720044\pi\)
\(450\) 0 0
\(451\) 27.1915i 1.28040i
\(452\) 0 0
\(453\) 12.1621 0.571426
\(454\) 0 0
\(455\) 1.85195 4.04232i 0.0868210 0.189507i
\(456\) 0 0
\(457\) −18.2396 −0.853214 −0.426607 0.904437i \(-0.640291\pi\)
−0.426607 + 0.904437i \(0.640291\pi\)
\(458\) 0 0
\(459\) 0.620363 0.0289561
\(460\) 0 0
\(461\) 29.4658 1.37236 0.686179 0.727432i \(-0.259287\pi\)
0.686179 + 0.727432i \(0.259287\pi\)
\(462\) 0 0
\(463\) 34.1247i 1.58591i −0.609280 0.792955i \(-0.708541\pi\)
0.609280 0.792955i \(-0.291459\pi\)
\(464\) 0 0
\(465\) 15.6022i 0.723534i
\(466\) 0 0
\(467\) 10.3935i 0.480952i 0.970655 + 0.240476i \(0.0773036\pi\)
−0.970655 + 0.240476i \(0.922696\pi\)
\(468\) 0 0
\(469\) 6.42774 14.0300i 0.296806 0.647847i
\(470\) 0 0
\(471\) 47.1091i 2.17067i
\(472\) 0 0
\(473\) 25.3134 1.16391
\(474\) 0 0
\(475\) 12.5234i 0.574612i
\(476\) 0 0
\(477\) 25.6662i 1.17517i
\(478\) 0 0
\(479\) 25.5721 1.16842 0.584210 0.811602i \(-0.301404\pi\)
0.584210 + 0.811602i \(0.301404\pi\)
\(480\) 0 0
\(481\) 2.19900i 0.100266i
\(482\) 0 0
\(483\) −2.30678 + 5.03508i −0.104962 + 0.229104i
\(484\) 0 0
\(485\) 22.0867i 1.00291i
\(486\) 0 0
\(487\) 37.3038i 1.69040i 0.534453 + 0.845198i \(0.320518\pi\)
−0.534453 + 0.845198i \(0.679482\pi\)
\(488\) 0 0
\(489\) 22.9961i 1.03992i
\(490\) 0 0
\(491\) −36.8751 −1.66415 −0.832075 0.554663i \(-0.812847\pi\)
−0.832075 + 0.554663i \(0.812847\pi\)
\(492\) 0 0
\(493\) −0.795476 −0.0358265
\(494\) 0 0
\(495\) 29.0999 1.30794
\(496\) 0 0
\(497\) 12.0271 + 5.51013i 0.539491 + 0.247163i
\(498\) 0 0
\(499\) 26.1293 1.16971 0.584854 0.811139i \(-0.301152\pi\)
0.584854 + 0.811139i \(0.301152\pi\)
\(500\) 0 0
\(501\) 49.9463i 2.23144i
\(502\) 0 0
\(503\) 24.5290 1.09370 0.546848 0.837232i \(-0.315828\pi\)
0.546848 + 0.837232i \(0.315828\pi\)
\(504\) 0 0
\(505\) −28.2537 −1.25727
\(506\) 0 0
\(507\) 2.38356i 0.105858i
\(508\) 0 0
\(509\) −9.69607 −0.429771 −0.214885 0.976639i \(-0.568938\pi\)
−0.214885 + 0.976639i \(0.568938\pi\)
\(510\) 0 0
\(511\) 20.5302 + 9.40572i 0.908201 + 0.416085i
\(512\) 0 0
\(513\) −4.37146 −0.193005
\(514\) 0 0
\(515\) 13.1657 0.580149
\(516\) 0 0
\(517\) 58.1963 2.55947
\(518\) 0 0
\(519\) 28.8258i 1.26531i
\(520\) 0 0
\(521\) 23.8145i 1.04333i 0.853149 + 0.521667i \(0.174690\pi\)
−0.853149 + 0.521667i \(0.825310\pi\)
\(522\) 0 0
\(523\) 12.8009i 0.559746i −0.960037 0.279873i \(-0.909708\pi\)
0.960037 0.279873i \(-0.0902923\pi\)
\(524\) 0 0
\(525\) −12.4739 5.71479i −0.544404 0.249414i
\(526\) 0 0
\(527\) 3.18160i 0.138593i
\(528\) 0 0
\(529\) 22.2287 0.966466
\(530\) 0 0
\(531\) 1.93819i 0.0841103i
\(532\) 0 0
\(533\) 4.21071i 0.182386i
\(534\) 0 0
\(535\) −15.4737 −0.668985
\(536\) 0 0
\(537\) 5.95023i 0.256772i
\(538\) 0 0
\(539\) 29.5199 + 34.2341i 1.27151 + 1.47457i
\(540\) 0 0
\(541\) 42.8431i 1.84197i 0.389597 + 0.920985i \(0.372614\pi\)
−0.389597 + 0.920985i \(0.627386\pi\)
\(542\) 0 0
\(543\) 31.1024i 1.33473i
\(544\) 0 0
\(545\) 4.22714i 0.181071i
\(546\) 0 0
\(547\) −34.8819 −1.49144 −0.745721 0.666258i \(-0.767895\pi\)
−0.745721 + 0.666258i \(0.767895\pi\)
\(548\) 0 0
\(549\) 3.90097 0.166489
\(550\) 0 0
\(551\) 5.60541 0.238799
\(552\) 0 0
\(553\) 34.3986 + 15.7594i 1.46278 + 0.670159i
\(554\) 0 0
\(555\) −8.80862 −0.373905
\(556\) 0 0
\(557\) 21.8138i 0.924281i 0.886807 + 0.462141i \(0.152918\pi\)
−0.886807 + 0.462141i \(0.847082\pi\)
\(558\) 0 0
\(559\) −3.91987 −0.165793
\(560\) 0 0
\(561\) −12.5733 −0.530843
\(562\) 0 0
\(563\) 40.3058i 1.69869i −0.527842 0.849343i \(-0.676999\pi\)
0.527842 0.849343i \(-0.323001\pi\)
\(564\) 0 0
\(565\) −7.64020 −0.321426
\(566\) 0 0
\(567\) −10.8593 + 23.7030i −0.456049 + 0.995432i
\(568\) 0 0
\(569\) −43.5399 −1.82529 −0.912644 0.408756i \(-0.865963\pi\)
−0.912644 + 0.408756i \(0.865963\pi\)
\(570\) 0 0
\(571\) 3.15835 0.132173 0.0660865 0.997814i \(-0.478949\pi\)
0.0660865 + 0.997814i \(0.478949\pi\)
\(572\) 0 0
\(573\) −12.4891 −0.521739
\(574\) 0 0
\(575\) 1.91074i 0.0796836i
\(576\) 0 0
\(577\) 8.84506i 0.368225i 0.982905 + 0.184112i \(0.0589410\pi\)
−0.982905 + 0.184112i \(0.941059\pi\)
\(578\) 0 0
\(579\) 39.2132i 1.62964i
\(580\) 0 0
\(581\) 25.9005 + 11.8661i 1.07453 + 0.492288i
\(582\) 0 0
\(583\) 61.8133i 2.56005i
\(584\) 0 0
\(585\) −4.50623 −0.186310
\(586\) 0 0
\(587\) 25.8252i 1.06592i 0.846140 + 0.532960i \(0.178920\pi\)
−0.846140 + 0.532960i \(0.821080\pi\)
\(588\) 0 0
\(589\) 22.4195i 0.923779i
\(590\) 0 0
\(591\) −42.9332 −1.76604
\(592\) 0 0
\(593\) 2.47895i 0.101798i 0.998704 + 0.0508992i \(0.0162087\pi\)
−0.998704 + 0.0508992i \(0.983791\pi\)
\(594\) 0 0
\(595\) −3.30197 1.51277i −0.135368 0.0620175i
\(596\) 0 0
\(597\) 21.7474i 0.890064i
\(598\) 0 0
\(599\) 4.73676i 0.193539i −0.995307 0.0967695i \(-0.969149\pi\)
0.995307 0.0967695i \(-0.0308510\pi\)
\(600\) 0 0
\(601\) 13.4825i 0.549963i 0.961450 + 0.274981i \(0.0886717\pi\)
−0.961450 + 0.274981i \(0.911328\pi\)
\(602\) 0 0
\(603\) −15.6402 −0.636917
\(604\) 0 0
\(605\) 51.5967 2.09770
\(606\) 0 0
\(607\) 12.6426 0.513148 0.256574 0.966525i \(-0.417406\pi\)
0.256574 + 0.966525i \(0.417406\pi\)
\(608\) 0 0
\(609\) 2.55792 5.58325i 0.103652 0.226245i
\(610\) 0 0
\(611\) −9.01192 −0.364583
\(612\) 0 0
\(613\) 11.8220i 0.477487i −0.971083 0.238743i \(-0.923265\pi\)
0.971083 0.238743i \(-0.0767355\pi\)
\(614\) 0 0
\(615\) −16.8670 −0.680142
\(616\) 0 0
\(617\) 26.8587 1.08129 0.540645 0.841251i \(-0.318180\pi\)
0.540645 + 0.841251i \(0.318180\pi\)
\(618\) 0 0
\(619\) 22.1068i 0.888546i 0.895891 + 0.444273i \(0.146538\pi\)
−0.895891 + 0.444273i \(0.853462\pi\)
\(620\) 0 0
\(621\) −0.666972 −0.0267647
\(622\) 0 0
\(623\) −43.1066 19.7489i −1.72703 0.791224i
\(624\) 0 0
\(625\) −9.38784 −0.375514
\(626\) 0 0
\(627\) 88.5988 3.53830
\(628\) 0 0
\(629\) 1.79626 0.0716214
\(630\) 0 0
\(631\) 24.0898i 0.958999i 0.877542 + 0.479500i \(0.159182\pi\)
−0.877542 + 0.479500i \(0.840818\pi\)
\(632\) 0 0
\(633\) 41.4487i 1.64744i
\(634\) 0 0
\(635\) 26.1139i 1.03630i
\(636\) 0 0
\(637\) −4.57127 5.30128i −0.181120 0.210044i
\(638\) 0 0
\(639\) 13.4074i 0.530389i
\(640\) 0 0
\(641\) −41.5721 −1.64200 −0.821000 0.570929i \(-0.806583\pi\)
−0.821000 + 0.570929i \(0.806583\pi\)
\(642\) 0 0
\(643\) 32.7452i 1.29134i 0.763615 + 0.645672i \(0.223423\pi\)
−0.763615 + 0.645672i \(0.776577\pi\)
\(644\) 0 0
\(645\) 15.7020i 0.618265i
\(646\) 0 0
\(647\) −48.6201 −1.91145 −0.955727 0.294254i \(-0.904929\pi\)
−0.955727 + 0.294254i \(0.904929\pi\)
\(648\) 0 0
\(649\) 4.66785i 0.183229i
\(650\) 0 0
\(651\) −22.3309 10.2307i −0.875215 0.400972i
\(652\) 0 0
\(653\) 29.9679i 1.17273i 0.810045 + 0.586367i \(0.199442\pi\)
−0.810045 + 0.586367i \(0.800558\pi\)
\(654\) 0 0
\(655\) 21.9227i 0.856590i
\(656\) 0 0
\(657\) 22.8863i 0.892879i
\(658\) 0 0
\(659\) 2.82799 0.110163 0.0550814 0.998482i \(-0.482458\pi\)
0.0550814 + 0.998482i \(0.482458\pi\)
\(660\) 0 0
\(661\) 15.6250 0.607742 0.303871 0.952713i \(-0.401721\pi\)
0.303871 + 0.952713i \(0.401721\pi\)
\(662\) 0 0
\(663\) 1.94702 0.0756158
\(664\) 0 0
\(665\) 23.2677 + 10.6599i 0.902283 + 0.413373i
\(666\) 0 0
\(667\) 0.855241 0.0331151
\(668\) 0 0
\(669\) 6.53161i 0.252527i
\(670\) 0 0
\(671\) 9.39491 0.362687
\(672\) 0 0
\(673\) −33.9631 −1.30918 −0.654590 0.755984i \(-0.727159\pi\)
−0.654590 + 0.755984i \(0.727159\pi\)
\(674\) 0 0
\(675\) 1.65235i 0.0635990i
\(676\) 0 0
\(677\) 11.9305 0.458525 0.229262 0.973365i \(-0.426369\pi\)
0.229262 + 0.973365i \(0.426369\pi\)
\(678\) 0 0
\(679\) 31.6119 + 14.4827i 1.21315 + 0.555796i
\(680\) 0 0
\(681\) 40.4224 1.54899
\(682\) 0 0
\(683\) −16.8447 −0.644545 −0.322273 0.946647i \(-0.604447\pi\)
−0.322273 + 0.946647i \(0.604447\pi\)
\(684\) 0 0
\(685\) 8.60272 0.328693
\(686\) 0 0
\(687\) 49.1744i 1.87612i
\(688\) 0 0
\(689\) 9.57202i 0.364665i
\(690\) 0 0
\(691\) 14.3162i 0.544616i 0.962210 + 0.272308i \(0.0877869\pi\)
−0.962210 + 0.272308i \(0.912213\pi\)
\(692\) 0 0
\(693\) 19.0814 41.6497i 0.724844 1.58214i
\(694\) 0 0
\(695\) 0.413991i 0.0157036i
\(696\) 0 0
\(697\) 3.43952 0.130281
\(698\) 0 0
\(699\) 48.2315i 1.82428i
\(700\) 0 0
\(701\) 14.5603i 0.549935i −0.961454 0.274967i \(-0.911333\pi\)
0.961454 0.274967i \(-0.0886670\pi\)
\(702\) 0 0
\(703\) −12.6575 −0.477387
\(704\) 0 0
\(705\) 36.0994i 1.35958i
\(706\) 0 0
\(707\) −18.5266 + 40.4385i −0.696763 + 1.52085i
\(708\) 0 0
\(709\) 35.4973i 1.33313i −0.745448 0.666564i \(-0.767764\pi\)
0.745448 0.666564i \(-0.232236\pi\)
\(710\) 0 0
\(711\) 38.3463i 1.43810i
\(712\) 0 0
\(713\) 3.42064i 0.128104i
\(714\) 0 0
\(715\) −10.8526 −0.405864
\(716\) 0 0
\(717\) 44.8867 1.67633
\(718\) 0 0
\(719\) 23.4197 0.873406 0.436703 0.899606i \(-0.356146\pi\)
0.436703 + 0.899606i \(0.356146\pi\)
\(720\) 0 0
\(721\) 8.63301 18.8436i 0.321510 0.701771i
\(722\) 0 0
\(723\) −10.2529 −0.381309
\(724\) 0 0
\(725\) 2.11877i 0.0786891i
\(726\) 0 0
\(727\) 19.4068 0.719757 0.359879 0.932999i \(-0.382818\pi\)
0.359879 + 0.932999i \(0.382818\pi\)
\(728\) 0 0
\(729\) 20.9926 0.777503
\(730\) 0 0
\(731\) 3.20195i 0.118428i
\(732\) 0 0
\(733\) 13.5804 0.501603 0.250802 0.968038i \(-0.419306\pi\)
0.250802 + 0.968038i \(0.419306\pi\)
\(734\) 0 0
\(735\) 21.2355 18.3113i 0.783284 0.675422i
\(736\) 0 0
\(737\) −37.6671 −1.38748
\(738\) 0 0
\(739\) −17.3365 −0.637734 −0.318867 0.947800i \(-0.603302\pi\)
−0.318867 + 0.947800i \(0.603302\pi\)
\(740\) 0 0
\(741\) −13.7199 −0.504012
\(742\) 0 0
\(743\) 9.07974i 0.333104i −0.986033 0.166552i \(-0.946737\pi\)
0.986033 0.166552i \(-0.0532633\pi\)
\(744\) 0 0
\(745\) 0.929085i 0.0340390i
\(746\) 0 0
\(747\) 28.8729i 1.05640i
\(748\) 0 0
\(749\) −10.1464 + 22.1469i −0.370742 + 0.809231i
\(750\) 0 0
\(751\) 7.78993i 0.284259i 0.989848 + 0.142129i \(0.0453949\pi\)
−0.989848 + 0.142129i \(0.954605\pi\)
\(752\) 0 0
\(753\) 17.6565 0.643440
\(754\) 0 0
\(755\) 8.57507i 0.312079i
\(756\) 0 0
\(757\) 44.2936i 1.60988i 0.593357 + 0.804939i \(0.297802\pi\)
−0.593357 + 0.804939i \(0.702198\pi\)
\(758\) 0 0
\(759\) 13.5179 0.490668
\(760\) 0 0
\(761\) 8.33939i 0.302303i 0.988511 + 0.151151i \(0.0482981\pi\)
−0.988511 + 0.151151i \(0.951702\pi\)
\(762\) 0 0
\(763\) −6.05016 2.77183i −0.219030 0.100347i
\(764\) 0 0
\(765\) 3.68092i 0.133084i
\(766\) 0 0
\(767\) 0.722834i 0.0261000i
\(768\) 0 0
\(769\) 25.5540i 0.921500i 0.887530 + 0.460750i \(0.152419\pi\)
−0.887530 + 0.460750i \(0.847581\pi\)
\(770\) 0 0
\(771\) −21.0268 −0.757262
\(772\) 0 0
\(773\) −15.7192 −0.565381 −0.282690 0.959211i \(-0.591227\pi\)
−0.282690 + 0.959211i \(0.591227\pi\)
\(774\) 0 0
\(775\) 8.47426 0.304404
\(776\) 0 0
\(777\) −5.77600 + 12.6075i −0.207213 + 0.452290i
\(778\) 0 0
\(779\) −24.2369 −0.868379
\(780\) 0 0
\(781\) 32.2898i 1.15542i
\(782\) 0 0
\(783\) 0.739585 0.0264306
\(784\) 0 0
\(785\) 33.2149 1.18549
\(786\) 0 0
\(787\) 40.7884i 1.45395i 0.686665 + 0.726974i \(0.259074\pi\)
−0.686665 + 0.726974i \(0.740926\pi\)
\(788\) 0 0
\(789\) 42.5289 1.51407
\(790\) 0 0
\(791\) −5.00984 + 10.9351i −0.178129 + 0.388809i
\(792\) 0 0
\(793\) −1.45484 −0.0516628
\(794\) 0 0
\(795\) −38.3430 −1.35989
\(796\) 0 0
\(797\) −29.9750 −1.06177 −0.530884 0.847444i \(-0.678140\pi\)
−0.530884 + 0.847444i \(0.678140\pi\)
\(798\) 0 0
\(799\) 7.36139i 0.260427i
\(800\) 0 0
\(801\) 48.0537i 1.69789i
\(802\) 0 0
\(803\) 55.1182i 1.94508i
\(804\) 0 0
\(805\) 3.55005 + 1.62643i 0.125123 + 0.0573240i
\(806\) 0 0
\(807\) 52.9306i 1.86324i
\(808\) 0 0
\(809\) 28.3634 0.997205 0.498603 0.866831i \(-0.333847\pi\)
0.498603 + 0.866831i \(0.333847\pi\)
\(810\) 0 0
\(811\) 17.8449i 0.626619i −0.949651 0.313309i \(-0.898562\pi\)
0.949651 0.313309i \(-0.101438\pi\)
\(812\) 0 0
\(813\) 24.1958i 0.848584i
\(814\) 0 0
\(815\) 16.2138 0.567943
\(816\) 0 0
\(817\) 22.5629i 0.789376i
\(818\) 0 0
\(819\) −2.95483 + 6.44961i −0.103250 + 0.225368i
\(820\) 0 0
\(821\) 4.62357i 0.161364i 0.996740 + 0.0806818i \(0.0257098\pi\)
−0.996740 + 0.0806818i \(0.974290\pi\)
\(822\) 0 0
\(823\) 47.4508i 1.65403i 0.562178 + 0.827016i \(0.309964\pi\)
−0.562178 + 0.827016i \(0.690036\pi\)
\(824\) 0 0
\(825\) 33.4891i 1.16594i
\(826\) 0 0
\(827\) 21.4189 0.744807 0.372404 0.928071i \(-0.378534\pi\)
0.372404 + 0.928071i \(0.378534\pi\)
\(828\) 0 0
\(829\) 15.5176 0.538947 0.269474 0.963008i \(-0.413150\pi\)
0.269474 + 0.963008i \(0.413150\pi\)
\(830\) 0 0
\(831\) −44.0762 −1.52899
\(832\) 0 0
\(833\) −4.33035 + 3.73404i −0.150038 + 0.129377i
\(834\) 0 0
\(835\) 35.2153 1.21868
\(836\) 0 0
\(837\) 2.95806i 0.102245i
\(838\) 0 0
\(839\) 8.76582 0.302630 0.151315 0.988486i \(-0.451649\pi\)
0.151315 + 0.988486i \(0.451649\pi\)
\(840\) 0 0
\(841\) 28.0516 0.967298
\(842\) 0 0
\(843\) 6.38059i 0.219759i
\(844\) 0 0
\(845\) 1.68057 0.0578132
\(846\) 0 0
\(847\) 33.8330 73.8485i 1.16252 2.53746i
\(848\) 0 0
\(849\) 54.0193 1.85394
\(850\) 0 0
\(851\) −1.93121 −0.0662010
\(852\) 0 0
\(853\) −21.4369 −0.733985 −0.366992 0.930224i \(-0.619613\pi\)
−0.366992 + 0.930224i \(0.619613\pi\)
\(854\) 0 0
\(855\) 25.9380i 0.887060i
\(856\) 0 0
\(857\) 48.0166i 1.64021i 0.572210 + 0.820107i \(0.306086\pi\)
−0.572210 + 0.820107i \(0.693914\pi\)
\(858\) 0 0
\(859\) 11.4813i 0.391738i −0.980630 0.195869i \(-0.937247\pi\)
0.980630 0.195869i \(-0.0627527\pi\)
\(860\) 0 0
\(861\) −11.0600 + 24.1411i −0.376925 + 0.822727i
\(862\) 0 0
\(863\) 14.5463i 0.495163i 0.968867 + 0.247581i \(0.0796358\pi\)
−0.968867 + 0.247581i \(0.920364\pi\)
\(864\) 0 0
\(865\) 20.3240 0.691037
\(866\) 0 0
\(867\) 38.9302i 1.32214i
\(868\) 0 0
\(869\) 92.3515i 3.13281i
\(870\) 0 0
\(871\) 5.83289 0.197640
\(872\) 0 0
\(873\) 35.2398i 1.19269i
\(874\) 0 0
\(875\) −13.2891 + 29.0065i −0.449253 + 0.980598i
\(876\) 0 0
\(877\) 48.2621i 1.62969i −0.579675 0.814847i \(-0.696821\pi\)
0.579675 0.814847i \(-0.303179\pi\)
\(878\) 0 0
\(879\) 80.0688i 2.70065i
\(880\) 0 0
\(881\) 3.34804i 0.112798i 0.998408 + 0.0563991i \(0.0179619\pi\)
−0.998408 + 0.0563991i \(0.982038\pi\)
\(882\) 0 0
\(883\) 39.7732 1.33847 0.669237 0.743049i \(-0.266621\pi\)
0.669237 + 0.743049i \(0.266621\pi\)
\(884\) 0 0
\(885\) −2.89548 −0.0973306
\(886\) 0 0
\(887\) 1.92704 0.0647036 0.0323518 0.999477i \(-0.489700\pi\)
0.0323518 + 0.999477i \(0.489700\pi\)
\(888\) 0 0
\(889\) −37.3760 17.1235i −1.25355 0.574303i
\(890\) 0 0
\(891\) 63.6365 2.13190
\(892\) 0 0
\(893\) 51.8729i 1.73586i
\(894\) 0 0
\(895\) −4.19530 −0.140233
\(896\) 0 0
\(897\) −2.09330 −0.0698931
\(898\) 0 0
\(899\) 3.79304i 0.126505i
\(900\) 0 0
\(901\) 7.81891 0.260486
\(902\) 0 0
\(903\) −22.4737 10.2961i −0.747877 0.342633i
\(904\) 0 0
\(905\) −21.9292 −0.728952
\(906\) 0 0
\(907\) 47.2726 1.56966 0.784831 0.619710i \(-0.212750\pi\)
0.784831 + 0.619710i \(0.212750\pi\)
\(908\) 0 0
\(909\) 45.0794 1.49519
\(910\) 0 0
\(911\) 57.2072i 1.89536i 0.319222 + 0.947680i \(0.396578\pi\)
−0.319222 + 0.947680i \(0.603422\pi\)
\(912\) 0 0
\(913\) 69.5362i 2.30131i
\(914\) 0 0
\(915\) 5.82770i 0.192658i
\(916\) 0 0
\(917\) −31.3771 14.3752i −1.03616 0.474710i
\(918\) 0 0
\(919\) 11.7893i 0.388894i −0.980913 0.194447i \(-0.937709\pi\)
0.980913 0.194447i \(-0.0622912\pi\)
\(920\) 0 0
\(921\) −53.7326 −1.77055
\(922\) 0 0
\(923\) 5.00020i 0.164584i
\(924\) 0 0
\(925\) 4.78437i 0.157309i
\(926\) 0 0
\(927\) −21.0061 −0.689931
\(928\) 0 0
\(929\) 6.11545i 0.200641i −0.994955 0.100321i \(-0.968013\pi\)
0.994955 0.100321i \(-0.0319869\pi\)
\(930\) 0 0
\(931\) 30.5143 26.3123i 1.00007 0.862352i
\(932\) 0 0
\(933\) 34.5803i 1.13211i
\(934\) 0 0
\(935\) 8.86495i 0.289915i
\(936\) 0 0
\(937\) 13.1924i 0.430978i −0.976506 0.215489i \(-0.930866\pi\)
0.976506 0.215489i \(-0.0691345\pi\)
\(938\) 0 0
\(939\) 67.8831 2.21528
\(940\) 0 0
\(941\) −1.98071 −0.0645694 −0.0322847 0.999479i \(-0.510278\pi\)
−0.0322847 + 0.999479i \(0.510278\pi\)
\(942\) 0 0
\(943\) −3.69793 −0.120421
\(944\) 0 0
\(945\) 3.06997 + 1.40648i 0.0998662 + 0.0457528i
\(946\) 0 0
\(947\) −37.0962 −1.20547 −0.602733 0.797943i \(-0.705921\pi\)
−0.602733 + 0.797943i \(0.705921\pi\)
\(948\) 0 0
\(949\) 8.53527i 0.277067i
\(950\) 0 0
\(951\) −23.8240 −0.772547
\(952\) 0 0
\(953\) 1.46318 0.0473971 0.0236985 0.999719i \(-0.492456\pi\)
0.0236985 + 0.999719i \(0.492456\pi\)
\(954\) 0 0
\(955\) 8.80561i 0.284943i
\(956\) 0 0
\(957\) −14.9896 −0.484545
\(958\) 0 0
\(959\) 5.64098 12.3128i 0.182157 0.397600i
\(960\) 0 0
\(961\) −15.8293 −0.510622
\(962\) 0 0
\(963\) 24.6886 0.795578
\(964\) 0 0
\(965\) −27.6478 −0.890014
\(966\) 0 0
\(967\) 0.345097i 0.0110976i 0.999985 + 0.00554878i \(0.00176624\pi\)
−0.999985 + 0.00554878i \(0.998234\pi\)
\(968\) 0 0
\(969\) 11.2071i 0.360023i
\(970\) 0 0
\(971\) 6.24436i 0.200391i 0.994968 + 0.100195i \(0.0319468\pi\)
−0.994968 + 0.100195i \(0.968053\pi\)
\(972\) 0 0
\(973\) 0.592530 + 0.271462i 0.0189956 + 0.00870269i
\(974\) 0 0
\(975\) 5.18592i 0.166082i
\(976\) 0 0
\(977\) 21.5410 0.689157 0.344578 0.938758i \(-0.388022\pi\)
0.344578 + 0.938758i \(0.388022\pi\)
\(978\) 0 0
\(979\) 115.730i 3.69875i
\(980\) 0 0
\(981\) 6.74449i 0.215335i
\(982\) 0 0
\(983\) −31.1862 −0.994684 −0.497342 0.867555i \(-0.665691\pi\)
−0.497342 + 0.867555i \(0.665691\pi\)
\(984\) 0 0
\(985\) 30.2707i 0.964503i
\(986\) 0 0
\(987\) −51.6678 23.6711i −1.64460 0.753461i
\(988\) 0 0
\(989\) 3.44251i 0.109466i
\(990\) 0 0
\(991\) 7.02945i 0.223298i 0.993748 + 0.111649i \(0.0356132\pi\)
−0.993748 + 0.111649i \(0.964387\pi\)
\(992\) 0 0
\(993\) 12.1691i 0.386175i
\(994\) 0 0
\(995\) −15.3333 −0.486100
\(996\) 0 0
\(997\) −30.9954 −0.981636 −0.490818 0.871262i \(-0.663302\pi\)
−0.490818 + 0.871262i \(0.663302\pi\)
\(998\) 0 0
\(999\) −1.67005 −0.0528380
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.b.2575.41 48
4.3 odd 2 728.2.h.b.27.17 yes 48
7.6 odd 2 2912.2.h.a.2575.8 48
8.3 odd 2 2912.2.h.a.2575.41 48
8.5 even 2 728.2.h.a.27.18 yes 48
28.27 even 2 728.2.h.a.27.17 48
56.13 odd 2 728.2.h.b.27.18 yes 48
56.27 even 2 inner 2912.2.h.b.2575.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.17 48 28.27 even 2
728.2.h.a.27.18 yes 48 8.5 even 2
728.2.h.b.27.17 yes 48 4.3 odd 2
728.2.h.b.27.18 yes 48 56.13 odd 2
2912.2.h.a.2575.8 48 7.6 odd 2
2912.2.h.a.2575.41 48 8.3 odd 2
2912.2.h.b.2575.8 48 56.27 even 2 inner
2912.2.h.b.2575.41 48 1.1 even 1 trivial