Properties

Label 2925.2.c.r
Level $2925$
Weight $2$
Character orbit 2925.c
Analytic conductor $23.356$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2925,2,Mod(2224,2925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2925.2224");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} + ( - 2 \beta_{3} - 1) q^{4} + (2 \beta_{2} + 2 \beta_1) q^{7} + ( - \beta_{2} - 3 \beta_1) q^{8} + ( - \beta_{3} - 2) q^{11} + \beta_1 q^{13} + ( - 4 \beta_{3} - 6) q^{14}+ \cdots + ( - 13 \beta_{2} - 21 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{11} - 24 q^{14} + 12 q^{16} - 8 q^{19} - 4 q^{26} + 24 q^{31} + 8 q^{34} + 24 q^{41} + 24 q^{44} - 8 q^{46} - 20 q^{49} + 40 q^{56} + 24 q^{59} - 32 q^{61} + 28 q^{64} - 8 q^{71} + 48 q^{74}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2224.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
2.41421i 0 −3.82843 0 0 4.82843i 4.41421i 0 0
2224.2 0.414214i 0 1.82843 0 0 0.828427i 1.58579i 0 0
2224.3 0.414214i 0 1.82843 0 0 0.828427i 1.58579i 0 0
2224.4 2.41421i 0 −3.82843 0 0 4.82843i 4.41421i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.c.r 4
3.b odd 2 1 325.2.b.f 4
5.b even 2 1 inner 2925.2.c.r 4
5.c odd 4 1 585.2.a.m 2
5.c odd 4 1 2925.2.a.u 2
15.d odd 2 1 325.2.b.f 4
15.e even 4 1 65.2.a.b 2
15.e even 4 1 325.2.a.i 2
20.e even 4 1 9360.2.a.cd 2
60.l odd 4 1 1040.2.a.j 2
60.l odd 4 1 5200.2.a.bu 2
65.h odd 4 1 7605.2.a.x 2
105.k odd 4 1 3185.2.a.j 2
120.q odd 4 1 4160.2.a.z 2
120.w even 4 1 4160.2.a.bf 2
165.l odd 4 1 7865.2.a.j 2
195.j odd 4 1 845.2.c.b 4
195.s even 4 1 845.2.a.g 2
195.s even 4 1 4225.2.a.r 2
195.u odd 4 1 845.2.c.b 4
195.bc odd 12 2 845.2.m.f 8
195.bf even 12 2 845.2.e.c 4
195.bl even 12 2 845.2.e.h 4
195.bn odd 12 2 845.2.m.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.b 2 15.e even 4 1
325.2.a.i 2 15.e even 4 1
325.2.b.f 4 3.b odd 2 1
325.2.b.f 4 15.d odd 2 1
585.2.a.m 2 5.c odd 4 1
845.2.a.g 2 195.s even 4 1
845.2.c.b 4 195.j odd 4 1
845.2.c.b 4 195.u odd 4 1
845.2.e.c 4 195.bf even 12 2
845.2.e.h 4 195.bl even 12 2
845.2.m.f 8 195.bc odd 12 2
845.2.m.f 8 195.bn odd 12 2
1040.2.a.j 2 60.l odd 4 1
2925.2.a.u 2 5.c odd 4 1
2925.2.c.r 4 1.a even 1 1 trivial
2925.2.c.r 4 5.b even 2 1 inner
3185.2.a.j 2 105.k odd 4 1
4160.2.a.z 2 120.q odd 4 1
4160.2.a.bf 2 120.w even 4 1
4225.2.a.r 2 195.s even 4 1
5200.2.a.bu 2 60.l odd 4 1
7605.2.a.x 2 65.h odd 4 1
7865.2.a.j 2 165.l odd 4 1
9360.2.a.cd 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2925, [\chi])\):

\( T_{2}^{4} + 6T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 24T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 12 T + 18)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 28)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 132T^{2} + 1156 \) Copy content Toggle raw display
$47$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + 216T^{2} + 1296 \) Copy content Toggle raw display
$59$ \( (T^{2} - 12 T + 18)^{2} \) Copy content Toggle raw display
$61$ \( (T + 8)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4 T - 94)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
$89$ \( (T - 6)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
show more
show less