Properties

Label 728.2.h.a.27.18
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.18
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.a.27.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.629285 + 1.26649i) q^{2} -2.38356i q^{3} +(-1.20800 - 1.59397i) q^{4} -1.68057 q^{5} +(3.01876 + 1.49994i) q^{6} +(1.10198 - 2.40533i) q^{7} +(2.77892 - 0.526865i) q^{8} -2.68138 q^{9} +(1.05755 - 2.12842i) q^{10} +6.45771 q^{11} +(-3.79932 + 2.87935i) q^{12} -1.00000 q^{13} +(2.35287 + 2.90929i) q^{14} +4.00574i q^{15} +(-1.08146 + 3.85103i) q^{16} -0.816850i q^{17} +(1.68735 - 3.39594i) q^{18} -5.75603i q^{19} +(2.03013 + 2.67877i) q^{20} +(-5.73327 - 2.62665i) q^{21} +(-4.06373 + 8.17863i) q^{22} +0.878221i q^{23} +(-1.25582 - 6.62374i) q^{24} -2.17570 q^{25} +(0.629285 - 1.26649i) q^{26} -0.759458i q^{27} +(-5.16522 + 1.14912i) q^{28} +0.973834i q^{29} +(-5.07323 - 2.52075i) q^{30} -3.89496 q^{31} +(-4.19675 - 3.79306i) q^{32} -15.3924i q^{33} +(1.03453 + 0.514031i) q^{34} +(-1.85195 + 4.04232i) q^{35} +(3.23911 + 4.27403i) q^{36} -2.19900i q^{37} +(7.28996 + 3.62218i) q^{38} +2.38356i q^{39} +(-4.67016 + 0.885431i) q^{40} +4.21071i q^{41} +(6.93448 - 5.60823i) q^{42} +3.91987 q^{43} +(-7.80092 - 10.2934i) q^{44} +4.50623 q^{45} +(-1.11226 - 0.552651i) q^{46} -9.01192 q^{47} +(9.17918 + 2.57774i) q^{48} +(-4.57127 - 5.30128i) q^{49} +(1.36913 - 2.75550i) q^{50} -1.94702 q^{51} +(1.20800 + 1.59397i) q^{52} -9.57202i q^{53} +(0.961847 + 0.477915i) q^{54} -10.8526 q^{55} +(1.79504 - 7.26484i) q^{56} -13.7199 q^{57} +(-1.23335 - 0.612818i) q^{58} -0.722834i q^{59} +(6.38501 - 4.83894i) q^{60} +1.45484 q^{61} +(2.45104 - 4.93293i) q^{62} +(-2.95483 + 6.44961i) q^{63} +(7.44483 - 2.92823i) q^{64} +1.68057 q^{65} +(19.4943 + 9.68617i) q^{66} -5.83289 q^{67} +(-1.30203 + 0.986757i) q^{68} +2.09330 q^{69} +(-3.95416 - 4.88926i) q^{70} +5.00020i q^{71} +(-7.45134 + 1.41272i) q^{72} +8.53527i q^{73} +(2.78502 + 1.38380i) q^{74} +5.18592i q^{75} +(-9.17492 + 6.95329i) q^{76} +(7.11628 - 15.5329i) q^{77} +(-3.01876 - 1.49994i) q^{78} +14.3010i q^{79} +(1.81747 - 6.47191i) q^{80} -9.85435 q^{81} +(-5.33282 - 2.64973i) q^{82} -10.7679i q^{83} +(2.73901 + 12.3116i) q^{84} +1.37277i q^{85} +(-2.46672 + 4.96449i) q^{86} +2.32119 q^{87} +(17.9455 - 3.40234i) q^{88} -17.9213i q^{89} +(-2.83570 + 5.70710i) q^{90} +(-1.10198 + 2.40533i) q^{91} +(1.39986 - 1.06089i) q^{92} +9.28389i q^{93} +(5.67106 - 11.4135i) q^{94} +9.67338i q^{95} +(-9.04100 + 10.0032i) q^{96} +13.1424i q^{97} +(9.59065 - 2.45346i) q^{98} -17.3155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} - 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} + 10 q^{12} - 48 q^{13} + 10 q^{14} + 5 q^{16} - 15 q^{18} - 22 q^{20} - 6 q^{22} + 48 q^{25} - q^{26} + 4 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.629285 + 1.26649i −0.444971 + 0.895545i
\(3\) 2.38356i 1.37615i −0.725639 0.688076i \(-0.758456\pi\)
0.725639 0.688076i \(-0.241544\pi\)
\(4\) −1.20800 1.59397i −0.604001 0.796984i
\(5\) −1.68057 −0.751572 −0.375786 0.926707i \(-0.622627\pi\)
−0.375786 + 0.926707i \(0.622627\pi\)
\(6\) 3.01876 + 1.49994i 1.23241 + 0.612348i
\(7\) 1.10198 2.40533i 0.416510 0.909131i
\(8\) 2.77892 0.526865i 0.982498 0.186275i
\(9\) −2.68138 −0.893792
\(10\) 1.05755 2.12842i 0.334428 0.673066i
\(11\) 6.45771 1.94707 0.973536 0.228535i \(-0.0733935\pi\)
0.973536 + 0.228535i \(0.0733935\pi\)
\(12\) −3.79932 + 2.87935i −1.09677 + 0.831197i
\(13\) −1.00000 −0.277350
\(14\) 2.35287 + 2.90929i 0.628832 + 0.777541i
\(15\) 4.00574i 1.03428i
\(16\) −1.08146 + 3.85103i −0.270366 + 0.962758i
\(17\) 0.816850i 0.198115i −0.995082 0.0990577i \(-0.968417\pi\)
0.995082 0.0990577i \(-0.0315828\pi\)
\(18\) 1.68735 3.39594i 0.397712 0.800431i
\(19\) 5.75603i 1.32052i −0.751036 0.660262i \(-0.770445\pi\)
0.751036 0.660262i \(-0.229555\pi\)
\(20\) 2.03013 + 2.67877i 0.453950 + 0.598990i
\(21\) −5.73327 2.62665i −1.25110 0.573181i
\(22\) −4.06373 + 8.17863i −0.866391 + 1.74369i
\(23\) 0.878221i 0.183122i 0.995799 + 0.0915609i \(0.0291856\pi\)
−0.995799 + 0.0915609i \(0.970814\pi\)
\(24\) −1.25582 6.62374i −0.256342 1.35207i
\(25\) −2.17570 −0.435140
\(26\) 0.629285 1.26649i 0.123413 0.248379i
\(27\) 0.759458i 0.146158i
\(28\) −5.16522 + 1.14912i −0.976135 + 0.217164i
\(29\) 0.973834i 0.180836i 0.995904 + 0.0904182i \(0.0288204\pi\)
−0.995904 + 0.0904182i \(0.971180\pi\)
\(30\) −5.07323 2.52075i −0.926241 0.460224i
\(31\) −3.89496 −0.699555 −0.349778 0.936833i \(-0.613743\pi\)
−0.349778 + 0.936833i \(0.613743\pi\)
\(32\) −4.19675 3.79306i −0.741887 0.670524i
\(33\) 15.3924i 2.67946i
\(34\) 1.03453 + 0.514031i 0.177421 + 0.0881557i
\(35\) −1.85195 + 4.04232i −0.313037 + 0.683277i
\(36\) 3.23911 + 4.27403i 0.539851 + 0.712338i
\(37\) 2.19900i 0.361514i −0.983528 0.180757i \(-0.942145\pi\)
0.983528 0.180757i \(-0.0578547\pi\)
\(38\) 7.28996 + 3.62218i 1.18259 + 0.587595i
\(39\) 2.38356i 0.381676i
\(40\) −4.67016 + 0.885431i −0.738418 + 0.139999i
\(41\) 4.21071i 0.657602i 0.944399 + 0.328801i \(0.106645\pi\)
−0.944399 + 0.328801i \(0.893355\pi\)
\(42\) 6.93448 5.60823i 1.07001 0.865368i
\(43\) 3.91987 0.597775 0.298887 0.954288i \(-0.403384\pi\)
0.298887 + 0.954288i \(0.403384\pi\)
\(44\) −7.80092 10.2934i −1.17603 1.55178i
\(45\) 4.50623 0.671749
\(46\) −1.11226 0.552651i −0.163994 0.0814839i
\(47\) −9.01192 −1.31452 −0.657262 0.753662i \(-0.728285\pi\)
−0.657262 + 0.753662i \(0.728285\pi\)
\(48\) 9.17918 + 2.57774i 1.32490 + 0.372064i
\(49\) −4.57127 5.30128i −0.653038 0.757325i
\(50\) 1.36913 2.75550i 0.193625 0.389687i
\(51\) −1.94702 −0.272637
\(52\) 1.20800 + 1.59397i 0.167520 + 0.221043i
\(53\) 9.57202i 1.31482i −0.753534 0.657409i \(-0.771652\pi\)
0.753534 0.657409i \(-0.228348\pi\)
\(54\) 0.961847 + 0.477915i 0.130891 + 0.0650360i
\(55\) −10.8526 −1.46336
\(56\) 1.79504 7.26484i 0.239872 0.970804i
\(57\) −13.7199 −1.81724
\(58\) −1.23335 0.612818i −0.161947 0.0804670i
\(59\) 0.722834i 0.0941050i −0.998892 0.0470525i \(-0.985017\pi\)
0.998892 0.0470525i \(-0.0149828\pi\)
\(60\) 6.38501 4.83894i 0.824302 0.624704i
\(61\) 1.45484 0.186273 0.0931365 0.995653i \(-0.470311\pi\)
0.0931365 + 0.995653i \(0.470311\pi\)
\(62\) 2.45104 4.93293i 0.311282 0.626483i
\(63\) −2.95483 + 6.44961i −0.372274 + 0.812574i
\(64\) 7.44483 2.92823i 0.930603 0.366029i
\(65\) 1.68057 0.208449
\(66\) 19.4943 + 9.68617i 2.39958 + 1.19229i
\(67\) −5.83289 −0.712600 −0.356300 0.934372i \(-0.615962\pi\)
−0.356300 + 0.934372i \(0.615962\pi\)
\(68\) −1.30203 + 0.986757i −0.157895 + 0.119662i
\(69\) 2.09330 0.252003
\(70\) −3.95416 4.88926i −0.472613 0.584378i
\(71\) 5.00020i 0.593414i 0.954969 + 0.296707i \(0.0958885\pi\)
−0.954969 + 0.296707i \(0.904111\pi\)
\(72\) −7.45134 + 1.41272i −0.878149 + 0.166491i
\(73\) 8.53527i 0.998978i 0.866320 + 0.499489i \(0.166479\pi\)
−0.866320 + 0.499489i \(0.833521\pi\)
\(74\) 2.78502 + 1.38380i 0.323752 + 0.160863i
\(75\) 5.18592i 0.598818i
\(76\) −9.17492 + 6.95329i −1.05244 + 0.797597i
\(77\) 7.11628 15.5329i 0.810976 1.77014i
\(78\) −3.01876 1.49994i −0.341808 0.169835i
\(79\) 14.3010i 1.60899i 0.593962 + 0.804493i \(0.297563\pi\)
−0.593962 + 0.804493i \(0.702437\pi\)
\(80\) 1.81747 6.47191i 0.203199 0.723582i
\(81\) −9.85435 −1.09493
\(82\) −5.33282 2.64973i −0.588912 0.292614i
\(83\) 10.7679i 1.18193i −0.806696 0.590967i \(-0.798746\pi\)
0.806696 0.590967i \(-0.201254\pi\)
\(84\) 2.73901 + 12.3116i 0.298850 + 1.34331i
\(85\) 1.37277i 0.148898i
\(86\) −2.46672 + 4.96449i −0.265993 + 0.535334i
\(87\) 2.32119 0.248858
\(88\) 17.9455 3.40234i 1.91299 0.362690i
\(89\) 17.9213i 1.89965i −0.312782 0.949825i \(-0.601261\pi\)
0.312782 0.949825i \(-0.398739\pi\)
\(90\) −2.83570 + 5.70710i −0.298909 + 0.601581i
\(91\) −1.10198 + 2.40533i −0.115519 + 0.252148i
\(92\) 1.39986 1.06089i 0.145945 0.110606i
\(93\) 9.28389i 0.962694i
\(94\) 5.67106 11.4135i 0.584926 1.17722i
\(95\) 9.67338i 0.992468i
\(96\) −9.04100 + 10.0032i −0.922743 + 1.02095i
\(97\) 13.1424i 1.33441i 0.744874 + 0.667206i \(0.232510\pi\)
−0.744874 + 0.667206i \(0.767490\pi\)
\(98\) 9.59065 2.45346i 0.968802 0.247837i
\(99\) −17.3155 −1.74028
\(100\) 2.62825 + 3.46799i 0.262825 + 0.346799i
\(101\) 16.8120 1.67286 0.836429 0.548075i \(-0.184639\pi\)
0.836429 + 0.548075i \(0.184639\pi\)
\(102\) 1.22523 2.46588i 0.121316 0.244158i
\(103\) 7.83407 0.771914 0.385957 0.922517i \(-0.373871\pi\)
0.385957 + 0.922517i \(0.373871\pi\)
\(104\) −2.77892 + 0.526865i −0.272496 + 0.0516634i
\(105\) 9.63513 + 4.41425i 0.940293 + 0.430787i
\(106\) 12.1229 + 6.02353i 1.17748 + 0.585057i
\(107\) 9.20742 0.890115 0.445057 0.895502i \(-0.353183\pi\)
0.445057 + 0.895502i \(0.353183\pi\)
\(108\) −1.21055 + 0.917426i −0.116485 + 0.0882794i
\(109\) 2.51531i 0.240923i 0.992718 + 0.120461i \(0.0384374\pi\)
−0.992718 + 0.120461i \(0.961563\pi\)
\(110\) 6.82937 13.7447i 0.651155 1.31051i
\(111\) −5.24146 −0.497498
\(112\) 8.07126 + 6.84505i 0.762663 + 0.646797i
\(113\) −4.54621 −0.427671 −0.213836 0.976870i \(-0.568596\pi\)
−0.213836 + 0.976870i \(0.568596\pi\)
\(114\) 8.63370 17.3761i 0.808620 1.62742i
\(115\) 1.47591i 0.137629i
\(116\) 1.55226 1.17639i 0.144124 0.109225i
\(117\) 2.68138 0.247893
\(118\) 0.915463 + 0.454868i 0.0842752 + 0.0418740i
\(119\) −1.96480 0.900155i −0.180113 0.0825171i
\(120\) 2.11048 + 11.1316i 0.192660 + 1.01617i
\(121\) 30.7020 2.79109
\(122\) −0.915507 + 1.84254i −0.0828861 + 0.166816i
\(123\) 10.0365 0.904960
\(124\) 4.70512 + 6.20844i 0.422532 + 0.557534i
\(125\) 12.0592 1.07861
\(126\) −6.30895 7.80091i −0.562045 0.694960i
\(127\) 15.5388i 1.37884i −0.724360 0.689422i \(-0.757865\pi\)
0.724360 0.689422i \(-0.242135\pi\)
\(128\) −0.976331 + 11.2715i −0.0862963 + 0.996270i
\(129\) 9.34327i 0.822629i
\(130\) −1.05755 + 2.12842i −0.0927536 + 0.186675i
\(131\) 13.0448i 1.13973i 0.821738 + 0.569865i \(0.193005\pi\)
−0.821738 + 0.569865i \(0.806995\pi\)
\(132\) −24.5349 + 18.5940i −2.13549 + 1.61840i
\(133\) −13.8452 6.34304i −1.20053 0.550012i
\(134\) 3.67055 7.38730i 0.317087 0.638166i
\(135\) 1.27632i 0.109848i
\(136\) −0.430370 2.26996i −0.0369039 0.194648i
\(137\) 5.11894 0.437341 0.218670 0.975799i \(-0.429828\pi\)
0.218670 + 0.975799i \(0.429828\pi\)
\(138\) −1.31728 + 2.65114i −0.112134 + 0.225680i
\(139\) 0.246340i 0.0208943i −0.999945 0.0104471i \(-0.996675\pi\)
0.999945 0.0104471i \(-0.00332549\pi\)
\(140\) 8.68049 1.93118i 0.733636 0.163214i
\(141\) 21.4805i 1.80898i
\(142\) −6.33271 3.14655i −0.531429 0.264052i
\(143\) −6.45771 −0.540020
\(144\) 2.89981 10.3261i 0.241651 0.860505i
\(145\) 1.63659i 0.135912i
\(146\) −10.8098 5.37111i −0.894629 0.444516i
\(147\) −12.6359 + 10.8959i −1.04219 + 0.898679i
\(148\) −3.50514 + 2.65640i −0.288121 + 0.218355i
\(149\) 0.552841i 0.0452905i −0.999744 0.0226452i \(-0.992791\pi\)
0.999744 0.0226452i \(-0.00720882\pi\)
\(150\) −6.56792 3.26342i −0.536268 0.266457i
\(151\) 5.10249i 0.415235i −0.978210 0.207617i \(-0.933429\pi\)
0.978210 0.207617i \(-0.0665709\pi\)
\(152\) −3.03265 15.9956i −0.245980 1.29741i
\(153\) 2.19028i 0.177074i
\(154\) 15.1942 + 18.7874i 1.22438 + 1.51393i
\(155\) 6.54574 0.525766
\(156\) 3.79932 2.87935i 0.304189 0.230532i
\(157\) −19.7641 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(158\) −18.1121 8.99939i −1.44092 0.715953i
\(159\) −22.8155 −1.80939
\(160\) 7.05291 + 6.37448i 0.557582 + 0.503947i
\(161\) 2.11242 + 0.967785i 0.166482 + 0.0762721i
\(162\) 6.20119 12.4804i 0.487211 0.980557i
\(163\) −9.64780 −0.755674 −0.377837 0.925872i \(-0.623332\pi\)
−0.377837 + 0.925872i \(0.623332\pi\)
\(164\) 6.71173 5.08654i 0.524098 0.397192i
\(165\) 25.8679i 2.01381i
\(166\) 13.6375 + 6.77610i 1.05848 + 0.525927i
\(167\) 20.9545 1.62150 0.810752 0.585390i \(-0.199058\pi\)
0.810752 + 0.585390i \(0.199058\pi\)
\(168\) −17.3162 4.27859i −1.33597 0.330101i
\(169\) 1.00000 0.0769231
\(170\) −1.73860 0.863864i −0.133345 0.0662553i
\(171\) 15.4341i 1.18027i
\(172\) −4.73521 6.24815i −0.361057 0.476417i
\(173\) −12.0936 −0.919456 −0.459728 0.888060i \(-0.652053\pi\)
−0.459728 + 0.888060i \(0.652053\pi\)
\(174\) −1.46069 + 2.93977i −0.110735 + 0.222864i
\(175\) −2.39758 + 5.23328i −0.181240 + 0.395599i
\(176\) −6.98377 + 24.8688i −0.526422 + 1.87456i
\(177\) −1.72292 −0.129503
\(178\) 22.6971 + 11.2776i 1.70122 + 0.845290i
\(179\) 2.49636 0.186587 0.0932934 0.995639i \(-0.470261\pi\)
0.0932934 + 0.995639i \(0.470261\pi\)
\(180\) −5.44353 7.18278i −0.405737 0.535373i
\(181\) 13.0487 0.969903 0.484951 0.874541i \(-0.338837\pi\)
0.484951 + 0.874541i \(0.338837\pi\)
\(182\) −2.35287 2.90929i −0.174407 0.215651i
\(183\) 3.46770i 0.256340i
\(184\) 0.462704 + 2.44051i 0.0341110 + 0.179917i
\(185\) 3.69557i 0.271704i
\(186\) −11.7580 5.84221i −0.862136 0.428371i
\(187\) 5.27498i 0.385745i
\(188\) 10.8864 + 14.3647i 0.793974 + 1.04765i
\(189\) −1.82675 0.836909i −0.132876 0.0608762i
\(190\) −12.2513 6.08731i −0.888800 0.441620i
\(191\) 5.23967i 0.379129i 0.981868 + 0.189565i \(0.0607076\pi\)
−0.981868 + 0.189565i \(0.939292\pi\)
\(192\) −6.97963 17.7452i −0.503712 1.28065i
\(193\) −16.4515 −1.18420 −0.592102 0.805863i \(-0.701702\pi\)
−0.592102 + 0.805863i \(0.701702\pi\)
\(194\) −16.6448 8.27033i −1.19502 0.593775i
\(195\) 4.00574i 0.286857i
\(196\) −2.92796 + 13.6904i −0.209140 + 0.977886i
\(197\) 18.0122i 1.28331i −0.766991 0.641657i \(-0.778247\pi\)
0.766991 0.641657i \(-0.221753\pi\)
\(198\) 10.8964 21.9300i 0.774374 1.55850i
\(199\) −9.12392 −0.646778 −0.323389 0.946266i \(-0.604822\pi\)
−0.323389 + 0.946266i \(0.604822\pi\)
\(200\) −6.04610 + 1.14630i −0.427524 + 0.0810556i
\(201\) 13.9031i 0.980646i
\(202\) −10.5795 + 21.2923i −0.744374 + 1.49812i
\(203\) 2.34240 + 1.07315i 0.164404 + 0.0753202i
\(204\) 2.35200 + 3.10348i 0.164673 + 0.217287i
\(205\) 7.07637i 0.494235i
\(206\) −4.92986 + 9.92179i −0.343480 + 0.691284i
\(207\) 2.35484i 0.163673i
\(208\) 1.08146 3.85103i 0.0749860 0.267021i
\(209\) 37.1707i 2.57115i
\(210\) −11.6539 + 9.42500i −0.804192 + 0.650386i
\(211\) 17.3894 1.19713 0.598567 0.801073i \(-0.295737\pi\)
0.598567 + 0.801073i \(0.295737\pi\)
\(212\) −15.2575 + 11.5630i −1.04789 + 0.794152i
\(213\) 11.9183 0.816628
\(214\) −5.79409 + 11.6611i −0.396076 + 0.797138i
\(215\) −6.58760 −0.449271
\(216\) −0.400132 2.11047i −0.0272255 0.143600i
\(217\) −4.29218 + 9.36868i −0.291372 + 0.635987i
\(218\) −3.18562 1.58284i −0.215757 0.107204i
\(219\) 20.3444 1.37474
\(220\) 13.1100 + 17.2987i 0.883873 + 1.16628i
\(221\) 0.816850i 0.0549473i
\(222\) 3.29837 6.63827i 0.221372 0.445531i
\(223\) −2.74027 −0.183502 −0.0917510 0.995782i \(-0.529246\pi\)
−0.0917510 + 0.995782i \(0.529246\pi\)
\(224\) −13.7483 + 5.91470i −0.918598 + 0.395192i
\(225\) 5.83387 0.388925
\(226\) 2.86086 5.75773i 0.190301 0.382999i
\(227\) 16.9588i 1.12559i 0.826595 + 0.562797i \(0.190275\pi\)
−0.826595 + 0.562797i \(0.809725\pi\)
\(228\) 16.5736 + 21.8690i 1.09761 + 1.44831i
\(229\) −20.6306 −1.36331 −0.681655 0.731674i \(-0.738739\pi\)
−0.681655 + 0.731674i \(0.738739\pi\)
\(230\) 1.86923 + 0.928766i 0.123253 + 0.0612410i
\(231\) −37.0238 16.9621i −2.43598 1.11603i
\(232\) 0.513079 + 2.70621i 0.0336853 + 0.177671i
\(233\) 20.2350 1.32564 0.662821 0.748778i \(-0.269359\pi\)
0.662821 + 0.748778i \(0.269359\pi\)
\(234\) −1.68735 + 3.39594i −0.110305 + 0.222000i
\(235\) 15.1451 0.987959
\(236\) −1.15217 + 0.873185i −0.0750002 + 0.0568395i
\(237\) 34.0873 2.21421
\(238\) 2.37646 1.92195i 0.154043 0.124581i
\(239\) 18.8318i 1.21813i −0.793122 0.609063i \(-0.791546\pi\)
0.793122 0.609063i \(-0.208454\pi\)
\(240\) −15.4262 4.33206i −0.995758 0.279633i
\(241\) 4.30150i 0.277084i 0.990357 + 0.138542i \(0.0442415\pi\)
−0.990357 + 0.138542i \(0.955758\pi\)
\(242\) −19.3203 + 38.8838i −1.24195 + 2.49954i
\(243\) 21.2101i 1.36063i
\(244\) −1.75745 2.31896i −0.112509 0.148456i
\(245\) 7.68231 + 8.90914i 0.490805 + 0.569184i
\(246\) −6.31581 + 12.7111i −0.402681 + 0.810432i
\(247\) 5.75603i 0.366247i
\(248\) −10.8238 + 2.05212i −0.687312 + 0.130310i
\(249\) −25.6661 −1.62652
\(250\) −7.58869 + 15.2729i −0.479951 + 0.965944i
\(251\) 7.40762i 0.467565i 0.972289 + 0.233782i \(0.0751103\pi\)
−0.972289 + 0.233782i \(0.924890\pi\)
\(252\) 13.8499 3.08123i 0.872462 0.194099i
\(253\) 5.67129i 0.356551i
\(254\) 19.6797 + 9.77831i 1.23482 + 0.613546i
\(255\) 3.27209 0.204906
\(256\) −13.6609 8.32950i −0.853805 0.520594i
\(257\) 8.82159i 0.550276i 0.961405 + 0.275138i \(0.0887235\pi\)
−0.961405 + 0.275138i \(0.911277\pi\)
\(258\) 11.8332 + 5.87957i 0.736701 + 0.366046i
\(259\) −5.28933 2.42326i −0.328663 0.150574i
\(260\) −2.03013 2.67877i −0.125903 0.166130i
\(261\) 2.61122i 0.161630i
\(262\) −16.5212 8.20890i −1.02068 0.507148i
\(263\) 17.8426i 1.10022i −0.835092 0.550110i \(-0.814586\pi\)
0.835092 0.550110i \(-0.185414\pi\)
\(264\) −8.10969 42.7742i −0.499117 2.63257i
\(265\) 16.0864i 0.988181i
\(266\) 16.7460 13.5432i 1.02676 0.830388i
\(267\) −42.7165 −2.61421
\(268\) 7.04614 + 9.29743i 0.430411 + 0.567931i
\(269\) 22.2065 1.35395 0.676976 0.736005i \(-0.263290\pi\)
0.676976 + 0.736005i \(0.263290\pi\)
\(270\) −1.61645 0.803168i −0.0983738 0.0488792i
\(271\) 10.1511 0.616635 0.308318 0.951283i \(-0.400234\pi\)
0.308318 + 0.951283i \(0.400234\pi\)
\(272\) 3.14572 + 0.883394i 0.190737 + 0.0535636i
\(273\) 5.73327 + 2.62665i 0.346993 + 0.158972i
\(274\) −3.22127 + 6.48309i −0.194604 + 0.391658i
\(275\) −14.0500 −0.847248
\(276\) −2.52871 3.33665i −0.152210 0.200842i
\(277\) 18.4917i 1.11106i −0.831497 0.555530i \(-0.812516\pi\)
0.831497 0.555530i \(-0.187484\pi\)
\(278\) 0.311988 + 0.155018i 0.0187118 + 0.00929736i
\(279\) 10.4439 0.625257
\(280\) −3.01668 + 12.2090i −0.180281 + 0.729629i
\(281\) −2.67691 −0.159691 −0.0798456 0.996807i \(-0.525443\pi\)
−0.0798456 + 0.996807i \(0.525443\pi\)
\(282\) −27.2049 13.5173i −1.62003 0.804946i
\(283\) 22.6633i 1.34719i 0.739100 + 0.673596i \(0.235251\pi\)
−0.739100 + 0.673596i \(0.764749\pi\)
\(284\) 7.97015 6.04025i 0.472942 0.358423i
\(285\) 23.0571 1.36579
\(286\) 4.06373 8.17863i 0.240294 0.483612i
\(287\) 10.1282 + 4.64013i 0.597846 + 0.273898i
\(288\) 11.2531 + 10.1706i 0.663093 + 0.599310i
\(289\) 16.3328 0.960750
\(290\) 2.07273 + 1.02988i 0.121715 + 0.0604767i
\(291\) 31.3258 1.83635
\(292\) 13.6049 10.3106i 0.796169 0.603383i
\(293\) 33.5920 1.96247 0.981234 0.192821i \(-0.0617636\pi\)
0.981234 + 0.192821i \(0.0617636\pi\)
\(294\) −5.84798 22.8599i −0.341061 1.33322i
\(295\) 1.21477i 0.0707267i
\(296\) −1.15858 6.11086i −0.0673409 0.355186i
\(297\) 4.90435i 0.284579i
\(298\) 0.700168 + 0.347894i 0.0405597 + 0.0201530i
\(299\) 0.878221i 0.0507888i
\(300\) 8.26618 6.26460i 0.477248 0.361687i
\(301\) 4.31963 9.42860i 0.248980 0.543456i
\(302\) 6.46226 + 3.21092i 0.371861 + 0.184768i
\(303\) 40.0725i 2.30211i
\(304\) 22.1666 + 6.22493i 1.27134 + 0.357024i
\(305\) −2.44495 −0.139997
\(306\) −2.77398 1.37831i −0.158578 0.0787929i
\(307\) 22.5430i 1.28660i −0.765616 0.643298i \(-0.777566\pi\)
0.765616 0.643298i \(-0.222434\pi\)
\(308\) −33.3555 + 7.42070i −1.90060 + 0.422834i
\(309\) 18.6730i 1.06227i
\(310\) −4.11913 + 8.29012i −0.233951 + 0.470847i
\(311\) 14.5078 0.822663 0.411332 0.911486i \(-0.365064\pi\)
0.411332 + 0.911486i \(0.365064\pi\)
\(312\) 1.25582 + 6.62374i 0.0710966 + 0.374995i
\(313\) 28.4797i 1.60977i −0.593433 0.804883i \(-0.702228\pi\)
0.593433 0.804883i \(-0.297772\pi\)
\(314\) 12.4373 25.0311i 0.701876 1.41259i
\(315\) 4.96579 10.8390i 0.279791 0.610708i
\(316\) 22.7953 17.2756i 1.28234 0.971829i
\(317\) 9.99512i 0.561382i −0.959798 0.280691i \(-0.909436\pi\)
0.959798 0.280691i \(-0.0905636\pi\)
\(318\) 14.3575 28.8957i 0.805126 1.62039i
\(319\) 6.28873i 0.352101i
\(320\) −12.5115 + 4.92109i −0.699415 + 0.275097i
\(321\) 21.9465i 1.22493i
\(322\) −2.55500 + 2.06634i −0.142385 + 0.115153i
\(323\) −4.70181 −0.261616
\(324\) 11.9041 + 15.7075i 0.661337 + 0.872639i
\(325\) 2.17570 0.120686
\(326\) 6.07121 12.2189i 0.336253 0.676740i
\(327\) 5.99540 0.331546
\(328\) 2.21847 + 11.7012i 0.122495 + 0.646092i
\(329\) −9.93098 + 21.6767i −0.547513 + 1.19507i
\(330\) −32.7614 16.2782i −1.80346 0.896088i
\(331\) −5.10543 −0.280620 −0.140310 0.990108i \(-0.544810\pi\)
−0.140310 + 0.990108i \(0.544810\pi\)
\(332\) −17.1637 + 13.0077i −0.941982 + 0.713889i
\(333\) 5.89635i 0.323118i
\(334\) −13.1863 + 26.5386i −0.721523 + 1.45213i
\(335\) 9.80255 0.535570
\(336\) 16.3156 19.2384i 0.890090 1.04954i
\(337\) 12.5235 0.682200 0.341100 0.940027i \(-0.389200\pi\)
0.341100 + 0.940027i \(0.389200\pi\)
\(338\) −0.629285 + 1.26649i −0.0342286 + 0.0688881i
\(339\) 10.8362i 0.588540i
\(340\) 2.18815 1.65831i 0.118669 0.0899345i
\(341\) −25.1525 −1.36208
\(342\) −19.5471 9.71243i −1.05699 0.525188i
\(343\) −17.7888 + 5.15351i −0.960505 + 0.278263i
\(344\) 10.8930 2.06524i 0.587313 0.111350i
\(345\) −3.51792 −0.189399
\(346\) 7.61029 15.3164i 0.409132 0.823414i
\(347\) 27.2021 1.46029 0.730143 0.683295i \(-0.239454\pi\)
0.730143 + 0.683295i \(0.239454\pi\)
\(348\) −2.80401 3.69991i −0.150311 0.198336i
\(349\) −16.8525 −0.902096 −0.451048 0.892500i \(-0.648950\pi\)
−0.451048 + 0.892500i \(0.648950\pi\)
\(350\) −5.11915 6.32974i −0.273630 0.338339i
\(351\) 0.759458i 0.0405369i
\(352\) −27.1014 24.4945i −1.44451 1.30556i
\(353\) 5.53986i 0.294857i 0.989073 + 0.147429i \(0.0470996\pi\)
−0.989073 + 0.147429i \(0.952900\pi\)
\(354\) 1.08421 2.18207i 0.0576250 0.115975i
\(355\) 8.40316i 0.445993i
\(356\) −28.5659 + 21.6489i −1.51399 + 1.14739i
\(357\) −2.14558 + 4.68322i −0.113556 + 0.247862i
\(358\) −1.57092 + 3.16162i −0.0830258 + 0.167097i
\(359\) 18.2949i 0.965567i 0.875740 + 0.482784i \(0.160374\pi\)
−0.875740 + 0.482784i \(0.839626\pi\)
\(360\) 12.5225 2.37417i 0.659992 0.125130i
\(361\) −14.1319 −0.743782
\(362\) −8.21135 + 16.5261i −0.431579 + 0.868592i
\(363\) 73.1801i 3.84096i
\(364\) 5.16522 1.14912i 0.270731 0.0602304i
\(365\) 14.3441i 0.750803i
\(366\) 4.39181 + 2.18217i 0.229564 + 0.114064i
\(367\) 32.4218 1.69240 0.846202 0.532862i \(-0.178884\pi\)
0.846202 + 0.532862i \(0.178884\pi\)
\(368\) −3.38206 0.949764i −0.176302 0.0495099i
\(369\) 11.2905i 0.587760i
\(370\) −4.68040 2.32556i −0.243323 0.120900i
\(371\) −23.0239 10.5482i −1.19534 0.547636i
\(372\) 14.7982 11.2150i 0.767251 0.581468i
\(373\) 12.6232i 0.653604i 0.945093 + 0.326802i \(0.105971\pi\)
−0.945093 + 0.326802i \(0.894029\pi\)
\(374\) 6.68072 + 3.31946i 0.345452 + 0.171645i
\(375\) 28.7440i 1.48433i
\(376\) −25.0434 + 4.74807i −1.29152 + 0.244863i
\(377\) 0.973834i 0.0501550i
\(378\) 2.20948 1.78691i 0.113644 0.0919087i
\(379\) 18.1976 0.934746 0.467373 0.884060i \(-0.345200\pi\)
0.467373 + 0.884060i \(0.345200\pi\)
\(380\) 15.4191 11.6855i 0.790981 0.599452i
\(381\) −37.0377 −1.89750
\(382\) −6.63600 3.29724i −0.339527 0.168702i
\(383\) 18.4321 0.941835 0.470917 0.882177i \(-0.343923\pi\)
0.470917 + 0.882177i \(0.343923\pi\)
\(384\) 26.8663 + 2.32715i 1.37102 + 0.118757i
\(385\) −11.9594 + 26.1041i −0.609506 + 1.33039i
\(386\) 10.3527 20.8357i 0.526937 1.06051i
\(387\) −10.5107 −0.534287
\(388\) 20.9486 15.8761i 1.06350 0.805985i
\(389\) 19.8567i 1.00678i 0.864060 + 0.503388i \(0.167914\pi\)
−0.864060 + 0.503388i \(0.832086\pi\)
\(390\) 5.07323 + 2.52075i 0.256893 + 0.127643i
\(391\) 0.717375 0.0362792
\(392\) −15.4963 12.3234i −0.782679 0.622425i
\(393\) 31.0932 1.56844
\(394\) 22.8123 + 11.3348i 1.14927 + 0.571038i
\(395\) 24.0337i 1.20927i
\(396\) 20.9172 + 27.6004i 1.05113 + 1.38697i
\(397\) 7.46775 0.374796 0.187398 0.982284i \(-0.439995\pi\)
0.187398 + 0.982284i \(0.439995\pi\)
\(398\) 5.74154 11.5554i 0.287798 0.579218i
\(399\) −15.1191 + 33.0008i −0.756899 + 1.65211i
\(400\) 2.35294 8.37868i 0.117647 0.418934i
\(401\) −3.95952 −0.197729 −0.0988644 0.995101i \(-0.531521\pi\)
−0.0988644 + 0.995101i \(0.531521\pi\)
\(402\) −17.6081 8.74898i −0.878212 0.436359i
\(403\) 3.89496 0.194022
\(404\) −20.3089 26.7978i −1.01041 1.33324i
\(405\) 16.5609 0.822917
\(406\) −2.83317 + 2.29131i −0.140608 + 0.113716i
\(407\) 14.2005i 0.703893i
\(408\) −5.41061 + 1.02581i −0.267865 + 0.0507854i
\(409\) 18.5513i 0.917303i 0.888616 + 0.458652i \(0.151667\pi\)
−0.888616 + 0.458652i \(0.848333\pi\)
\(410\) 8.96216 + 4.45305i 0.442610 + 0.219920i
\(411\) 12.2013i 0.601847i
\(412\) −9.46357 12.4873i −0.466237 0.615203i
\(413\) −1.73866 0.796551i −0.0855538 0.0391957i
\(414\) 2.98239 + 1.48187i 0.146576 + 0.0728297i
\(415\) 18.0962i 0.888309i
\(416\) 4.19675 + 3.79306i 0.205763 + 0.185970i
\(417\) −0.587167 −0.0287537
\(418\) 47.0764 + 23.3910i 2.30258 + 1.14409i
\(419\) 40.1301i 1.96048i 0.197800 + 0.980242i \(0.436620\pi\)
−0.197800 + 0.980242i \(0.563380\pi\)
\(420\) −4.60308 20.6905i −0.224608 1.00959i
\(421\) 7.51607i 0.366311i −0.983084 0.183155i \(-0.941369\pi\)
0.983084 0.183155i \(-0.0586311\pi\)
\(422\) −10.9429 + 22.0235i −0.532690 + 1.07209i
\(423\) 24.1644 1.17491
\(424\) −5.04316 26.5999i −0.244918 1.29181i
\(425\) 1.77722i 0.0862079i
\(426\) −7.50000 + 15.0944i −0.363376 + 0.731327i
\(427\) 1.60321 3.49937i 0.0775846 0.169346i
\(428\) −11.1226 14.6763i −0.537630 0.709407i
\(429\) 15.3924i 0.743150i
\(430\) 4.14548 8.34314i 0.199913 0.402342i
\(431\) 23.2557i 1.12019i 0.828429 + 0.560095i \(0.189235\pi\)
−0.828429 + 0.560095i \(0.810765\pi\)
\(432\) 2.92469 + 0.821326i 0.140714 + 0.0395161i
\(433\) 12.0026i 0.576809i −0.957509 0.288404i \(-0.906875\pi\)
0.957509 0.288404i \(-0.0931247\pi\)
\(434\) −9.16435 11.3316i −0.439903 0.543933i
\(435\) −3.90092 −0.187035
\(436\) 4.00932 3.03850i 0.192012 0.145518i
\(437\) 5.05506 0.241817
\(438\) −12.8024 + 25.7660i −0.611722 + 1.23115i
\(439\) 19.8600 0.947867 0.473933 0.880561i \(-0.342834\pi\)
0.473933 + 0.880561i \(0.342834\pi\)
\(440\) −30.1585 + 5.71785i −1.43775 + 0.272588i
\(441\) 12.2573 + 14.2147i 0.583681 + 0.676891i
\(442\) −1.03453 0.514031i −0.0492078 0.0244500i
\(443\) −36.9563 −1.75585 −0.877924 0.478800i \(-0.841072\pi\)
−0.877924 + 0.478800i \(0.841072\pi\)
\(444\) 6.33170 + 8.35472i 0.300489 + 0.396497i
\(445\) 30.1179i 1.42772i
\(446\) 1.72441 3.47053i 0.0816532 0.164334i
\(447\) −1.31773 −0.0623266
\(448\) 1.16069 21.1342i 0.0548374 0.998495i
\(449\) −27.0181 −1.27506 −0.637531 0.770425i \(-0.720044\pi\)
−0.637531 + 0.770425i \(0.720044\pi\)
\(450\) −3.67116 + 7.38855i −0.173060 + 0.348299i
\(451\) 27.1915i 1.28040i
\(452\) 5.49182 + 7.24650i 0.258314 + 0.340847i
\(453\) −12.1621 −0.571426
\(454\) −21.4782 10.6719i −1.00802 0.500857i
\(455\) 1.85195 4.04232i 0.0868210 0.189507i
\(456\) −38.1264 + 7.22851i −1.78543 + 0.338506i
\(457\) −18.2396 −0.853214 −0.426607 0.904437i \(-0.640291\pi\)
−0.426607 + 0.904437i \(0.640291\pi\)
\(458\) 12.9825 26.1285i 0.606634 1.22091i
\(459\) −0.620363 −0.0289561
\(460\) −2.35255 + 1.78290i −0.109688 + 0.0831281i
\(461\) −29.4658 −1.37236 −0.686179 0.727432i \(-0.740713\pi\)
−0.686179 + 0.727432i \(0.740713\pi\)
\(462\) 44.7809 36.2163i 2.08339 1.68493i
\(463\) 34.1247i 1.58591i −0.609280 0.792955i \(-0.708541\pi\)
0.609280 0.792955i \(-0.291459\pi\)
\(464\) −3.75026 1.05317i −0.174102 0.0488920i
\(465\) 15.6022i 0.723534i
\(466\) −12.7336 + 25.6275i −0.589872 + 1.18717i
\(467\) 10.3935i 0.480952i −0.970655 0.240476i \(-0.922696\pi\)
0.970655 0.240476i \(-0.0773036\pi\)
\(468\) −3.23911 4.27403i −0.149728 0.197567i
\(469\) −6.42774 + 14.0300i −0.296806 + 0.647847i
\(470\) −9.53060 + 19.1812i −0.439614 + 0.884762i
\(471\) 47.1091i 2.17067i
\(472\) −0.380836 2.00870i −0.0175294 0.0924579i
\(473\) 25.3134 1.16391
\(474\) −21.4506 + 43.1713i −0.985259 + 1.98292i
\(475\) 12.5234i 0.574612i
\(476\) 0.938662 + 4.21921i 0.0430235 + 0.193387i
\(477\) 25.6662i 1.17517i
\(478\) 23.8503 + 11.8505i 1.09089 + 0.542031i
\(479\) 25.5721 1.16842 0.584210 0.811602i \(-0.301404\pi\)
0.584210 + 0.811602i \(0.301404\pi\)
\(480\) 15.1940 16.8111i 0.693508 0.767317i
\(481\) 2.19900i 0.100266i
\(482\) −5.44781 2.70687i −0.248141 0.123294i
\(483\) 2.30678 5.03508i 0.104962 0.229104i
\(484\) −37.0880 48.9379i −1.68582 2.22445i
\(485\) 22.0867i 1.00291i
\(486\) −26.8624 13.3472i −1.21850 0.605441i
\(487\) 37.3038i 1.69040i 0.534453 + 0.845198i \(0.320518\pi\)
−0.534453 + 0.845198i \(0.679482\pi\)
\(488\) 4.04288 0.766503i 0.183013 0.0346980i
\(489\) 22.9961i 1.03992i
\(490\) −16.1177 + 4.12320i −0.728124 + 0.186267i
\(491\) 36.8751 1.66415 0.832075 0.554663i \(-0.187153\pi\)
0.832075 + 0.554663i \(0.187153\pi\)
\(492\) −12.1241 15.9978i −0.546596 0.721238i
\(493\) 0.795476 0.0358265
\(494\) −7.28996 3.62218i −0.327991 0.162970i
\(495\) 29.0999 1.30794
\(496\) 4.21226 14.9996i 0.189136 0.673502i
\(497\) 12.0271 + 5.51013i 0.539491 + 0.247163i
\(498\) 16.1513 32.5059i 0.723755 1.45662i
\(499\) −26.1293 −1.16971 −0.584854 0.811139i \(-0.698848\pi\)
−0.584854 + 0.811139i \(0.698848\pi\)
\(500\) −14.5676 19.2220i −0.651482 0.859635i
\(501\) 49.9463i 2.23144i
\(502\) −9.38168 4.66150i −0.418725 0.208053i
\(503\) 24.5290 1.09370 0.546848 0.837232i \(-0.315828\pi\)
0.546848 + 0.837232i \(0.315828\pi\)
\(504\) −4.81318 + 19.4798i −0.214396 + 0.867698i
\(505\) −28.2537 −1.25727
\(506\) −7.18264 3.56886i −0.319307 0.158655i
\(507\) 2.38356i 0.105858i
\(508\) −24.7683 + 18.7709i −1.09892 + 0.832823i
\(509\) 9.69607 0.429771 0.214885 0.976639i \(-0.431062\pi\)
0.214885 + 0.976639i \(0.431062\pi\)
\(510\) −2.05907 + 4.14407i −0.0911773 + 0.183503i
\(511\) 20.5302 + 9.40572i 0.908201 + 0.416085i
\(512\) 19.1458 12.0598i 0.846134 0.532971i
\(513\) −4.37146 −0.193005
\(514\) −11.1725 5.55129i −0.492796 0.244857i
\(515\) −13.1657 −0.580149
\(516\) −14.8929 + 11.2867i −0.655622 + 0.496869i
\(517\) −58.1963 −2.55947
\(518\) 6.39754 5.17398i 0.281092 0.227331i
\(519\) 28.8258i 1.26531i
\(520\) 4.67016 0.885431i 0.204800 0.0388287i
\(521\) 23.8145i 1.04333i 0.853149 + 0.521667i \(0.174690\pi\)
−0.853149 + 0.521667i \(0.825310\pi\)
\(522\) 3.30708 + 1.64320i 0.144747 + 0.0719208i
\(523\) 12.8009i 0.559746i 0.960037 + 0.279873i \(0.0902923\pi\)
−0.960037 + 0.279873i \(0.909708\pi\)
\(524\) 20.7930 15.7582i 0.908347 0.688398i
\(525\) 12.4739 + 5.71479i 0.544404 + 0.249414i
\(526\) 22.5975 + 11.2281i 0.985296 + 0.489566i
\(527\) 3.18160i 0.138593i
\(528\) 59.2764 + 16.6463i 2.57968 + 0.724436i
\(529\) 22.2287 0.966466
\(530\) −20.3733 10.1229i −0.884960 0.439712i
\(531\) 1.93819i 0.0841103i
\(532\) 6.61439 + 29.7312i 0.286770 + 1.28901i
\(533\) 4.21071i 0.182386i
\(534\) 26.8808 54.1001i 1.16325 2.34114i
\(535\) −15.4737 −0.668985
\(536\) −16.2091 + 3.07314i −0.700128 + 0.132740i
\(537\) 5.95023i 0.256772i
\(538\) −13.9742 + 28.1243i −0.602470 + 1.21253i
\(539\) −29.5199 34.2341i −1.27151 1.47457i
\(540\) 2.03441 1.54179i 0.0875471 0.0663483i
\(541\) 42.8431i 1.84197i −0.389597 0.920985i \(-0.627386\pi\)
0.389597 0.920985i \(-0.372614\pi\)
\(542\) −6.38793 + 12.8563i −0.274385 + 0.552225i
\(543\) 31.1024i 1.33473i
\(544\) −3.09836 + 3.42812i −0.132841 + 0.146979i
\(545\) 4.22714i 0.181071i
\(546\) −6.93448 + 5.60823i −0.296769 + 0.240010i
\(547\) 34.8819 1.49144 0.745721 0.666258i \(-0.232105\pi\)
0.745721 + 0.666258i \(0.232105\pi\)
\(548\) −6.18369 8.15942i −0.264154 0.348553i
\(549\) −3.90097 −0.166489
\(550\) 8.84146 17.7942i 0.377001 0.758749i
\(551\) 5.60541 0.238799
\(552\) 5.81711 1.10288i 0.247593 0.0469419i
\(553\) 34.3986 + 15.7594i 1.46278 + 0.670159i
\(554\) 23.4196 + 11.6366i 0.995003 + 0.494390i
\(555\) 8.80862 0.373905
\(556\) −0.392658 + 0.297579i −0.0166524 + 0.0126202i
\(557\) 21.8138i 0.924281i −0.886807 0.462141i \(-0.847082\pi\)
0.886807 0.462141i \(-0.152918\pi\)
\(558\) −6.57216 + 13.2271i −0.278222 + 0.559946i
\(559\) −3.91987 −0.165793
\(560\) −13.5643 11.5036i −0.573196 0.486114i
\(561\) −12.5733 −0.530843
\(562\) 1.68454 3.39029i 0.0710580 0.143011i
\(563\) 40.3058i 1.69869i 0.527842 + 0.849343i \(0.323001\pi\)
−0.527842 + 0.849343i \(0.676999\pi\)
\(564\) 34.2392 25.9485i 1.44173 1.09263i
\(565\) 7.64020 0.321426
\(566\) −28.7028 14.2616i −1.20647 0.599462i
\(567\) −10.8593 + 23.7030i −0.456049 + 0.995432i
\(568\) 2.63443 + 13.8952i 0.110538 + 0.583028i
\(569\) −43.5399 −1.82529 −0.912644 0.408756i \(-0.865963\pi\)
−0.912644 + 0.408756i \(0.865963\pi\)
\(570\) −14.5095 + 29.2017i −0.607736 + 1.22312i
\(571\) −3.15835 −0.132173 −0.0660865 0.997814i \(-0.521051\pi\)
−0.0660865 + 0.997814i \(0.521051\pi\)
\(572\) 7.80092 + 10.2934i 0.326173 + 0.430387i
\(573\) 12.4891 0.521739
\(574\) −12.2502 + 9.90727i −0.511312 + 0.413521i
\(575\) 1.91074i 0.0796836i
\(576\) −19.9624 + 7.85170i −0.831766 + 0.327154i
\(577\) 8.84506i 0.368225i 0.982905 + 0.184112i \(0.0589410\pi\)
−0.982905 + 0.184112i \(0.941059\pi\)
\(578\) −10.2780 + 20.6853i −0.427506 + 0.860395i
\(579\) 39.2132i 1.62964i
\(580\) −2.60867 + 1.97701i −0.108319 + 0.0820907i
\(581\) −25.9005 11.8661i −1.07453 0.492288i
\(582\) −19.7129 + 39.6739i −0.817124 + 1.64453i
\(583\) 61.8133i 2.56005i
\(584\) 4.49693 + 23.7189i 0.186084 + 0.981493i
\(585\) −4.50623 −0.186310
\(586\) −21.1390 + 42.5440i −0.873242 + 1.75748i
\(587\) 25.8252i 1.06592i −0.846140 0.532960i \(-0.821080\pi\)
0.846140 0.532960i \(-0.178920\pi\)
\(588\) 32.6319 + 6.97898i 1.34572 + 0.287808i
\(589\) 22.4195i 0.923779i
\(590\) −1.53850 0.764436i −0.0633389 0.0314713i
\(591\) −42.9332 −1.76604
\(592\) 8.46842 + 2.37814i 0.348050 + 0.0977410i
\(593\) 2.47895i 0.101798i 0.998704 + 0.0508992i \(0.0162087\pi\)
−0.998704 + 0.0508992i \(0.983791\pi\)
\(594\) 6.21132 + 3.08623i 0.254854 + 0.126630i
\(595\) 3.30197 + 1.51277i 0.135368 + 0.0620175i
\(596\) −0.881210 + 0.667833i −0.0360958 + 0.0273555i
\(597\) 21.7474i 0.890064i
\(598\) 1.11226 + 0.552651i 0.0454837 + 0.0225996i
\(599\) 4.73676i 0.193539i −0.995307 0.0967695i \(-0.969149\pi\)
0.995307 0.0967695i \(-0.0308510\pi\)
\(600\) 2.73228 + 14.4113i 0.111545 + 0.588337i
\(601\) 13.4825i 0.549963i 0.961450 + 0.274981i \(0.0886717\pi\)
−0.961450 + 0.274981i \(0.911328\pi\)
\(602\) 9.22297 + 11.4041i 0.375900 + 0.464795i
\(603\) 15.6402 0.636917
\(604\) −8.13320 + 6.16382i −0.330935 + 0.250802i
\(605\) −51.5967 −2.09770
\(606\) 50.7515 + 25.2170i 2.06164 + 1.02437i
\(607\) 12.6426 0.513148 0.256574 0.966525i \(-0.417406\pi\)
0.256574 + 0.966525i \(0.417406\pi\)
\(608\) −21.8329 + 24.1566i −0.885443 + 0.979680i
\(609\) 2.55792 5.58325i 0.103652 0.226245i
\(610\) 1.53857 3.09651i 0.0622949 0.125374i
\(611\) 9.01192 0.364583
\(612\) 3.49124 2.64587i 0.141125 0.106953i
\(613\) 11.8220i 0.477487i 0.971083 + 0.238743i \(0.0767355\pi\)
−0.971083 + 0.238743i \(0.923265\pi\)
\(614\) 28.5505 + 14.1859i 1.15220 + 0.572498i
\(615\) −16.8670 −0.680142
\(616\) 11.5918 46.9142i 0.467048 1.89023i
\(617\) 26.8587 1.08129 0.540645 0.841251i \(-0.318180\pi\)
0.540645 + 0.841251i \(0.318180\pi\)
\(618\) 23.6492 + 11.7506i 0.951311 + 0.472680i
\(619\) 22.1068i 0.888546i −0.895891 0.444273i \(-0.853462\pi\)
0.895891 0.444273i \(-0.146538\pi\)
\(620\) −7.90726 10.4337i −0.317563 0.419027i
\(621\) 0.666972 0.0267647
\(622\) −9.12955 + 18.3740i −0.366062 + 0.736732i
\(623\) −43.1066 19.7489i −1.72703 0.791224i
\(624\) −9.17918 2.57774i −0.367461 0.103192i
\(625\) −9.38784 −0.375514
\(626\) 36.0693 + 17.9218i 1.44162 + 0.716300i
\(627\) −88.5988 −3.53830
\(628\) 23.8751 + 31.5034i 0.952721 + 1.25712i
\(629\) −1.79626 −0.0716214
\(630\) 10.6026 + 13.1099i 0.422418 + 0.522313i
\(631\) 24.0898i 0.958999i 0.877542 + 0.479500i \(0.159182\pi\)
−0.877542 + 0.479500i \(0.840818\pi\)
\(632\) 7.53469 + 39.7413i 0.299714 + 1.58083i
\(633\) 41.4487i 1.64744i
\(634\) 12.6587 + 6.28978i 0.502743 + 0.249799i
\(635\) 26.1139i 1.03630i
\(636\) 27.5612 + 36.3672i 1.09287 + 1.44205i
\(637\) 4.57127 + 5.30128i 0.181120 + 0.210044i
\(638\) −7.96462 3.95740i −0.315322 0.156675i
\(639\) 13.4074i 0.530389i
\(640\) 1.64079 18.9425i 0.0648579 0.748768i
\(641\) −41.5721 −1.64200 −0.821000 0.570929i \(-0.806583\pi\)
−0.821000 + 0.570929i \(0.806583\pi\)
\(642\) 27.7950 + 13.8106i 1.09698 + 0.545060i
\(643\) 32.7452i 1.29134i −0.763615 0.645672i \(-0.776577\pi\)
0.763615 0.645672i \(-0.223423\pi\)
\(644\) −1.00918 4.53621i −0.0397674 0.178752i
\(645\) 15.7020i 0.618265i
\(646\) 2.95878 5.95481i 0.116412 0.234289i
\(647\) −48.6201 −1.91145 −0.955727 0.294254i \(-0.904929\pi\)
−0.955727 + 0.294254i \(0.904929\pi\)
\(648\) −27.3845 + 5.19191i −1.07576 + 0.203957i
\(649\) 4.66785i 0.183229i
\(650\) −1.36913 + 2.75550i −0.0537018 + 0.108080i
\(651\) 22.3309 + 10.2307i 0.875215 + 0.400972i
\(652\) 11.6546 + 15.3783i 0.456428 + 0.602260i
\(653\) 29.9679i 1.17273i −0.810045 0.586367i \(-0.800558\pi\)
0.810045 0.586367i \(-0.199442\pi\)
\(654\) −3.77281 + 7.59312i −0.147529 + 0.296914i
\(655\) 21.9227i 0.856590i
\(656\) −16.2156 4.55373i −0.633111 0.177793i
\(657\) 22.8863i 0.892879i
\(658\) −21.2039 26.2183i −0.826615 1.02210i
\(659\) −2.82799 −0.110163 −0.0550814 0.998482i \(-0.517542\pi\)
−0.0550814 + 0.998482i \(0.517542\pi\)
\(660\) 41.2325 31.2484i 1.60497 1.21634i
\(661\) −15.6250 −0.607742 −0.303871 0.952713i \(-0.598279\pi\)
−0.303871 + 0.952713i \(0.598279\pi\)
\(662\) 3.21277 6.46598i 0.124868 0.251308i
\(663\) 1.94702 0.0756158
\(664\) −5.67325 29.9233i −0.220165 1.16125i
\(665\) 23.2677 + 10.6599i 0.902283 + 0.413373i
\(666\) −7.46768 3.71048i −0.289367 0.143778i
\(667\) −0.855241 −0.0331151
\(668\) −25.3130 33.4007i −0.979390 1.29231i
\(669\) 6.53161i 0.252527i
\(670\) −6.16859 + 12.4148i −0.238314 + 0.479627i
\(671\) 9.39491 0.362687
\(672\) 14.0981 + 32.7700i 0.543845 + 1.26413i
\(673\) −33.9631 −1.30918 −0.654590 0.755984i \(-0.727159\pi\)
−0.654590 + 0.755984i \(0.727159\pi\)
\(674\) −7.88086 + 15.8609i −0.303560 + 0.610941i
\(675\) 1.65235i 0.0635990i
\(676\) −1.20800 1.59397i −0.0464616 0.0613064i
\(677\) −11.9305 −0.458525 −0.229262 0.973365i \(-0.573631\pi\)
−0.229262 + 0.973365i \(0.573631\pi\)
\(678\) −13.7239 6.81904i −0.527064 0.261884i
\(679\) 31.6119 + 14.4827i 1.21315 + 0.555796i
\(680\) 0.723265 + 3.81482i 0.0277359 + 0.146292i
\(681\) 40.4224 1.54899
\(682\) 15.8281 31.8554i 0.606089 1.21981i
\(683\) 16.8447 0.644545 0.322273 0.946647i \(-0.395553\pi\)
0.322273 + 0.946647i \(0.395553\pi\)
\(684\) 24.6014 18.6444i 0.940659 0.712886i
\(685\) −8.60272 −0.328693
\(686\) 4.66734 25.7724i 0.178200 0.983994i
\(687\) 49.1744i 1.87612i
\(688\) −4.23920 + 15.0955i −0.161618 + 0.575512i
\(689\) 9.57202i 0.364665i
\(690\) 2.21377 4.45542i 0.0842769 0.169615i
\(691\) 14.3162i 0.544616i −0.962210 0.272308i \(-0.912213\pi\)
0.962210 0.272308i \(-0.0877869\pi\)
\(692\) 14.6090 + 19.2767i 0.555352 + 0.732791i
\(693\) −19.0814 + 41.6497i −0.724844 + 1.58214i
\(694\) −17.1179 + 34.4512i −0.649785 + 1.30775i
\(695\) 0.413991i 0.0157036i
\(696\) 6.45042 1.22296i 0.244503 0.0463560i
\(697\) 3.43952 0.130281
\(698\) 10.6050 21.3436i 0.401407 0.807867i
\(699\) 48.2315i 1.82428i
\(700\) 11.2380 2.50015i 0.424755 0.0944967i
\(701\) 14.5603i 0.549935i 0.961454 + 0.274967i \(0.0886670\pi\)
−0.961454 + 0.274967i \(0.911333\pi\)
\(702\) −0.961847 0.477915i −0.0363026 0.0180377i
\(703\) −12.6575 −0.477387
\(704\) 48.0765 18.9097i 1.81195 0.712685i
\(705\) 36.0994i 1.35958i
\(706\) −7.01619 3.48615i −0.264058 0.131203i
\(707\) 18.5266 40.4385i 0.696763 1.52085i
\(708\) 2.08129 + 2.74628i 0.0782198 + 0.103212i
\(709\) 35.4973i 1.33313i 0.745448 + 0.666564i \(0.232236\pi\)
−0.745448 + 0.666564i \(0.767764\pi\)
\(710\) 10.6425 + 5.28798i 0.399407 + 0.198454i
\(711\) 38.3463i 1.43810i
\(712\) −9.44208 49.8018i −0.353857 1.86640i
\(713\) 3.42064i 0.128104i
\(714\) −4.58108 5.66444i −0.171443 0.211986i
\(715\) 10.8526 0.405864
\(716\) −3.01561 3.97912i −0.112699 0.148707i
\(717\) −44.8867 −1.67633
\(718\) −23.1703 11.5127i −0.864709 0.429650i
\(719\) 23.4197 0.873406 0.436703 0.899606i \(-0.356146\pi\)
0.436703 + 0.899606i \(0.356146\pi\)
\(720\) −4.87332 + 17.3536i −0.181618 + 0.646732i
\(721\) 8.63301 18.8436i 0.321510 0.701771i
\(722\) 8.89296 17.8979i 0.330962 0.666090i
\(723\) 10.2529 0.381309
\(724\) −15.7629 20.7992i −0.585822 0.772997i
\(725\) 2.11877i 0.0786891i
\(726\) 92.6820 + 46.0511i 3.43975 + 1.70912i
\(727\) 19.4068 0.719757 0.359879 0.932999i \(-0.382818\pi\)
0.359879 + 0.932999i \(0.382818\pi\)
\(728\) −1.79504 + 7.26484i −0.0665286 + 0.269253i
\(729\) 20.9926 0.777503
\(730\) 18.1667 + 9.02651i 0.672378 + 0.334086i
\(731\) 3.20195i 0.118428i
\(732\) −5.52740 + 4.18899i −0.204299 + 0.154829i
\(733\) −13.5804 −0.501603 −0.250802 0.968038i \(-0.580694\pi\)
−0.250802 + 0.968038i \(0.580694\pi\)
\(734\) −20.4025 + 41.0619i −0.753071 + 1.51562i
\(735\) 21.2355 18.3113i 0.783284 0.675422i
\(736\) 3.33114 3.68567i 0.122788 0.135856i
\(737\) −37.6671 −1.38748
\(738\) 14.2993 + 7.10493i 0.526365 + 0.261536i
\(739\) 17.3365 0.637734 0.318867 0.947800i \(-0.396698\pi\)
0.318867 + 0.947800i \(0.396698\pi\)
\(740\) 5.89061 4.46425i 0.216543 0.164109i
\(741\) 13.7199 0.504012
\(742\) 27.8478 22.5218i 1.02233 0.826800i
\(743\) 9.07974i 0.333104i −0.986033 0.166552i \(-0.946737\pi\)
0.986033 0.166552i \(-0.0532633\pi\)
\(744\) 4.89135 + 25.7992i 0.179326 + 0.945845i
\(745\) 0.929085i 0.0340390i
\(746\) −15.9872 7.94357i −0.585331 0.290835i
\(747\) 28.8729i 1.05640i
\(748\) −8.40815 + 6.37218i −0.307432 + 0.232990i
\(749\) 10.1464 22.1469i 0.370742 0.809231i
\(750\) 36.4040 + 18.0881i 1.32929 + 0.660485i
\(751\) 7.78993i 0.284259i 0.989848 + 0.142129i \(0.0453949\pi\)
−0.989848 + 0.142129i \(0.954605\pi\)
\(752\) 9.74607 34.7052i 0.355402 1.26557i
\(753\) 17.6565 0.643440
\(754\) 1.23335 + 0.612818i 0.0449160 + 0.0223175i
\(755\) 8.57507i 0.312079i
\(756\) 0.872711 + 3.92277i 0.0317402 + 0.142670i
\(757\) 44.2936i 1.60988i −0.593357 0.804939i \(-0.702198\pi\)
0.593357 0.804939i \(-0.297802\pi\)
\(758\) −11.4514 + 23.0471i −0.415935 + 0.837107i
\(759\) 13.5179 0.490668
\(760\) 5.09657 + 26.8816i 0.184872 + 0.975098i
\(761\) 8.33939i 0.302303i 0.988511 + 0.151151i \(0.0482981\pi\)
−0.988511 + 0.151151i \(0.951702\pi\)
\(762\) 23.3072 46.9079i 0.844332 1.69929i
\(763\) 6.05016 + 2.77183i 0.219030 + 0.100347i
\(764\) 8.35186 6.32953i 0.302160 0.228994i
\(765\) 3.68092i 0.133084i
\(766\) −11.5990 + 23.3441i −0.419090 + 0.843455i
\(767\) 0.722834i 0.0261000i
\(768\) −19.8539 + 32.5616i −0.716416 + 1.17496i
\(769\) 25.5540i 0.921500i 0.887530 + 0.460750i \(0.152419\pi\)
−0.887530 + 0.460750i \(0.847581\pi\)
\(770\) −25.5348 31.5734i −0.920210 1.13783i
\(771\) 21.0268 0.757262
\(772\) 19.8734 + 26.2231i 0.715260 + 0.943791i
\(773\) 15.7192 0.565381 0.282690 0.959211i \(-0.408773\pi\)
0.282690 + 0.959211i \(0.408773\pi\)
\(774\) 6.61420 13.3117i 0.237742 0.478478i
\(775\) 8.47426 0.304404
\(776\) 6.92428 + 36.5218i 0.248567 + 1.31106i
\(777\) −5.77600 + 12.6075i −0.207213 + 0.452290i
\(778\) −25.1484 12.4955i −0.901614 0.447987i
\(779\) 24.2369 0.868379
\(780\) −6.38501 + 4.83894i −0.228620 + 0.173262i
\(781\) 32.2898i 1.15542i
\(782\) −0.451433 + 0.908550i −0.0161432 + 0.0324897i
\(783\) 0.739585 0.0264306
\(784\) 25.3590 11.8710i 0.905680 0.423963i
\(785\) 33.2149 1.18549
\(786\) −19.5664 + 39.3792i −0.697912 + 1.40461i
\(787\) 40.7884i 1.45395i −0.686665 0.726974i \(-0.740926\pi\)
0.686665 0.726974i \(-0.259074\pi\)
\(788\) −28.7108 + 21.7587i −1.02278 + 0.775123i
\(789\) −42.5289 −1.51407
\(790\) 30.4385 + 15.1241i 1.08295 + 0.538090i
\(791\) −5.00984 + 10.9351i −0.178129 + 0.388809i
\(792\) −48.1186 + 9.12295i −1.70982 + 0.324170i
\(793\) −1.45484 −0.0516628
\(794\) −4.69934 + 9.45784i −0.166773 + 0.335646i
\(795\) 38.3430 1.35989
\(796\) 11.0217 + 14.5432i 0.390654 + 0.515471i
\(797\) 29.9750 1.06177 0.530884 0.847444i \(-0.321860\pi\)
0.530884 + 0.847444i \(0.321860\pi\)
\(798\) −32.2811 39.9151i −1.14274 1.41298i
\(799\) 7.36139i 0.260427i
\(800\) 9.13086 + 8.25255i 0.322825 + 0.291772i
\(801\) 48.0537i 1.69789i
\(802\) 2.49166 5.01470i 0.0879837 0.177075i
\(803\) 55.1182i 1.94508i
\(804\) 22.1610 16.7949i 0.781559 0.592311i
\(805\) −3.55005 1.62643i −0.125123 0.0573240i
\(806\) −2.45104 + 4.93293i −0.0863341 + 0.173755i
\(807\) 52.9306i 1.86324i
\(808\) 46.7193 8.85766i 1.64358 0.311611i
\(809\) 28.3634 0.997205 0.498603 0.866831i \(-0.333847\pi\)
0.498603 + 0.866831i \(0.333847\pi\)
\(810\) −10.4215 + 20.9742i −0.366174 + 0.736959i
\(811\) 17.8449i 0.626619i 0.949651 + 0.313309i \(0.101438\pi\)
−0.949651 + 0.313309i \(0.898562\pi\)
\(812\) −1.11905 5.03007i −0.0392711 0.176521i
\(813\) 24.1958i 0.848584i
\(814\) 17.9848 + 8.93616i 0.630368 + 0.313212i
\(815\) 16.2138 0.567943
\(816\) 2.10563 7.49802i 0.0737117 0.262483i
\(817\) 22.5629i 0.789376i
\(818\) −23.4951 11.6741i −0.821486 0.408174i
\(819\) 2.95483 6.44961i 0.103250 0.225368i
\(820\) −11.2795 + 8.54827i −0.393897 + 0.298518i
\(821\) 4.62357i 0.161364i −0.996740 0.0806818i \(-0.974290\pi\)
0.996740 0.0806818i \(-0.0257098\pi\)
\(822\) 15.4529 + 7.67810i 0.538981 + 0.267805i
\(823\) 47.4508i 1.65403i 0.562178 + 0.827016i \(0.309964\pi\)
−0.562178 + 0.827016i \(0.690036\pi\)
\(824\) 21.7703 4.12750i 0.758404 0.143788i
\(825\) 33.4891i 1.16594i
\(826\) 2.10294 1.70074i 0.0731705 0.0591763i
\(827\) −21.4189 −0.744807 −0.372404 0.928071i \(-0.621466\pi\)
−0.372404 + 0.928071i \(0.621466\pi\)
\(828\) −3.75354 + 2.84465i −0.130445 + 0.0988585i
\(829\) −15.5176 −0.538947 −0.269474 0.963008i \(-0.586850\pi\)
−0.269474 + 0.963008i \(0.586850\pi\)
\(830\) −22.9187 11.3877i −0.795520 0.395272i
\(831\) −44.0762 −1.52899
\(832\) −7.44483 + 2.92823i −0.258103 + 0.101518i
\(833\) −4.33035 + 3.73404i −0.150038 + 0.129377i
\(834\) 0.369495 0.743642i 0.0127946 0.0257502i
\(835\) −35.2153 −1.21868
\(836\) −59.2489 + 44.9023i −2.04917 + 1.55298i
\(837\) 2.95806i 0.102245i
\(838\) −50.8245 25.2533i −1.75570 0.872360i
\(839\) 8.76582 0.302630 0.151315 0.988486i \(-0.451649\pi\)
0.151315 + 0.988486i \(0.451649\pi\)
\(840\) 29.1010 + 7.19045i 1.00408 + 0.248094i
\(841\) 28.0516 0.967298
\(842\) 9.51903 + 4.72974i 0.328048 + 0.162998i
\(843\) 6.38059i 0.219759i
\(844\) −21.0064 27.7181i −0.723070 0.954096i
\(845\) −1.68057 −0.0578132
\(846\) −15.2063 + 30.6040i −0.522802 + 1.05219i
\(847\) 33.8330 73.8485i 1.16252 2.53746i
\(848\) 36.8622 + 10.3518i 1.26585 + 0.355482i
\(849\) 54.0193 1.85394
\(850\) −2.25083 1.11838i −0.0772030 0.0383600i
\(851\) 1.93121 0.0662010
\(852\) −14.3973 18.9974i −0.493244 0.650839i
\(853\) 21.4369 0.733985 0.366992 0.930224i \(-0.380387\pi\)
0.366992 + 0.930224i \(0.380387\pi\)
\(854\) 3.42305 + 4.23255i 0.117134 + 0.144835i
\(855\) 25.9380i 0.887060i
\(856\) 25.5867 4.85107i 0.874536 0.165806i
\(857\) 48.0166i 1.64021i 0.572210 + 0.820107i \(0.306086\pi\)
−0.572210 + 0.820107i \(0.693914\pi\)
\(858\) −19.4943 9.68617i −0.665524 0.330680i
\(859\) 11.4813i 0.391738i 0.980630 + 0.195869i \(0.0627527\pi\)
−0.980630 + 0.195869i \(0.937247\pi\)
\(860\) 7.95784 + 10.5004i 0.271360 + 0.358062i
\(861\) 11.0600 24.1411i 0.376925 0.822727i
\(862\) −29.4532 14.6345i −1.00318 0.498452i
\(863\) 14.5463i 0.495163i 0.968867 + 0.247581i \(0.0796358\pi\)
−0.968867 + 0.247581i \(0.920364\pi\)
\(864\) −2.88067 + 3.18725i −0.0980023 + 0.108433i
\(865\) 20.3240 0.691037
\(866\) 15.2012 + 7.55306i 0.516558 + 0.256663i
\(867\) 38.9302i 1.32214i
\(868\) 20.1183 4.47579i 0.682861 0.151918i
\(869\) 92.3515i 3.13281i
\(870\) 2.45479 4.94048i 0.0832251 0.167498i
\(871\) 5.83289 0.197640
\(872\) 1.32523 + 6.98985i 0.0448779 + 0.236706i
\(873\) 35.2398i 1.19269i
\(874\) −3.18107 + 6.40220i −0.107601 + 0.216558i
\(875\) 13.2891 29.0065i 0.449253 0.980598i
\(876\) −24.5760 32.4282i −0.830347 1.09565i
\(877\) 48.2621i 1.62969i 0.579675 + 0.814847i \(0.303179\pi\)
−0.579675 + 0.814847i \(0.696821\pi\)
\(878\) −12.4976 + 25.1525i −0.421774 + 0.848857i
\(879\) 80.0688i 2.70065i
\(880\) 11.7367 41.7937i 0.395644 1.40886i
\(881\) 3.34804i 0.112798i 0.998408 + 0.0563991i \(0.0179619\pi\)
−0.998408 + 0.0563991i \(0.982038\pi\)
\(882\) −25.7161 + 6.57865i −0.865908 + 0.221515i
\(883\) −39.7732 −1.33847 −0.669237 0.743049i \(-0.733379\pi\)
−0.669237 + 0.743049i \(0.733379\pi\)
\(884\) 1.30203 0.986757i 0.0437921 0.0331882i
\(885\) 2.89548 0.0973306
\(886\) 23.2560 46.8049i 0.781302 1.57244i
\(887\) 1.92704 0.0647036 0.0323518 0.999477i \(-0.489700\pi\)
0.0323518 + 0.999477i \(0.489700\pi\)
\(888\) −14.5656 + 2.76154i −0.488790 + 0.0926713i
\(889\) −37.3760 17.1235i −1.25355 0.574303i
\(890\) −38.1440 18.9527i −1.27859 0.635296i
\(891\) −63.6365 −2.13190
\(892\) 3.31025 + 4.36790i 0.110835 + 0.146248i
\(893\) 51.8729i 1.73586i
\(894\) 0.829228 1.66890i 0.0277335 0.0558162i
\(895\) −4.19530 −0.140233
\(896\) 26.0358 + 14.7694i 0.869796 + 0.493411i
\(897\) −2.09330 −0.0698931
\(898\) 17.0021 34.2182i 0.567366 1.14188i
\(899\) 3.79304i 0.126505i
\(900\) −7.04732 9.29900i −0.234911 0.309967i
\(901\) −7.81891 −0.260486
\(902\) −34.4378 17.1112i −1.14665 0.569740i
\(903\) −22.4737 10.2961i −0.747877 0.342633i
\(904\) −12.6336 + 2.39524i −0.420186 + 0.0796644i
\(905\) −21.9292 −0.728952
\(906\) 7.65343 15.4032i 0.254268 0.511737i
\(907\) −47.2726 −1.56966 −0.784831 0.619710i \(-0.787250\pi\)
−0.784831 + 0.619710i \(0.787250\pi\)
\(908\) 27.0318 20.4862i 0.897080 0.679860i
\(909\) −45.0794 −1.49519
\(910\) 3.95416 + 4.88926i 0.131079 + 0.162077i
\(911\) 57.2072i 1.89536i 0.319222 + 0.947680i \(0.396578\pi\)
−0.319222 + 0.947680i \(0.603422\pi\)
\(912\) 14.8375 52.8356i 0.491320 1.74956i
\(913\) 69.5362i 2.30131i
\(914\) 11.4779 23.1003i 0.379656 0.764091i
\(915\) 5.82770i 0.192658i
\(916\) 24.9218 + 32.8845i 0.823440 + 1.08654i
\(917\) 31.3771 + 14.3752i 1.03616 + 0.474710i
\(918\) 0.390385 0.785685i 0.0128846 0.0259315i
\(919\) 11.7893i 0.388894i −0.980913 0.194447i \(-0.937709\pi\)
0.980913 0.194447i \(-0.0622912\pi\)
\(920\) −0.777604 4.10144i −0.0256369 0.135220i
\(921\) −53.7326 −1.77055
\(922\) 18.5424 37.3182i 0.610660 1.22901i
\(923\) 5.00020i 0.164584i
\(924\) 17.6877 + 79.5049i 0.581883 + 2.61552i
\(925\) 4.78437i 0.157309i
\(926\) 43.2187 + 21.4742i 1.42025 + 0.705685i
\(927\) −21.0061 −0.689931
\(928\) 3.69381 4.08694i 0.121255 0.134160i
\(929\) 6.11545i 0.200641i −0.994955 0.100321i \(-0.968013\pi\)
0.994955 0.100321i \(-0.0319869\pi\)
\(930\) 19.7600 + 9.81821i 0.647957 + 0.321952i
\(931\) −30.5143 + 26.3123i −1.00007 + 0.862352i
\(932\) −24.4440 32.2540i −0.800688 1.05651i
\(933\) 34.5803i 1.13211i
\(934\) 13.1632 + 6.54045i 0.430714 + 0.214010i
\(935\) 8.86495i 0.289915i
\(936\) 7.45134 1.41272i 0.243555 0.0461763i
\(937\) 13.1924i 0.430978i −0.976506 0.215489i \(-0.930866\pi\)
0.976506 0.215489i \(-0.0691345\pi\)
\(938\) −13.7241 16.9696i −0.448106 0.554076i
\(939\) −67.8831 −2.21528
\(940\) −18.2953 24.1408i −0.596728 0.787387i
\(941\) 1.98071 0.0645694 0.0322847 0.999479i \(-0.489722\pi\)
0.0322847 + 0.999479i \(0.489722\pi\)
\(942\) −59.6633 29.6450i −1.94393 0.965887i
\(943\) −3.69793 −0.120421
\(944\) 2.78366 + 0.781719i 0.0906003 + 0.0254428i
\(945\) 3.06997 + 1.40648i 0.0998662 + 0.0457528i
\(946\) −15.9293 + 32.0592i −0.517907 + 1.04233i
\(947\) 37.0962 1.20547 0.602733 0.797943i \(-0.294079\pi\)
0.602733 + 0.797943i \(0.294079\pi\)
\(948\) −41.1775 54.3340i −1.33738 1.76469i
\(949\) 8.53527i 0.277067i
\(950\) −15.8608 7.88077i −0.514591 0.255686i
\(951\) −23.8240 −0.772547
\(952\) −5.93428 1.46628i −0.192331 0.0475224i
\(953\) 1.46318 0.0473971 0.0236985 0.999719i \(-0.492456\pi\)
0.0236985 + 0.999719i \(0.492456\pi\)
\(954\) −32.5060 16.1513i −1.05242 0.522919i
\(955\) 8.80561i 0.284943i
\(956\) −30.0172 + 22.7488i −0.970826 + 0.735749i
\(957\) 14.9896 0.484545
\(958\) −16.0921 + 32.3869i −0.519914 + 1.04637i
\(959\) 5.64098 12.3128i 0.182157 0.397600i
\(960\) 11.7297 + 29.8220i 0.378575 + 0.962501i
\(961\) −15.8293 −0.510622
\(962\) −2.78502 1.38380i −0.0897926 0.0446154i
\(963\) −24.6886 −0.795578
\(964\) 6.85644 5.19621i 0.220831 0.167359i
\(965\) 27.6478 0.890014
\(966\) 4.92526 + 6.09001i 0.158468 + 0.195943i
\(967\) 0.345097i 0.0110976i 0.999985 + 0.00554878i \(0.00176624\pi\)
−0.999985 + 0.00554878i \(0.998234\pi\)
\(968\) 85.3184 16.1758i 2.74224 0.519909i
\(969\) 11.2071i 0.360023i
\(970\) 27.9726 + 13.8988i 0.898147 + 0.446264i
\(971\) 6.24436i 0.200391i −0.994968 0.100195i \(-0.968053\pi\)
0.994968 0.100195i \(-0.0319468\pi\)
\(972\) 33.8082 25.6218i 1.08440 0.821821i
\(973\) −0.592530 0.271462i −0.0189956 0.00870269i
\(974\) −47.2450 23.4747i −1.51383 0.752178i
\(975\) 5.18592i 0.166082i
\(976\) −1.57335 + 5.60263i −0.0503618 + 0.179336i
\(977\) 21.5410 0.689157 0.344578 0.938758i \(-0.388022\pi\)
0.344578 + 0.938758i \(0.388022\pi\)
\(978\) −29.1244 14.4711i −0.931297 0.462735i
\(979\) 115.730i 3.69875i
\(980\) 4.92063 23.0076i 0.157184 0.734951i
\(981\) 6.74449i 0.215335i
\(982\) −23.2049 + 46.7020i −0.740499 + 1.49032i
\(983\) −31.1862 −0.994684 −0.497342 0.867555i \(-0.665691\pi\)
−0.497342 + 0.867555i \(0.665691\pi\)
\(984\) 27.8906 5.28787i 0.889121 0.168571i
\(985\) 30.2707i 0.964503i
\(986\) −0.500581 + 1.00746i −0.0159417 + 0.0320842i
\(987\) 51.6678 + 23.6711i 1.64460 + 0.753461i
\(988\) 9.17492 6.95329i 0.291893 0.221214i
\(989\) 3.44251i 0.109466i
\(990\) −18.3121 + 36.8548i −0.581998 + 1.17132i
\(991\) 7.02945i 0.223298i 0.993748 + 0.111649i \(0.0356132\pi\)
−0.993748 + 0.111649i \(0.964387\pi\)
\(992\) 16.3462 + 14.7738i 0.518991 + 0.469069i
\(993\) 12.1691i 0.386175i
\(994\) −14.5470 + 11.7648i −0.461404 + 0.373158i
\(995\) 15.3333 0.486100
\(996\) 31.0047 + 40.9109i 0.982420 + 1.29631i
\(997\) 30.9954 0.981636 0.490818 0.871262i \(-0.336698\pi\)
0.490818 + 0.871262i \(0.336698\pi\)
\(998\) 16.4428 33.0925i 0.520487 1.04753i
\(999\) −1.67005 −0.0528380
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.a.27.18 yes 48
4.3 odd 2 2912.2.h.a.2575.41 48
7.6 odd 2 728.2.h.b.27.18 yes 48
8.3 odd 2 728.2.h.b.27.17 yes 48
8.5 even 2 2912.2.h.b.2575.41 48
28.27 even 2 2912.2.h.b.2575.8 48
56.13 odd 2 2912.2.h.a.2575.8 48
56.27 even 2 inner 728.2.h.a.27.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.17 48 56.27 even 2 inner
728.2.h.a.27.18 yes 48 1.1 even 1 trivial
728.2.h.b.27.17 yes 48 8.3 odd 2
728.2.h.b.27.18 yes 48 7.6 odd 2
2912.2.h.a.2575.8 48 56.13 odd 2
2912.2.h.a.2575.41 48 4.3 odd 2
2912.2.h.b.2575.8 48 28.27 even 2
2912.2.h.b.2575.41 48 8.5 even 2