Properties

Label 9360.2.a.cd
Level $9360$
Weight $2$
Character orbit 9360.a
Self dual yes
Analytic conductor $74.740$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9360,2,Mod(1,9360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.7399762919\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + (2 \beta - 2) q^{7} + ( - \beta + 2) q^{11} - q^{13} + (2 \beta + 2) q^{17} + ( - \beta - 2) q^{19} - \beta q^{23} + q^{25} - 4 \beta q^{29} + ( - 3 \beta - 6) q^{31} + ( - 2 \beta + 2) q^{35} + \cdots + (4 \beta - 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} + 4 q^{11} - 2 q^{13} + 4 q^{17} - 4 q^{19} + 2 q^{25} - 12 q^{31} + 4 q^{35} + 12 q^{41} + 8 q^{43} - 4 q^{47} + 10 q^{49} + 12 q^{53} - 4 q^{55} + 12 q^{59} - 16 q^{61} + 2 q^{65}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −1.00000 0 −4.82843 0 0 0
1.2 0 0 0 −1.00000 0 0.828427 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9360.2.a.cd 2
3.b odd 2 1 1040.2.a.j 2
4.b odd 2 1 585.2.a.m 2
12.b even 2 1 65.2.a.b 2
15.d odd 2 1 5200.2.a.bu 2
20.d odd 2 1 2925.2.a.u 2
20.e even 4 2 2925.2.c.r 4
24.f even 2 1 4160.2.a.bf 2
24.h odd 2 1 4160.2.a.z 2
52.b odd 2 1 7605.2.a.x 2
60.h even 2 1 325.2.a.i 2
60.l odd 4 2 325.2.b.f 4
84.h odd 2 1 3185.2.a.j 2
132.d odd 2 1 7865.2.a.j 2
156.h even 2 1 845.2.a.g 2
156.l odd 4 2 845.2.c.b 4
156.p even 6 2 845.2.e.h 4
156.r even 6 2 845.2.e.c 4
156.v odd 12 4 845.2.m.f 8
780.d even 2 1 4225.2.a.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.b 2 12.b even 2 1
325.2.a.i 2 60.h even 2 1
325.2.b.f 4 60.l odd 4 2
585.2.a.m 2 4.b odd 2 1
845.2.a.g 2 156.h even 2 1
845.2.c.b 4 156.l odd 4 2
845.2.e.c 4 156.r even 6 2
845.2.e.h 4 156.p even 6 2
845.2.m.f 8 156.v odd 12 4
1040.2.a.j 2 3.b odd 2 1
2925.2.a.u 2 20.d odd 2 1
2925.2.c.r 4 20.e even 4 2
3185.2.a.j 2 84.h odd 2 1
4160.2.a.z 2 24.h odd 2 1
4160.2.a.bf 2 24.f even 2 1
4225.2.a.r 2 780.d even 2 1
5200.2.a.bu 2 15.d odd 2 1
7605.2.a.x 2 52.b odd 2 1
7865.2.a.j 2 132.d odd 2 1
9360.2.a.cd 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9360))\):

\( T_{7}^{2} + 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} + 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 4 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} + 2 \) Copy content Toggle raw display
\( T_{31}^{2} + 12T_{31} + 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 2 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T + 2 \) Copy content Toggle raw display
$23$ \( T^{2} - 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 32 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 18 \) Copy content Toggle raw display
$37$ \( T^{2} - 72 \) Copy content Toggle raw display
$41$ \( T^{2} - 12T + 28 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T - 34 \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T - 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 18 \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( (T - 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 94 \) Copy content Toggle raw display
$73$ \( T^{2} - 72 \) Copy content Toggle raw display
$79$ \( T^{2} - 72 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
show more
show less