Properties

Label 294.6.e.j.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.j.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-13.0000 + 22.5167i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(52.0000 + 90.0666i) q^{10} +(179.000 + 310.037i) q^{11} +(-72.0000 + 124.708i) q^{12} +332.000 q^{13} +234.000 q^{15} +(-128.000 + 221.703i) q^{16} +(-63.0000 - 109.119i) q^{17} +(162.000 + 280.592i) q^{18} +(1100.00 - 1905.26i) q^{19} +416.000 q^{20} +1432.00 q^{22} +(1071.00 - 1855.03i) q^{23} +(288.000 + 498.831i) q^{24} +(1224.50 + 2120.90i) q^{25} +(664.000 - 1150.08i) q^{26} +729.000 q^{27} -3610.00 q^{29} +(468.000 - 810.600i) q^{30} +(-2834.00 - 4908.63i) q^{31} +(512.000 + 886.810i) q^{32} +(1611.00 - 2790.33i) q^{33} -504.000 q^{34} +1296.00 q^{36} +(1461.00 - 2530.53i) q^{37} +(-4400.00 - 7621.02i) q^{38} +(-1494.00 - 2587.68i) q^{39} +(832.000 - 1441.07i) q^{40} -2142.00 q^{41} +6388.00 q^{43} +(2864.00 - 4960.59i) q^{44} +(-1053.00 - 1823.85i) q^{45} +(-4284.00 - 7420.11i) q^{46} +(3260.00 - 5646.49i) q^{47} +2304.00 q^{48} +9796.00 q^{50} +(-567.000 + 982.073i) q^{51} +(-2656.00 - 4600.33i) q^{52} +(5351.00 + 9268.20i) q^{53} +(1458.00 - 2525.33i) q^{54} -9308.00 q^{55} -19800.0 q^{57} +(-7220.00 + 12505.4i) q^{58} +(-21262.0 - 36826.9i) q^{59} +(-1872.00 - 3242.40i) q^{60} +(22420.0 - 38832.6i) q^{61} -22672.0 q^{62} +4096.00 q^{64} +(-4316.00 + 7475.53i) q^{65} +(-6444.00 - 11161.3i) q^{66} +(724.000 + 1254.00i) q^{67} +(-1008.00 + 1745.91i) q^{68} -19278.0 q^{69} -4402.00 q^{71} +(2592.00 - 4489.48i) q^{72} +(-10250.0 - 17753.5i) q^{73} +(-5844.00 - 10122.1i) q^{74} +(11020.5 - 19088.1i) q^{75} -35200.0 q^{76} -11952.0 q^{78} +(-32618.0 + 56496.0i) q^{79} +(-3328.00 - 5764.27i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-4284.00 + 7420.11i) q^{82} -102804. q^{83} +3276.00 q^{85} +(12776.0 - 22128.7i) q^{86} +(16245.0 + 28137.2i) q^{87} +(-11456.0 - 19842.4i) q^{88} +(64003.0 - 110856. i) q^{89} -8424.00 q^{90} -34272.0 q^{92} +(-25506.0 + 44177.7i) q^{93} +(-13040.0 - 22585.9i) q^{94} +(28600.0 + 49536.7i) q^{95} +(4608.00 - 7981.29i) q^{96} -113324. q^{97} -28998.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} - 26 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} + 104 q^{10} + 358 q^{11} - 144 q^{12} + 664 q^{13} + 468 q^{15} - 256 q^{16} - 126 q^{17} + 324 q^{18} + 2200 q^{19} + 832 q^{20}+ \cdots - 57996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −13.0000 + 22.5167i −0.232551 + 0.402790i −0.958558 0.284897i \(-0.908041\pi\)
0.726007 + 0.687687i \(0.241374\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 52.0000 + 90.0666i 0.164438 + 0.284816i
\(11\) 179.000 + 310.037i 0.446037 + 0.772560i 0.998124 0.0612274i \(-0.0195015\pi\)
−0.552086 + 0.833787i \(0.686168\pi\)
\(12\) −72.0000 + 124.708i −0.144338 + 0.250000i
\(13\) 332.000 0.544853 0.272427 0.962177i \(-0.412174\pi\)
0.272427 + 0.962177i \(0.412174\pi\)
\(14\) 0 0
\(15\) 234.000 0.268527
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −63.0000 109.119i −0.0528711 0.0915754i 0.838379 0.545088i \(-0.183504\pi\)
−0.891250 + 0.453513i \(0.850171\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) 1100.00 1905.26i 0.699051 1.21079i −0.269745 0.962932i \(-0.586939\pi\)
0.968796 0.247860i \(-0.0797272\pi\)
\(20\) 416.000 0.232551
\(21\) 0 0
\(22\) 1432.00 0.630792
\(23\) 1071.00 1855.03i 0.422153 0.731190i −0.573997 0.818858i \(-0.694608\pi\)
0.996150 + 0.0876671i \(0.0279412\pi\)
\(24\) 288.000 + 498.831i 0.102062 + 0.176777i
\(25\) 1224.50 + 2120.90i 0.391840 + 0.678687i
\(26\) 664.000 1150.08i 0.192635 0.333653i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −3610.00 −0.797099 −0.398549 0.917147i \(-0.630486\pi\)
−0.398549 + 0.917147i \(0.630486\pi\)
\(30\) 468.000 810.600i 0.0949386 0.164438i
\(31\) −2834.00 4908.63i −0.529658 0.917395i −0.999402 0.0345917i \(-0.988987\pi\)
0.469743 0.882803i \(-0.344346\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 1611.00 2790.33i 0.257520 0.446037i
\(34\) −504.000 −0.0747710
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 1461.00 2530.53i 0.175447 0.303883i −0.764869 0.644186i \(-0.777196\pi\)
0.940316 + 0.340303i \(0.110530\pi\)
\(38\) −4400.00 7621.02i −0.494303 0.856159i
\(39\) −1494.00 2587.68i −0.157286 0.272427i
\(40\) 832.000 1441.07i 0.0822192 0.142408i
\(41\) −2142.00 −0.199003 −0.0995015 0.995037i \(-0.531725\pi\)
−0.0995015 + 0.995037i \(0.531725\pi\)
\(42\) 0 0
\(43\) 6388.00 0.526858 0.263429 0.964679i \(-0.415146\pi\)
0.263429 + 0.964679i \(0.415146\pi\)
\(44\) 2864.00 4960.59i 0.223019 0.386280i
\(45\) −1053.00 1823.85i −0.0775170 0.134263i
\(46\) −4284.00 7420.11i −0.298507 0.517030i
\(47\) 3260.00 5646.49i 0.215265 0.372850i −0.738090 0.674703i \(-0.764272\pi\)
0.953354 + 0.301853i \(0.0976052\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) 9796.00 0.554145
\(51\) −567.000 + 982.073i −0.0305251 + 0.0528711i
\(52\) −2656.00 4600.33i −0.136213 0.235928i
\(53\) 5351.00 + 9268.20i 0.261665 + 0.453217i 0.966684 0.255971i \(-0.0823952\pi\)
−0.705020 + 0.709188i \(0.749062\pi\)
\(54\) 1458.00 2525.33i 0.0680414 0.117851i
\(55\) −9308.00 −0.414906
\(56\) 0 0
\(57\) −19800.0 −0.807194
\(58\) −7220.00 + 12505.4i −0.281817 + 0.488121i
\(59\) −21262.0 36826.9i −0.795196 1.37732i −0.922715 0.385483i \(-0.874035\pi\)
0.127519 0.991836i \(-0.459299\pi\)
\(60\) −1872.00 3242.40i −0.0671317 0.116276i
\(61\) 22420.0 38832.6i 0.771456 1.33620i −0.165309 0.986242i \(-0.552862\pi\)
0.936765 0.349959i \(-0.113804\pi\)
\(62\) −22672.0 −0.749050
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4316.00 + 7475.53i −0.126706 + 0.219462i
\(66\) −6444.00 11161.3i −0.182094 0.315396i
\(67\) 724.000 + 1254.00i 0.0197039 + 0.0341281i 0.875709 0.482839i \(-0.160394\pi\)
−0.856005 + 0.516967i \(0.827061\pi\)
\(68\) −1008.00 + 1745.91i −0.0264355 + 0.0457877i
\(69\) −19278.0 −0.487460
\(70\) 0 0
\(71\) −4402.00 −0.103634 −0.0518172 0.998657i \(-0.516501\pi\)
−0.0518172 + 0.998657i \(0.516501\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) −10250.0 17753.5i −0.225121 0.389922i 0.731234 0.682126i \(-0.238945\pi\)
−0.956356 + 0.292205i \(0.905611\pi\)
\(74\) −5844.00 10122.1i −0.124060 0.214878i
\(75\) 11020.5 19088.1i 0.226229 0.391840i
\(76\) −35200.0 −0.699051
\(77\) 0 0
\(78\) −11952.0 −0.222435
\(79\) −32618.0 + 56496.0i −0.588017 + 1.01847i 0.406475 + 0.913662i \(0.366758\pi\)
−0.994492 + 0.104813i \(0.966576\pi\)
\(80\) −3328.00 5764.27i −0.0581378 0.100698i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −4284.00 + 7420.11i −0.0703582 + 0.121864i
\(83\) −102804. −1.63800 −0.819002 0.573791i \(-0.805472\pi\)
−0.819002 + 0.573791i \(0.805472\pi\)
\(84\) 0 0
\(85\) 3276.00 0.0491809
\(86\) 12776.0 22128.7i 0.186273 0.322633i
\(87\) 16245.0 + 28137.2i 0.230103 + 0.398549i
\(88\) −11456.0 19842.4i −0.157698 0.273141i
\(89\) 64003.0 110856.i 0.856496 1.48349i −0.0187543 0.999824i \(-0.505970\pi\)
0.875250 0.483670i \(-0.160697\pi\)
\(90\) −8424.00 −0.109626
\(91\) 0 0
\(92\) −34272.0 −0.422153
\(93\) −25506.0 + 44177.7i −0.305798 + 0.529658i
\(94\) −13040.0 22585.9i −0.152215 0.263644i
\(95\) 28600.0 + 49536.7i 0.325130 + 0.563142i
\(96\) 4608.00 7981.29i 0.0510310 0.0883883i
\(97\) −113324. −1.22290 −0.611452 0.791281i \(-0.709414\pi\)
−0.611452 + 0.791281i \(0.709414\pi\)
\(98\) 0 0
\(99\) −28998.0 −0.297358
\(100\) 19592.0 33934.3i 0.195920 0.339343i
\(101\) 69857.0 + 120996.i 0.681407 + 1.18023i 0.974552 + 0.224163i \(0.0719649\pi\)
−0.293145 + 0.956068i \(0.594702\pi\)
\(102\) 2268.00 + 3928.29i 0.0215845 + 0.0373855i
\(103\) 71090.0 123131.i 0.660261 1.14361i −0.320286 0.947321i \(-0.603779\pi\)
0.980547 0.196284i \(-0.0628875\pi\)
\(104\) −21248.0 −0.192635
\(105\) 0 0
\(106\) 42808.0 0.370050
\(107\) 99259.0 171922.i 0.838128 1.45168i −0.0533296 0.998577i \(-0.516983\pi\)
0.891458 0.453104i \(-0.149683\pi\)
\(108\) −5832.00 10101.3i −0.0481125 0.0833333i
\(109\) −66269.0 114781.i −0.534250 0.925347i −0.999199 0.0400103i \(-0.987261\pi\)
0.464950 0.885337i \(-0.346072\pi\)
\(110\) −18616.0 + 32243.9i −0.146691 + 0.254077i
\(111\) −26298.0 −0.202589
\(112\) 0 0
\(113\) 47026.0 0.346451 0.173226 0.984882i \(-0.444581\pi\)
0.173226 + 0.984882i \(0.444581\pi\)
\(114\) −39600.0 + 68589.2i −0.285386 + 0.494303i
\(115\) 27846.0 + 48230.7i 0.196344 + 0.340078i
\(116\) 28880.0 + 50021.6i 0.199275 + 0.345154i
\(117\) −13446.0 + 23289.2i −0.0908089 + 0.157286i
\(118\) −170096. −1.12458
\(119\) 0 0
\(120\) −14976.0 −0.0949386
\(121\) 16443.5 28481.0i 0.102101 0.176844i
\(122\) −89680.0 155330.i −0.545502 0.944836i
\(123\) 9639.00 + 16695.2i 0.0574472 + 0.0995015i
\(124\) −45344.0 + 78538.1i −0.264829 + 0.458697i
\(125\) −144924. −0.829593
\(126\) 0 0
\(127\) 165548. 0.910782 0.455391 0.890291i \(-0.349499\pi\)
0.455391 + 0.890291i \(0.349499\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) −28746.0 49789.5i −0.152091 0.263429i
\(130\) 17264.0 + 29902.1i 0.0895948 + 0.155183i
\(131\) 69654.0 120644.i 0.354624 0.614226i −0.632430 0.774618i \(-0.717942\pi\)
0.987053 + 0.160391i \(0.0512756\pi\)
\(132\) −51552.0 −0.257520
\(133\) 0 0
\(134\) 5792.00 0.0278655
\(135\) −9477.00 + 16414.6i −0.0447545 + 0.0775170i
\(136\) 4032.00 + 6983.63i 0.0186928 + 0.0323768i
\(137\) 166421. + 288250.i 0.757542 + 1.31210i 0.944101 + 0.329657i \(0.106933\pi\)
−0.186559 + 0.982444i \(0.559733\pi\)
\(138\) −38556.0 + 66781.0i −0.172343 + 0.298507i
\(139\) 8556.00 0.0375607 0.0187804 0.999824i \(-0.494022\pi\)
0.0187804 + 0.999824i \(0.494022\pi\)
\(140\) 0 0
\(141\) −58680.0 −0.248566
\(142\) −8804.00 + 15249.0i −0.0366403 + 0.0634629i
\(143\) 59428.0 + 102932.i 0.243025 + 0.420932i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) 46930.0 81285.1i 0.185366 0.321064i
\(146\) −82000.0 −0.318370
\(147\) 0 0
\(148\) −46752.0 −0.175447
\(149\) −34777.0 + 60235.5i −0.128329 + 0.222273i −0.923029 0.384729i \(-0.874295\pi\)
0.794700 + 0.607002i \(0.207628\pi\)
\(150\) −44082.0 76352.3i −0.159968 0.277073i
\(151\) −264620. 458335.i −0.944453 1.63584i −0.756843 0.653597i \(-0.773259\pi\)
−0.187610 0.982244i \(-0.560074\pi\)
\(152\) −70400.0 + 121936.i −0.247152 + 0.428079i
\(153\) 10206.0 0.0352474
\(154\) 0 0
\(155\) 147368. 0.492690
\(156\) −23904.0 + 41402.9i −0.0786428 + 0.136213i
\(157\) −6520.00 11293.0i −0.0211105 0.0365645i 0.855277 0.518171i \(-0.173387\pi\)
−0.876388 + 0.481606i \(0.840054\pi\)
\(158\) 130472. + 225984.i 0.415791 + 0.720170i
\(159\) 48159.0 83413.8i 0.151072 0.261665i
\(160\) −26624.0 −0.0822192
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 175620. 304183.i 0.517732 0.896738i −0.482056 0.876140i \(-0.660110\pi\)
0.999788 0.0205976i \(-0.00655687\pi\)
\(164\) 17136.0 + 29680.4i 0.0497508 + 0.0861709i
\(165\) 41886.0 + 72548.7i 0.119773 + 0.207453i
\(166\) −205608. + 356124.i −0.579122 + 1.00307i
\(167\) 626128. 1.73729 0.868644 0.495436i \(-0.164992\pi\)
0.868644 + 0.495436i \(0.164992\pi\)
\(168\) 0 0
\(169\) −261069. −0.703135
\(170\) 6552.00 11348.4i 0.0173881 0.0301170i
\(171\) 89100.0 + 154326.i 0.233017 + 0.403597i
\(172\) −51104.0 88514.7i −0.131715 0.228136i
\(173\) 92413.0 160064.i 0.234757 0.406610i −0.724445 0.689332i \(-0.757904\pi\)
0.959202 + 0.282722i \(0.0912374\pi\)
\(174\) 129960. 0.325414
\(175\) 0 0
\(176\) −91648.0 −0.223019
\(177\) −191358. + 331442.i −0.459107 + 0.795196i
\(178\) −256012. 443426.i −0.605634 1.04899i
\(179\) 178761. + 309623.i 0.417004 + 0.722272i 0.995637 0.0933163i \(-0.0297468\pi\)
−0.578633 + 0.815588i \(0.696413\pi\)
\(180\) −16848.0 + 29181.6i −0.0387585 + 0.0671317i
\(181\) 696508. 1.58026 0.790132 0.612937i \(-0.210012\pi\)
0.790132 + 0.612937i \(0.210012\pi\)
\(182\) 0 0
\(183\) −403560. −0.890800
\(184\) −68544.0 + 118722.i −0.149254 + 0.258515i
\(185\) 37986.0 + 65793.7i 0.0816008 + 0.141337i
\(186\) 102024. + 176711.i 0.216232 + 0.374525i
\(187\) 22554.0 39064.7i 0.0471650 0.0816921i
\(188\) −104320. −0.215265
\(189\) 0 0
\(190\) 228800. 0.459803
\(191\) −34335.0 + 59470.0i −0.0681010 + 0.117954i −0.898065 0.439862i \(-0.855027\pi\)
0.829964 + 0.557816i \(0.188361\pi\)
\(192\) −18432.0 31925.2i −0.0360844 0.0625000i
\(193\) −413611. 716395.i −0.799280 1.38439i −0.920086 0.391717i \(-0.871881\pi\)
0.120806 0.992676i \(-0.461452\pi\)
\(194\) −226648. + 392566.i −0.432362 + 0.748873i
\(195\) 77688.0 0.146308
\(196\) 0 0
\(197\) −143382. −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(198\) −57996.0 + 100452.i −0.105132 + 0.182094i
\(199\) 271300. + 469905.i 0.485643 + 0.841158i 0.999864 0.0164995i \(-0.00525219\pi\)
−0.514221 + 0.857658i \(0.671919\pi\)
\(200\) −78368.0 135737.i −0.138536 0.239952i
\(201\) 6516.00 11286.0i 0.0113760 0.0197039i
\(202\) 558856. 0.963655
\(203\) 0 0
\(204\) 18144.0 0.0305251
\(205\) 27846.0 48230.7i 0.0462784 0.0801565i
\(206\) −284360. 492526.i −0.466875 0.808651i
\(207\) 86751.0 + 150257.i 0.140718 + 0.243730i
\(208\) −42496.0 + 73605.2i −0.0681067 + 0.117964i
\(209\) 787600. 1.24721
\(210\) 0 0
\(211\) 1.12776e6 1.74385 0.871925 0.489640i \(-0.162872\pi\)
0.871925 + 0.489640i \(0.162872\pi\)
\(212\) 85616.0 148291.i 0.130832 0.226608i
\(213\) 19809.0 + 34310.2i 0.0299167 + 0.0518172i
\(214\) −397036. 687687.i −0.592646 1.02649i
\(215\) −83044.0 + 143836.i −0.122521 + 0.212213i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −530152. −0.755543
\(219\) −92250.0 + 159782.i −0.129974 + 0.225121i
\(220\) 74464.0 + 128975.i 0.103726 + 0.179660i
\(221\) −20916.0 36227.6i −0.0288070 0.0498952i
\(222\) −52596.0 + 91098.9i −0.0716259 + 0.124060i
\(223\) 897976. 1.20921 0.604606 0.796525i \(-0.293331\pi\)
0.604606 + 0.796525i \(0.293331\pi\)
\(224\) 0 0
\(225\) −198369. −0.261227
\(226\) 94052.0 162903.i 0.122489 0.212157i
\(227\) 233806. + 404964.i 0.301156 + 0.521617i 0.976398 0.215979i \(-0.0692943\pi\)
−0.675242 + 0.737596i \(0.735961\pi\)
\(228\) 158400. + 274357.i 0.201799 + 0.349525i
\(229\) 223070. 386369.i 0.281095 0.486870i −0.690560 0.723275i \(-0.742636\pi\)
0.971655 + 0.236405i \(0.0759692\pi\)
\(230\) 222768. 0.277673
\(231\) 0 0
\(232\) 231040. 0.281817
\(233\) −350743. + 607505.i −0.423252 + 0.733094i −0.996255 0.0864588i \(-0.972445\pi\)
0.573003 + 0.819553i \(0.305778\pi\)
\(234\) 53784.0 + 93156.6i 0.0642116 + 0.111218i
\(235\) 84760.0 + 146809.i 0.100120 + 0.173413i
\(236\) −340192. + 589230.i −0.397598 + 0.688660i
\(237\) 587124. 0.678983
\(238\) 0 0
\(239\) −384198. −0.435071 −0.217536 0.976052i \(-0.569802\pi\)
−0.217536 + 0.976052i \(0.569802\pi\)
\(240\) −29952.0 + 51878.4i −0.0335659 + 0.0581378i
\(241\) 476890. + 825998.i 0.528902 + 0.916086i 0.999432 + 0.0337017i \(0.0107296\pi\)
−0.470529 + 0.882384i \(0.655937\pi\)
\(242\) −65774.0 113924.i −0.0721964 0.125048i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) −717440. −0.771456
\(245\) 0 0
\(246\) 77112.0 0.0812427
\(247\) 365200. 632545.i 0.380880 0.659704i
\(248\) 181376. + 314152.i 0.187262 + 0.324348i
\(249\) 462618. + 801278.i 0.472851 + 0.819002i
\(250\) −289848. + 502031.i −0.293306 + 0.508020i
\(251\) 569540. 0.570611 0.285305 0.958437i \(-0.407905\pi\)
0.285305 + 0.958437i \(0.407905\pi\)
\(252\) 0 0
\(253\) 766836. 0.753184
\(254\) 331096. 573475.i 0.322010 0.557738i
\(255\) −14742.0 25533.9i −0.0141973 0.0245905i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −533321. + 923739.i −0.503681 + 0.872402i 0.496310 + 0.868146i \(0.334688\pi\)
−0.999991 + 0.00425609i \(0.998645\pi\)
\(258\) −229968. −0.215089
\(259\) 0 0
\(260\) 138112. 0.126706
\(261\) 146205. 253234.i 0.132850 0.230103i
\(262\) −278616. 482577.i −0.250757 0.434324i
\(263\) 741215. + 1.28382e6i 0.660777 + 1.14450i 0.980412 + 0.196958i \(0.0631064\pi\)
−0.319635 + 0.947541i \(0.603560\pi\)
\(264\) −103104. + 178581.i −0.0910470 + 0.157698i
\(265\) −278252. −0.243402
\(266\) 0 0
\(267\) −1.15205e6 −0.988996
\(268\) 11584.0 20064.1i 0.00985194 0.0170641i
\(269\) 107555. + 186291.i 0.0906254 + 0.156968i 0.907774 0.419459i \(-0.137780\pi\)
−0.817149 + 0.576426i \(0.804447\pi\)
\(270\) 37908.0 + 65658.6i 0.0316462 + 0.0548128i
\(271\) −965518. + 1.67233e6i −0.798614 + 1.38324i 0.121904 + 0.992542i \(0.461100\pi\)
−0.920519 + 0.390699i \(0.872233\pi\)
\(272\) 32256.0 0.0264355
\(273\) 0 0
\(274\) 1.33137e6 1.07133
\(275\) −438371. + 759281.i −0.349551 + 0.605439i
\(276\) 154224. + 267124.i 0.121865 + 0.211077i
\(277\) −1.01878e6 1.76458e6i −0.797777 1.38179i −0.921061 0.389419i \(-0.872676\pi\)
0.123284 0.992371i \(-0.460657\pi\)
\(278\) 17112.0 29638.9i 0.0132797 0.0230011i
\(279\) 459108. 0.353105
\(280\) 0 0
\(281\) −639066. −0.482814 −0.241407 0.970424i \(-0.577609\pi\)
−0.241407 + 0.970424i \(0.577609\pi\)
\(282\) −117360. + 203273.i −0.0878815 + 0.152215i
\(283\) −18872.0 32687.3i −0.0140072 0.0242612i 0.858937 0.512082i \(-0.171125\pi\)
−0.872944 + 0.487820i \(0.837792\pi\)
\(284\) 35216.0 + 60995.9i 0.0259086 + 0.0448750i
\(285\) 257400. 445830.i 0.187714 0.325130i
\(286\) 475424. 0.343689
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) 701990. 1.21588e6i 0.494409 0.856342i
\(290\) −187720. 325141.i −0.131074 0.227026i
\(291\) 509958. + 883273.i 0.353022 + 0.611452i
\(292\) −164000. + 284056.i −0.112561 + 0.194961i
\(293\) −1.83921e6 −1.25159 −0.625795 0.779987i \(-0.715225\pi\)
−0.625795 + 0.779987i \(0.715225\pi\)
\(294\) 0 0
\(295\) 1.10562e6 0.739695
\(296\) −93504.0 + 161954.i −0.0620299 + 0.107439i
\(297\) 130491. + 226017.i 0.0858399 + 0.148679i
\(298\) 139108. + 240942.i 0.0907426 + 0.157171i
\(299\) 355572. 615869.i 0.230012 0.398392i
\(300\) −352656. −0.226229
\(301\) 0 0
\(302\) −2.11696e6 −1.33566
\(303\) 628713. 1.08896e6i 0.393410 0.681407i
\(304\) 281600. + 487746.i 0.174763 + 0.302698i
\(305\) 582920. + 1.00965e6i 0.358806 + 0.621470i
\(306\) 20412.0 35354.6i 0.0124618 0.0215845i
\(307\) −1.06472e6 −0.644747 −0.322374 0.946613i \(-0.604481\pi\)
−0.322374 + 0.946613i \(0.604481\pi\)
\(308\) 0 0
\(309\) −1.27962e6 −0.762403
\(310\) 294736. 510498.i 0.174192 0.301710i
\(311\) 504760. + 874270.i 0.295927 + 0.512560i 0.975200 0.221325i \(-0.0710383\pi\)
−0.679273 + 0.733885i \(0.737705\pi\)
\(312\) 95616.0 + 165612.i 0.0556089 + 0.0963174i
\(313\) 724548. 1.25495e6i 0.418029 0.724047i −0.577712 0.816241i \(-0.696054\pi\)
0.995741 + 0.0921932i \(0.0293877\pi\)
\(314\) −52160.0 −0.0298548
\(315\) 0 0
\(316\) 1.04378e6 0.588017
\(317\) −1.36155e6 + 2.35828e6i −0.761003 + 1.31810i 0.181331 + 0.983422i \(0.441959\pi\)
−0.942334 + 0.334674i \(0.891374\pi\)
\(318\) −192636. 333655.i −0.106824 0.185025i
\(319\) −646190. 1.11923e6i −0.355536 0.615806i
\(320\) −53248.0 + 92228.2i −0.0290689 + 0.0503488i
\(321\) −1.78666e6 −0.967787
\(322\) 0 0
\(323\) −277200. −0.147838
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 406534. + 704138.i 0.213495 + 0.369785i
\(326\) −702480. 1.21673e6i −0.366092 0.634090i
\(327\) −596421. + 1.03303e6i −0.308449 + 0.534250i
\(328\) 137088. 0.0703582
\(329\) 0 0
\(330\) 335088. 0.169385
\(331\) 550202. 952978.i 0.276027 0.478093i −0.694366 0.719622i \(-0.744315\pi\)
0.970394 + 0.241528i \(0.0776486\pi\)
\(332\) 822432. + 1.42449e6i 0.409501 + 0.709276i
\(333\) 118341. + 204973.i 0.0584823 + 0.101294i
\(334\) 1.25226e6 2.16897e6i 0.614224 1.06387i
\(335\) −37648.0 −0.0183286
\(336\) 0 0
\(337\) 1.73512e6 0.832251 0.416125 0.909307i \(-0.363388\pi\)
0.416125 + 0.909307i \(0.363388\pi\)
\(338\) −522138. + 904370.i −0.248596 + 0.430580i
\(339\) −211617. 366531.i −0.100012 0.173226i
\(340\) −26208.0 45393.6i −0.0122952 0.0212960i
\(341\) 1.01457e6 1.75729e6i 0.472495 0.818385i
\(342\) 712800. 0.329536
\(343\) 0 0
\(344\) −408832. −0.186273
\(345\) 250614. 434076.i 0.113359 0.196344i
\(346\) −369652. 640256.i −0.165998 0.287517i
\(347\) −795723. 1.37823e6i −0.354763 0.614467i 0.632314 0.774712i \(-0.282105\pi\)
−0.987077 + 0.160244i \(0.948772\pi\)
\(348\) 259920. 450195.i 0.115051 0.199275i
\(349\) −2.33376e6 −1.02563 −0.512817 0.858498i \(-0.671398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(350\) 0 0
\(351\) 242028. 0.104857
\(352\) −183296. + 317478.i −0.0788490 + 0.136571i
\(353\) −1.40541e6 2.43424e6i −0.600296 1.03974i −0.992776 0.119982i \(-0.961716\pi\)
0.392480 0.919760i \(-0.371617\pi\)
\(354\) 765432. + 1.32577e6i 0.324637 + 0.562288i
\(355\) 57226.0 99118.3i 0.0241003 0.0417429i
\(356\) −2.04810e6 −0.856496
\(357\) 0 0
\(358\) 1.43009e6 0.589733
\(359\) −469655. + 813466.i −0.192328 + 0.333122i −0.946021 0.324104i \(-0.894937\pi\)
0.753693 + 0.657226i \(0.228270\pi\)
\(360\) 67392.0 + 116726.i 0.0274064 + 0.0474693i
\(361\) −1.18195e6 2.04720e6i −0.477344 0.826784i
\(362\) 1.39302e6 2.41277e6i 0.558708 0.967710i
\(363\) −295983. −0.117896
\(364\) 0 0
\(365\) 533000. 0.209409
\(366\) −807120. + 1.39797e6i −0.314945 + 0.545502i
\(367\) −1.54926e6 2.68339e6i −0.600424 1.03996i −0.992757 0.120141i \(-0.961665\pi\)
0.392333 0.919823i \(-0.371668\pi\)
\(368\) 274176. + 474887.i 0.105538 + 0.182798i
\(369\) 86751.0 150257.i 0.0331672 0.0574472i
\(370\) 303888. 0.115401
\(371\) 0 0
\(372\) 816192. 0.305798
\(373\) 114133. 197684.i 0.0424756 0.0735698i −0.844006 0.536334i \(-0.819809\pi\)
0.886482 + 0.462764i \(0.153142\pi\)
\(374\) −90216.0 156259.i −0.0333507 0.0577651i
\(375\) 652158. + 1.12957e6i 0.239483 + 0.414797i
\(376\) −208640. + 361375.i −0.0761076 + 0.131822i
\(377\) −1.19852e6 −0.434302
\(378\) 0 0
\(379\) −1.03669e6 −0.370725 −0.185362 0.982670i \(-0.559346\pi\)
−0.185362 + 0.982670i \(0.559346\pi\)
\(380\) 457600. 792586.i 0.162565 0.281571i
\(381\) −744966. 1.29032e6i −0.262920 0.455391i
\(382\) 137340. + 237880.i 0.0481547 + 0.0834064i
\(383\) 105888. 183403.i 0.0368850 0.0638867i −0.846994 0.531603i \(-0.821590\pi\)
0.883879 + 0.467716i \(0.154923\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −3.30889e6 −1.13035
\(387\) −258714. + 448106.i −0.0878097 + 0.152091i
\(388\) 906592. + 1.57026e6i 0.305726 + 0.529533i
\(389\) −706623. 1.22391e6i −0.236763 0.410085i 0.723021 0.690826i \(-0.242753\pi\)
−0.959784 + 0.280741i \(0.909420\pi\)
\(390\) 155376. 269119.i 0.0517276 0.0895948i
\(391\) −269892. −0.0892788
\(392\) 0 0
\(393\) −1.25377e6 −0.409484
\(394\) −286764. + 496690.i −0.0930645 + 0.161192i
\(395\) −848068. 1.46890e6i −0.273488 0.473695i
\(396\) 231984. + 401808.i 0.0743396 + 0.128760i
\(397\) 545168. 944259.i 0.173602 0.300687i −0.766075 0.642751i \(-0.777793\pi\)
0.939676 + 0.342064i \(0.111126\pi\)
\(398\) 2.17040e6 0.686803
\(399\) 0 0
\(400\) −626944. −0.195920
\(401\) −1.32126e6 + 2.28849e6i −0.410325 + 0.710704i −0.994925 0.100617i \(-0.967918\pi\)
0.584600 + 0.811322i \(0.301252\pi\)
\(402\) −26064.0 45144.2i −0.00804407 0.0139327i
\(403\) −940888. 1.62967e6i −0.288586 0.499846i
\(404\) 1.11771e6 1.93593e6i 0.340703 0.590116i
\(405\) 170586. 0.0516780
\(406\) 0 0
\(407\) 1.04608e6 0.313024
\(408\) 36288.0 62852.7i 0.0107923 0.0186928i
\(409\) −3.12713e6 5.41635e6i −0.924354 1.60103i −0.792597 0.609746i \(-0.791272\pi\)
−0.131757 0.991282i \(-0.542062\pi\)
\(410\) −111384. 192923.i −0.0327238 0.0566792i
\(411\) 1.49779e6 2.59425e6i 0.437367 0.757542i
\(412\) −2.27488e6 −0.660261
\(413\) 0 0
\(414\) 694008. 0.199005
\(415\) 1.33645e6 2.31480e6i 0.380919 0.659772i
\(416\) 169984. + 294421.i 0.0481587 + 0.0834133i
\(417\) −38502.0 66687.4i −0.0108428 0.0187804i
\(418\) 1.57520e6 2.72833e6i 0.440956 0.763758i
\(419\) −973924. −0.271013 −0.135506 0.990776i \(-0.543266\pi\)
−0.135506 + 0.990776i \(0.543266\pi\)
\(420\) 0 0
\(421\) 864618. 0.237749 0.118875 0.992909i \(-0.462071\pi\)
0.118875 + 0.992909i \(0.462071\pi\)
\(422\) 2.25551e6 3.90666e6i 0.616544 1.06789i
\(423\) 264060. + 457365.i 0.0717549 + 0.124283i
\(424\) −342464. 593165.i −0.0925125 0.160236i
\(425\) 154287. 267233.i 0.0414340 0.0717658i
\(426\) 158472. 0.0423086
\(427\) 0 0
\(428\) −3.17629e6 −0.838128
\(429\) 534852. 926391.i 0.140311 0.243025i
\(430\) 332176. + 575346.i 0.0866357 + 0.150058i
\(431\) 1.83023e6 + 3.17005e6i 0.474583 + 0.822002i 0.999576 0.0291043i \(-0.00926551\pi\)
−0.524993 + 0.851106i \(0.675932\pi\)
\(432\) −93312.0 + 161621.i −0.0240563 + 0.0416667i
\(433\) −4.93667e6 −1.26536 −0.632681 0.774413i \(-0.718045\pi\)
−0.632681 + 0.774413i \(0.718045\pi\)
\(434\) 0 0
\(435\) −844740. −0.214042
\(436\) −1.06030e6 + 1.83650e6i −0.267125 + 0.462674i
\(437\) −2.35620e6 4.08106e6i −0.590213 1.02228i
\(438\) 369000. + 639127.i 0.0919054 + 0.159185i
\(439\) −365652. + 633328.i −0.0905538 + 0.156844i −0.907744 0.419524i \(-0.862197\pi\)
0.817190 + 0.576368i \(0.195530\pi\)
\(440\) 595712. 0.146691
\(441\) 0 0
\(442\) −167328. −0.0407392
\(443\) −2.43310e6 + 4.21425e6i −0.589048 + 1.02026i 0.405310 + 0.914179i \(0.367164\pi\)
−0.994357 + 0.106081i \(0.966170\pi\)
\(444\) 210384. + 364396.i 0.0506472 + 0.0877235i
\(445\) 1.66408e6 + 2.88227e6i 0.398358 + 0.689976i
\(446\) 1.79595e6 3.11068e6i 0.427521 0.740488i
\(447\) 625986. 0.148182
\(448\) 0 0
\(449\) 5.71987e6 1.33897 0.669484 0.742827i \(-0.266515\pi\)
0.669484 + 0.742827i \(0.266515\pi\)
\(450\) −396738. + 687170.i −0.0923576 + 0.159968i
\(451\) −383418. 664099.i −0.0887628 0.153742i
\(452\) −376208. 651611.i −0.0866128 0.150018i
\(453\) −2.38158e6 + 4.12502e6i −0.545280 + 0.944453i
\(454\) 1.87045e6 0.425898
\(455\) 0 0
\(456\) 1.26720e6 0.285386
\(457\) 3.41017e6 5.90659e6i 0.763811 1.32296i −0.177063 0.984200i \(-0.556660\pi\)
0.940873 0.338759i \(-0.110007\pi\)
\(458\) −892280. 1.54547e6i −0.198764 0.344269i
\(459\) −45927.0 79547.9i −0.0101750 0.0176237i
\(460\) 445536. 771691.i 0.0981721 0.170039i
\(461\) −7.45934e6 −1.63474 −0.817369 0.576115i \(-0.804568\pi\)
−0.817369 + 0.576115i \(0.804568\pi\)
\(462\) 0 0
\(463\) −5.23848e6 −1.13567 −0.567836 0.823142i \(-0.692219\pi\)
−0.567836 + 0.823142i \(0.692219\pi\)
\(464\) 462080. 800346.i 0.0996374 0.172577i
\(465\) −663156. 1.14862e6i −0.142227 0.246345i
\(466\) 1.40297e6 + 2.43002e6i 0.299284 + 0.518376i
\(467\) −4.47997e6 + 7.75954e6i −0.950568 + 1.64643i −0.206370 + 0.978474i \(0.566165\pi\)
−0.744199 + 0.667958i \(0.767168\pi\)
\(468\) 430272. 0.0908089
\(469\) 0 0
\(470\) 678080. 0.141591
\(471\) −58680.0 + 101637.i −0.0121882 + 0.0211105i
\(472\) 1.36077e6 + 2.35692e6i 0.281144 + 0.486956i
\(473\) 1.14345e6 + 1.98052e6i 0.234998 + 0.407029i
\(474\) 1.17425e6 2.03386e6i 0.240057 0.415791i
\(475\) 5.38780e6 1.09566
\(476\) 0 0
\(477\) −866862. −0.174443
\(478\) −768396. + 1.33090e6i −0.153821 + 0.266426i
\(479\) 876768. + 1.51861e6i 0.174601 + 0.302417i 0.940023 0.341111i \(-0.110803\pi\)
−0.765422 + 0.643528i \(0.777470\pi\)
\(480\) 119808. + 207514.i 0.0237346 + 0.0411096i
\(481\) 485052. 840135.i 0.0955929 0.165572i
\(482\) 3.81512e6 0.747981
\(483\) 0 0
\(484\) −526192. −0.102101
\(485\) 1.47321e6 2.55168e6i 0.284388 0.492574i
\(486\) 118098. + 204552.i 0.0226805 + 0.0392837i
\(487\) −463784. 803297.i −0.0886122 0.153481i 0.818313 0.574773i \(-0.194910\pi\)
−0.906925 + 0.421293i \(0.861577\pi\)
\(488\) −1.43488e6 + 2.48529e6i −0.272751 + 0.472418i
\(489\) −3.16116e6 −0.597825
\(490\) 0 0
\(491\) 8.43733e6 1.57943 0.789716 0.613472i \(-0.210228\pi\)
0.789716 + 0.613472i \(0.210228\pi\)
\(492\) 154224. 267124.i 0.0287236 0.0497508i
\(493\) 227430. + 393920.i 0.0421435 + 0.0729947i
\(494\) −1.46080e6 2.53018e6i −0.269323 0.466481i
\(495\) 376974. 652938.i 0.0691510 0.119773i
\(496\) 1.45101e6 0.264829
\(497\) 0 0
\(498\) 3.70094e6 0.668712
\(499\) −666390. + 1.15422e6i −0.119806 + 0.207509i −0.919691 0.392644i \(-0.871560\pi\)
0.799885 + 0.600153i \(0.204894\pi\)
\(500\) 1.15939e6 + 2.00813e6i 0.207398 + 0.359224i
\(501\) −2.81758e6 4.88018e6i −0.501512 0.868644i
\(502\) 1.13908e6 1.97294e6i 0.201741 0.349426i
\(503\) 3.64494e6 0.642349 0.321174 0.947020i \(-0.395922\pi\)
0.321174 + 0.947020i \(0.395922\pi\)
\(504\) 0 0
\(505\) −3.63256e6 −0.633848
\(506\) 1.53367e6 2.65640e6i 0.266291 0.461229i
\(507\) 1.17481e6 + 2.03483e6i 0.202978 + 0.351567i
\(508\) −1.32438e6 2.29390e6i −0.227696 0.394380i
\(509\) 1.63083e6 2.82468e6i 0.279007 0.483254i −0.692132 0.721771i \(-0.743328\pi\)
0.971138 + 0.238518i \(0.0766615\pi\)
\(510\) −117936. −0.0200780
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 801900. 1.38893e6i 0.134532 0.233017i
\(514\) 2.13328e6 + 3.69496e6i 0.356157 + 0.616881i
\(515\) 1.84834e6 + 3.20142e6i 0.307089 + 0.531893i
\(516\) −459936. + 796633.i −0.0760454 + 0.131715i
\(517\) 2.33416e6 0.384065
\(518\) 0 0
\(519\) −1.66343e6 −0.271074
\(520\) 276224. 478434.i 0.0447974 0.0775914i
\(521\) 1.09370e6 + 1.89435e6i 0.176525 + 0.305750i 0.940688 0.339273i \(-0.110181\pi\)
−0.764163 + 0.645023i \(0.776848\pi\)
\(522\) −584820. 1.01294e6i −0.0939390 0.162707i
\(523\) −5.19451e6 + 8.99716e6i −0.830406 + 1.43831i 0.0673110 + 0.997732i \(0.478558\pi\)
−0.897717 + 0.440573i \(0.854775\pi\)
\(524\) −2.22893e6 −0.354624
\(525\) 0 0
\(526\) 5.92972e6 0.934480
\(527\) −357084. + 618488.i −0.0560072 + 0.0970073i
\(528\) 412416. + 714325.i 0.0643800 + 0.111509i
\(529\) 924090. + 1.60057e6i 0.143574 + 0.248677i
\(530\) −556504. + 963893.i −0.0860555 + 0.149052i
\(531\) 3.44444e6 0.530131
\(532\) 0 0
\(533\) −711144. −0.108428
\(534\) −2.30411e6 + 3.99083e6i −0.349663 + 0.605634i
\(535\) 2.58073e6 + 4.46996e6i 0.389815 + 0.675180i
\(536\) −46336.0 80256.3i −0.00696637 0.0120661i
\(537\) 1.60885e6 2.78661e6i 0.240757 0.417004i
\(538\) 860440. 0.128164
\(539\) 0 0
\(540\) 303264. 0.0447545
\(541\) −6.38620e6 + 1.10612e7i −0.938101 + 1.62484i −0.169091 + 0.985600i \(0.554083\pi\)
−0.769009 + 0.639238i \(0.779250\pi\)
\(542\) 3.86207e6 + 6.68930e6i 0.564706 + 0.978099i
\(543\) −3.13429e6 5.42874e6i −0.456183 0.790132i
\(544\) 64512.0 111738.i 0.00934638 0.0161884i
\(545\) 3.44599e6 0.496961
\(546\) 0 0
\(547\) −5.22238e6 −0.746278 −0.373139 0.927776i \(-0.621719\pi\)
−0.373139 + 0.927776i \(0.621719\pi\)
\(548\) 2.66274e6 4.61199e6i 0.378771 0.656051i
\(549\) 1.81602e6 + 3.14544e6i 0.257152 + 0.445400i
\(550\) 1.75348e6 + 3.03712e6i 0.247170 + 0.428110i
\(551\) −3.97100e6 + 6.87797e6i −0.557213 + 0.965120i
\(552\) 1.23379e6 0.172343
\(553\) 0 0
\(554\) −8.15025e6 −1.12823
\(555\) 341874. 592143.i 0.0471122 0.0816008i
\(556\) −68448.0 118555.i −0.00939018 0.0162643i
\(557\) 2.87024e6 + 4.97139e6i 0.391994 + 0.678954i 0.992712 0.120507i \(-0.0384520\pi\)
−0.600718 + 0.799461i \(0.705119\pi\)
\(558\) 918216. 1.59040e6i 0.124842 0.216232i
\(559\) 2.12082e6 0.287061
\(560\) 0 0
\(561\) −405972. −0.0544614
\(562\) −1.27813e6 + 2.21379e6i −0.170701 + 0.295662i
\(563\) 1.15224e6 + 1.99573e6i 0.153204 + 0.265358i 0.932404 0.361418i \(-0.117707\pi\)
−0.779199 + 0.626776i \(0.784374\pi\)
\(564\) 469440. + 813094.i 0.0621416 + 0.107632i
\(565\) −611338. + 1.05887e6i −0.0805676 + 0.139547i
\(566\) −150976. −0.0198092
\(567\) 0 0
\(568\) 281728. 0.0366403
\(569\) 2.56075e6 4.43535e6i 0.331578 0.574311i −0.651243 0.758869i \(-0.725752\pi\)
0.982822 + 0.184558i \(0.0590855\pi\)
\(570\) −1.02960e6 1.78332e6i −0.132734 0.229902i
\(571\) 1.19318e6 + 2.06666e6i 0.153150 + 0.265264i 0.932384 0.361470i \(-0.117725\pi\)
−0.779234 + 0.626733i \(0.784392\pi\)
\(572\) 950848. 1.64692e6i 0.121513 0.210466i
\(573\) 618030. 0.0786363
\(574\) 0 0
\(575\) 5.24576e6 0.661666
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) 2.62076e6 + 4.53928e6i 0.327708 + 0.567607i 0.982057 0.188586i \(-0.0603904\pi\)
−0.654349 + 0.756193i \(0.727057\pi\)
\(578\) −2.80796e6 4.86353e6i −0.349600 0.605525i
\(579\) −3.72250e6 + 6.44756e6i −0.461464 + 0.799280i
\(580\) −1.50176e6 −0.185366
\(581\) 0 0
\(582\) 4.07966e6 0.499249
\(583\) −1.91566e6 + 3.31802e6i −0.233425 + 0.404303i
\(584\) 656000. + 1.13623e6i 0.0795924 + 0.137858i
\(585\) −349596. 605518.i −0.0422354 0.0731539i
\(586\) −3.67842e6 + 6.37121e6i −0.442504 + 0.766440i
\(587\) 9.11548e6 1.09190 0.545952 0.837816i \(-0.316168\pi\)
0.545952 + 0.837816i \(0.316168\pi\)
\(588\) 0 0
\(589\) −1.24696e7 −1.48103
\(590\) 2.21125e6 3.82999e6i 0.261522 0.452969i
\(591\) 645219. + 1.11755e6i 0.0759869 + 0.131613i
\(592\) 374016. + 647815.i 0.0438617 + 0.0759708i
\(593\) −1.52522e6 + 2.64175e6i −0.178112 + 0.308500i −0.941234 0.337755i \(-0.890332\pi\)
0.763122 + 0.646255i \(0.223666\pi\)
\(594\) 1.04393e6 0.121396
\(595\) 0 0
\(596\) 1.11286e6 0.128329
\(597\) 2.44170e6 4.22915e6i 0.280386 0.485643i
\(598\) −1.42229e6 2.46348e6i −0.162643 0.281705i
\(599\) −7.17041e6 1.24195e7i −0.816539 1.41429i −0.908217 0.418499i \(-0.862556\pi\)
0.0916783 0.995789i \(-0.470777\pi\)
\(600\) −705312. + 1.22164e6i −0.0799840 + 0.138536i
\(601\) −3.12662e6 −0.353092 −0.176546 0.984292i \(-0.556492\pi\)
−0.176546 + 0.984292i \(0.556492\pi\)
\(602\) 0 0
\(603\) −117288. −0.0131359
\(604\) −4.23392e6 + 7.33336e6i −0.472226 + 0.817920i
\(605\) 427531. + 740505.i 0.0474875 + 0.0822507i
\(606\) −2.51485e6 4.35585e6i −0.278183 0.481827i
\(607\) −5.75492e6 + 9.96782e6i −0.633969 + 1.09807i 0.352764 + 0.935712i \(0.385242\pi\)
−0.986733 + 0.162354i \(0.948091\pi\)
\(608\) 2.25280e6 0.247152
\(609\) 0 0
\(610\) 4.66336e6 0.507428
\(611\) 1.08232e6 1.87463e6i 0.117288 0.203148i
\(612\) −81648.0 141418.i −0.00881185 0.0152626i
\(613\) 6.08910e6 + 1.05466e7i 0.654488 + 1.13361i 0.982022 + 0.188767i \(0.0604492\pi\)
−0.327534 + 0.944840i \(0.606217\pi\)
\(614\) −2.12944e6 + 3.68830e6i −0.227953 + 0.394825i
\(615\) −501228. −0.0534377
\(616\) 0 0
\(617\) 1.77629e6 0.187845 0.0939226 0.995580i \(-0.470059\pi\)
0.0939226 + 0.995580i \(0.470059\pi\)
\(618\) −2.55924e6 + 4.43273e6i −0.269550 + 0.466875i
\(619\) 2.97758e6 + 5.15732e6i 0.312347 + 0.541001i 0.978870 0.204484i \(-0.0655516\pi\)
−0.666523 + 0.745484i \(0.732218\pi\)
\(620\) −1.17894e6 2.04199e6i −0.123173 0.213341i
\(621\) 780759. 1.35231e6i 0.0812434 0.140718i
\(622\) 4.03808e6 0.418503
\(623\) 0 0
\(624\) 764928. 0.0786428
\(625\) −1.94255e6 + 3.36460e6i −0.198917 + 0.344535i
\(626\) −2.89819e6 5.01982e6i −0.295591 0.511979i
\(627\) −3.54420e6 6.13873e6i −0.360039 0.623606i
\(628\) −104320. + 180688.i −0.0105552 + 0.0182822i
\(629\) −368172. −0.0371043
\(630\) 0 0
\(631\) −1.45351e7 −1.45327 −0.726633 0.687026i \(-0.758916\pi\)
−0.726633 + 0.687026i \(0.758916\pi\)
\(632\) 2.08755e6 3.61575e6i 0.207895 0.360085i
\(633\) −5.07490e6 8.78999e6i −0.503406 0.871925i
\(634\) 5.44621e6 + 9.43312e6i 0.538110 + 0.932035i
\(635\) −2.15212e6 + 3.72759e6i −0.211803 + 0.366854i
\(636\) −1.54109e6 −0.151072
\(637\) 0 0
\(638\) −5.16952e6 −0.502804
\(639\) 178281. 308792.i 0.0172724 0.0299167i
\(640\) 212992. + 368913.i 0.0205548 + 0.0356020i
\(641\) 5.36747e6 + 9.29673e6i 0.515970 + 0.893686i 0.999828 + 0.0185398i \(0.00590175\pi\)
−0.483858 + 0.875146i \(0.660765\pi\)
\(642\) −3.57332e6 + 6.18918e6i −0.342164 + 0.592646i
\(643\) 1.62815e7 1.55298 0.776492 0.630127i \(-0.216997\pi\)
0.776492 + 0.630127i \(0.216997\pi\)
\(644\) 0 0
\(645\) 1.49479e6 0.141476
\(646\) −554400. + 960249.i −0.0522687 + 0.0905321i
\(647\) 3.95974e6 + 6.85846e6i 0.371882 + 0.644119i 0.989855 0.142080i \(-0.0453792\pi\)
−0.617973 + 0.786199i \(0.712046\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) 7.61180e6 1.31840e7i 0.709374 1.22867i
\(650\) 3.25227e6 0.301928
\(651\) 0 0
\(652\) −5.61984e6 −0.517732
\(653\) −672391. + 1.16462e6i −0.0617076 + 0.106881i −0.895229 0.445607i \(-0.852988\pi\)
0.833521 + 0.552488i \(0.186321\pi\)
\(654\) 2.38568e6 + 4.13213e6i 0.218106 + 0.377771i
\(655\) 1.81100e6 + 3.13675e6i 0.164936 + 0.285678i
\(656\) 274176. 474887.i 0.0248754 0.0430854i
\(657\) 1.66050e6 0.150081
\(658\) 0 0
\(659\) 2.02235e7 1.81402 0.907010 0.421109i \(-0.138359\pi\)
0.907010 + 0.421109i \(0.138359\pi\)
\(660\) 670176. 1.16078e6i 0.0598865 0.103726i
\(661\) −3.58901e6 6.21635e6i −0.319500 0.553391i 0.660884 0.750488i \(-0.270182\pi\)
−0.980384 + 0.197098i \(0.936848\pi\)
\(662\) −2.20081e6 3.81191e6i −0.195181 0.338063i
\(663\) −188244. + 326048.i −0.0166317 + 0.0288070i
\(664\) 6.57946e6 0.579122
\(665\) 0 0
\(666\) 946728. 0.0827065
\(667\) −3.86631e6 + 6.69665e6i −0.336498 + 0.582831i
\(668\) −5.00902e6 8.67588e6i −0.434322 0.752268i
\(669\) −4.04089e6 6.99903e6i −0.349070 0.604606i
\(670\) −75296.0 + 130416.i −0.00648015 + 0.0112239i
\(671\) 1.60527e7 1.37639
\(672\) 0 0
\(673\) 9.61217e6 0.818057 0.409029 0.912522i \(-0.365868\pi\)
0.409029 + 0.912522i \(0.365868\pi\)
\(674\) 3.47024e6 6.01063e6i 0.294245 0.509647i
\(675\) 892660. + 1.54613e6i 0.0754096 + 0.130613i
\(676\) 2.08855e6 + 3.61748e6i 0.175784 + 0.304466i
\(677\) 4.83408e6 8.37287e6i 0.405361 0.702106i −0.589002 0.808131i \(-0.700479\pi\)
0.994363 + 0.106025i \(0.0338125\pi\)
\(678\) −1.69294e6 −0.141438
\(679\) 0 0
\(680\) −209664. −0.0173881
\(681\) 2.10425e6 3.64467e6i 0.173872 0.301156i
\(682\) −4.05829e6 7.02916e6i −0.334104 0.578685i
\(683\) −194927. 337623.i −0.0159890 0.0276937i 0.857920 0.513783i \(-0.171756\pi\)
−0.873909 + 0.486089i \(0.838423\pi\)
\(684\) 1.42560e6 2.46921e6i 0.116508 0.201799i
\(685\) −8.65389e6 −0.704669
\(686\) 0 0
\(687\) −4.01526e6 −0.324580
\(688\) −817664. + 1.41624e6i −0.0658573 + 0.114068i
\(689\) 1.77653e6 + 3.07704e6i 0.142569 + 0.246937i
\(690\) −1.00246e6 1.73630e6i −0.0801572 0.138836i
\(691\) −1.86993e6 + 3.23881e6i −0.148980 + 0.258042i −0.930851 0.365399i \(-0.880932\pi\)
0.781870 + 0.623441i \(0.214266\pi\)
\(692\) −2.95722e6 −0.234757
\(693\) 0 0
\(694\) −6.36578e6 −0.501711
\(695\) −111228. + 192653.i −0.00873478 + 0.0151291i
\(696\) −1.03968e6 1.80078e6i −0.0813536 0.140909i
\(697\) 134946. + 233733.i 0.0105215 + 0.0182238i
\(698\) −4.66752e6 + 8.08438e6i −0.362617 + 0.628070i
\(699\) 6.31337e6 0.488730
\(700\) 0 0
\(701\) 2.49886e7 1.92064 0.960322 0.278893i \(-0.0899674\pi\)
0.960322 + 0.278893i \(0.0899674\pi\)
\(702\) 484056. 838410.i 0.0370726 0.0642116i
\(703\) −3.21420e6 5.56716e6i −0.245293 0.424859i
\(704\) 733184. + 1.26991e6i 0.0557547 + 0.0965699i
\(705\) 762840. 1.32128e6i 0.0578044 0.100120i
\(706\) −1.12433e7 −0.848947
\(707\) 0 0
\(708\) 6.12346e6 0.459107
\(709\) 4.91792e6 8.51809e6i 0.367423 0.636394i −0.621739 0.783224i \(-0.713574\pi\)
0.989162 + 0.146830i \(0.0469070\pi\)
\(710\) −228904. 396473.i −0.0170415 0.0295167i
\(711\) −2.64206e6 4.57618e6i −0.196006 0.339492i
\(712\) −4.09619e6 + 7.09481e6i −0.302817 + 0.524495i
\(713\) −1.21409e7 −0.894387
\(714\) 0 0
\(715\) −3.09026e6 −0.226063
\(716\) 2.86018e6 4.95397e6i 0.208502 0.361136i
\(717\) 1.72889e6 + 2.99453e6i 0.125594 + 0.217536i
\(718\) 1.87862e6 + 3.25387e6i 0.135997 + 0.235553i
\(719\) 1.06812e7 1.85004e7i 0.770546 1.33463i −0.166717 0.986005i \(-0.553317\pi\)
0.937264 0.348621i \(-0.113350\pi\)
\(720\) 539136. 0.0387585
\(721\) 0 0
\(722\) −9.45560e6 −0.675066
\(723\) 4.29201e6 7.43398e6i 0.305362 0.528902i
\(724\) −5.57206e6 9.65110e6i −0.395066 0.684274i
\(725\) −4.42044e6 7.65644e6i −0.312335 0.540980i
\(726\) −591966. + 1.02532e6i −0.0416826 + 0.0721964i
\(727\) 6.53025e6 0.458241 0.229120 0.973398i \(-0.426415\pi\)
0.229120 + 0.973398i \(0.426415\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.06600e6 1.84637e6i 0.0740372 0.128236i
\(731\) −402444. 697053.i −0.0278556 0.0482473i
\(732\) 3.22848e6 + 5.59189e6i 0.222700 + 0.385728i
\(733\) 8.32855e6 1.44255e7i 0.572545 0.991677i −0.423759 0.905775i \(-0.639290\pi\)
0.996304 0.0859016i \(-0.0273771\pi\)
\(734\) −1.23940e7 −0.849128
\(735\) 0 0
\(736\) 2.19341e6 0.149254
\(737\) −259192. + 448934.i −0.0175773 + 0.0304448i
\(738\) −347004. 601029.i −0.0234527 0.0406213i
\(739\) 1.19768e7 + 2.07444e7i 0.806733 + 1.39730i 0.915115 + 0.403192i \(0.132099\pi\)
−0.108383 + 0.994109i \(0.534567\pi\)
\(740\) 607776. 1.05270e6i 0.0408004 0.0706683i
\(741\) −6.57360e6 −0.439803
\(742\) 0 0
\(743\) −7.48982e6 −0.497736 −0.248868 0.968537i \(-0.580059\pi\)
−0.248868 + 0.968537i \(0.580059\pi\)
\(744\) 1.63238e6 2.82737e6i 0.108116 0.187262i
\(745\) −904202. 1.56612e6i −0.0596863 0.103380i
\(746\) −456532. 790737.i −0.0300348 0.0520217i
\(747\) 4.16356e6 7.21150e6i 0.273001 0.472851i
\(748\) −721728. −0.0471650
\(749\) 0 0
\(750\) 5.21726e6 0.338680
\(751\) 2.35922e6 4.08630e6i 0.152640 0.264381i −0.779557 0.626331i \(-0.784556\pi\)
0.932197 + 0.361950i \(0.117889\pi\)
\(752\) 834560. + 1.44550e6i 0.0538162 + 0.0932124i
\(753\) −2.56293e6 4.43912e6i −0.164721 0.285305i
\(754\) −2.39704e6 + 4.15180e6i −0.153549 + 0.265955i
\(755\) 1.37602e7 0.878534
\(756\) 0 0
\(757\) −2.67397e7 −1.69597 −0.847983 0.530024i \(-0.822183\pi\)
−0.847983 + 0.530024i \(0.822183\pi\)
\(758\) −2.07338e6 + 3.59121e6i −0.131071 + 0.227022i
\(759\) −3.45076e6 5.97690e6i −0.217426 0.376592i
\(760\) −1.83040e6 3.17035e6i −0.114951 0.199101i
\(761\) 7.21654e6 1.24994e7i 0.451718 0.782398i −0.546775 0.837279i \(-0.684145\pi\)
0.998493 + 0.0548815i \(0.0174781\pi\)
\(762\) −5.95973e6 −0.371825
\(763\) 0 0
\(764\) 1.09872e6 0.0681010
\(765\) −132678. + 229805.i −0.00819682 + 0.0141973i
\(766\) −423552. 733614.i −0.0260816 0.0451747i
\(767\) −7.05898e6 1.22265e7i −0.433265 0.750437i
\(768\) −294912. + 510803.i −0.0180422 + 0.0312500i
\(769\) −8.55510e6 −0.521686 −0.260843 0.965381i \(-0.584001\pi\)
−0.260843 + 0.965381i \(0.584001\pi\)
\(770\) 0 0
\(771\) 9.59978e6 0.581601
\(772\) −6.61778e6 + 1.14623e7i −0.399640 + 0.692197i
\(773\) −9.61358e6 1.66512e7i −0.578677 1.00230i −0.995631 0.0933705i \(-0.970236\pi\)
0.416954 0.908927i \(-0.363097\pi\)
\(774\) 1.03486e6 + 1.79242e6i 0.0620908 + 0.107544i
\(775\) 6.94047e6 1.20212e7i 0.415082 0.718944i
\(776\) 7.25274e6 0.432362
\(777\) 0 0
\(778\) −5.65298e6 −0.334833
\(779\) −2.35620e6 + 4.08106e6i −0.139113 + 0.240951i
\(780\) −621504. 1.07648e6i −0.0365769 0.0633531i
\(781\) −787958. 1.36478e6i −0.0462248 0.0800638i
\(782\) −539784. + 934933.i −0.0315648 + 0.0546718i
\(783\) −2.63169e6 −0.153402
\(784\) 0 0
\(785\) 339040. 0.0196371
\(786\) −2.50754e6 + 4.34319e6i −0.144775 + 0.250757i
\(787\) 1.26658e7 + 2.19378e7i 0.728947 + 1.26257i 0.957329 + 0.289002i \(0.0933233\pi\)
−0.228382 + 0.973572i \(0.573343\pi\)
\(788\) 1.14706e6 + 1.98676e6i 0.0658065 + 0.113980i
\(789\) 6.67094e6 1.15544e7i 0.381500 0.660777i
\(790\) −6.78454e6 −0.386770
\(791\) 0 0
\(792\) 1.85587e6 0.105132
\(793\) 7.44344e6 1.28924e7i 0.420330 0.728033i
\(794\) −2.18067e6 3.77703e6i −0.122755 0.212618i
\(795\) 1.25213e6 + 2.16876e6i 0.0702640 + 0.121701i
\(796\) 4.34080e6 7.51849e6i 0.242821 0.420579i
\(797\) −3.13162e7 −1.74632 −0.873158 0.487437i \(-0.837932\pi\)
−0.873158 + 0.487437i \(0.837932\pi\)
\(798\) 0 0
\(799\) −821520. −0.0455251
\(800\) −1.25389e6 + 2.17180e6i −0.0692682 + 0.119976i
\(801\) 5.18424e6 + 8.97937e6i 0.285499 + 0.494498i
\(802\) 5.28505e6 + 9.15398e6i 0.290144 + 0.502544i
\(803\) 3.66950e6 6.35576e6i 0.200825 0.347839i
\(804\) −208512. −0.0113760
\(805\) 0 0
\(806\) −7.52710e6 −0.408122
\(807\) 967995. 1.67662e6i 0.0523226 0.0906254i
\(808\) −4.47085e6 7.74374e6i −0.240914 0.417275i
\(809\) −242445. 419927.i −0.0130239 0.0225581i 0.859440 0.511237i \(-0.170812\pi\)
−0.872464 + 0.488679i \(0.837479\pi\)
\(810\) 341172. 590927.i 0.0182709 0.0316462i
\(811\) −5.32623e6 −0.284359 −0.142180 0.989841i \(-0.545411\pi\)
−0.142180 + 0.989841i \(0.545411\pi\)
\(812\) 0 0
\(813\) 1.73793e7 0.922161
\(814\) 2.09215e6 3.62371e6i 0.110671 0.191687i
\(815\) 4.56612e6 + 7.90875e6i 0.240798 + 0.417075i
\(816\) −145152. 251411.i −0.00763128 0.0132178i
\(817\) 7.02680e6 1.21708e7i 0.368301 0.637915i
\(818\) −2.50171e7 −1.30723
\(819\) 0 0
\(820\) −891072. −0.0462784
\(821\) −1.60889e7 + 2.78667e7i −0.833043 + 1.44287i 0.0625713 + 0.998040i \(0.480070\pi\)
−0.895614 + 0.444832i \(0.853263\pi\)
\(822\) −5.99116e6 1.03770e7i −0.309265 0.535663i
\(823\) 4.03704e6 + 6.99235e6i 0.207761 + 0.359852i 0.951009 0.309164i \(-0.100049\pi\)
−0.743248 + 0.669016i \(0.766716\pi\)
\(824\) −4.54976e6 + 7.88042e6i −0.233437 + 0.404325i
\(825\) 7.89068e6 0.403626
\(826\) 0 0
\(827\) −8.04922e6 −0.409251 −0.204626 0.978840i \(-0.565598\pi\)
−0.204626 + 0.978840i \(0.565598\pi\)
\(828\) 1.38802e6 2.40411e6i 0.0703588 0.121865i
\(829\) 6.79447e6 + 1.17684e7i 0.343375 + 0.594744i 0.985057 0.172227i \(-0.0550963\pi\)
−0.641682 + 0.766971i \(0.721763\pi\)
\(830\) −5.34581e6 9.25921e6i −0.269351 0.466529i
\(831\) −9.16903e6 + 1.58812e7i −0.460597 + 0.797777i
\(832\) 1.35987e6 0.0681067
\(833\) 0 0
\(834\) −308016. −0.0153341
\(835\) −8.13966e6 + 1.40983e7i −0.404008 + 0.699763i
\(836\) −6.30080e6 1.09133e7i −0.311803 0.540058i
\(837\) −2.06599e6 3.57839e6i −0.101933 0.176553i
\(838\) −1.94785e6 + 3.37377e6i −0.0958175 + 0.165961i
\(839\) −3.67721e6 −0.180349 −0.0901744 0.995926i \(-0.528742\pi\)
−0.0901744 + 0.995926i \(0.528742\pi\)
\(840\) 0 0
\(841\) −7.47905e6 −0.364633
\(842\) 1.72924e6 2.99512e6i 0.0840570 0.145591i
\(843\) 2.87580e6 + 4.98103e6i 0.139376 + 0.241407i
\(844\) −9.02205e6 1.56266e7i −0.435962 0.755109i
\(845\) 3.39390e6 5.87840e6i 0.163515 0.283216i
\(846\) 2.11248e6 0.101477
\(847\) 0 0
\(848\) −2.73971e6 −0.130832
\(849\) −169848. + 294185.i −0.00808707 + 0.0140072i
\(850\) −617148. 1.06893e6i −0.0292983 0.0507461i
\(851\) −3.12946e6 5.42039e6i −0.148131 0.256570i
\(852\) 316944. 548963.i 0.0149583 0.0259086i
\(853\) −3.25379e7 −1.53115 −0.765573 0.643349i \(-0.777544\pi\)
−0.765573 + 0.643349i \(0.777544\pi\)
\(854\) 0 0
\(855\) −4.63320e6 −0.216753
\(856\) −6.35258e6 + 1.10030e7i −0.296323 + 0.513247i
\(857\) −5.63617e6 9.76213e6i −0.262139 0.454038i 0.704671 0.709534i \(-0.251095\pi\)
−0.966810 + 0.255496i \(0.917761\pi\)
\(858\) −2.13941e6 3.70556e6i −0.0992146 0.171845i
\(859\) 3.84847e6 6.66575e6i 0.177953 0.308224i −0.763226 0.646131i \(-0.776386\pi\)
0.941179 + 0.337908i \(0.109719\pi\)
\(860\) 2.65741e6 0.122521
\(861\) 0 0
\(862\) 1.46418e7 0.671162
\(863\) 2.29392e6 3.97319e6i 0.104846 0.181599i −0.808829 0.588044i \(-0.799898\pi\)
0.913675 + 0.406445i \(0.133232\pi\)
\(864\) 373248. + 646484.i 0.0170103 + 0.0294628i
\(865\) 2.40274e6 + 4.16166e6i 0.109186 + 0.189115i
\(866\) −9.87334e6 + 1.71011e7i −0.447373 + 0.774872i
\(867\) −1.26358e7 −0.570895
\(868\) 0 0
\(869\) −2.33545e7 −1.04911
\(870\) −1.68948e6 + 2.92627e6i −0.0756754 + 0.131074i
\(871\) 240368. + 416330.i 0.0107357 + 0.0185948i
\(872\) 4.24122e6 + 7.34600e6i 0.188886 + 0.327160i
\(873\) 4.58962e6 7.94946e6i 0.203817 0.353022i
\(874\) −1.88496e7 −0.834687
\(875\) 0 0
\(876\) 2.95200e6 0.129974
\(877\) 5.73328e6 9.93033e6i 0.251712 0.435978i −0.712285 0.701890i \(-0.752340\pi\)
0.963997 + 0.265912i \(0.0856731\pi\)
\(878\) 1.46261e6 + 2.53331e6i 0.0640312 + 0.110905i
\(879\) 8.27644e6 + 1.43352e7i 0.361303 + 0.625795i
\(880\) 1.19142e6 2.06361e6i 0.0518632 0.0898298i
\(881\) −3.02550e7 −1.31328 −0.656640 0.754204i \(-0.728023\pi\)
−0.656640 + 0.754204i \(0.728023\pi\)
\(882\) 0 0
\(883\) 9.83052e6 0.424302 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(884\) −334656. + 579641.i −0.0144035 + 0.0249476i
\(885\) −4.97531e6 8.61749e6i −0.213531 0.369847i
\(886\) 9.73240e6 + 1.68570e7i 0.416520 + 0.721433i
\(887\) −1.16136e7 + 2.01154e7i −0.495631 + 0.858459i −0.999987 0.00503723i \(-0.998397\pi\)
0.504356 + 0.863496i \(0.331730\pi\)
\(888\) 1.68307e6 0.0716259
\(889\) 0 0
\(890\) 1.33126e7 0.563363
\(891\) 1.17442e6 2.03415e6i 0.0495597 0.0858399i
\(892\) −7.18381e6 1.24427e7i −0.302303 0.523604i
\(893\) −7.17200e6 1.24223e7i −0.300962 0.521281i
\(894\) 1.25197e6 2.16848e6i 0.0523903 0.0907426i
\(895\) −9.29557e6 −0.387899
\(896\) 0 0
\(897\) −6.40030e6 −0.265594
\(898\) 1.14397e7 1.98142e7i 0.473396 0.819947i
\(899\) 1.02307e7 + 1.77202e7i 0.422190 + 0.731254i
\(900\) 1.58695e6 + 2.74868e6i 0.0653067 + 0.113114i
\(901\) 674226. 1.16779e6i 0.0276690 0.0479241i
\(902\) −3.06734e6 −0.125530
\(903\) 0 0
\(904\) −3.00966e6 −0.122489
\(905\) −9.05460e6 + 1.56830e7i −0.367492 + 0.636515i
\(906\) 9.52632e6 + 1.65001e7i 0.385571 + 0.667829i
\(907\) −1.52750e7 2.64571e7i −0.616544 1.06788i −0.990112 0.140282i \(-0.955199\pi\)
0.373568 0.927603i \(-0.378134\pi\)
\(908\) 3.74090e6 6.47942e6i 0.150578 0.260808i
\(909\) −1.13168e7 −0.454271
\(910\) 0 0
\(911\) 2.21502e7 0.884265 0.442133 0.896950i \(-0.354222\pi\)
0.442133 + 0.896950i \(0.354222\pi\)
\(912\) 2.53440e6 4.38971e6i 0.100899 0.174763i
\(913\) −1.84019e7 3.18731e7i −0.730611 1.26546i
\(914\) −1.36407e7 2.36264e7i −0.540096 0.935473i
\(915\) 5.24628e6 9.08682e6i 0.207157 0.358806i
\(916\) −7.13824e6 −0.281095
\(917\) 0 0
\(918\) −367416. −0.0143897
\(919\) 6.33613e6 1.09745e7i 0.247477 0.428643i −0.715348 0.698769i \(-0.753732\pi\)
0.962825 + 0.270125i \(0.0870651\pi\)
\(920\) −1.78214e6 3.08676e6i −0.0694182 0.120236i
\(921\) 4.79124e6 + 8.29867e6i 0.186122 + 0.322374i
\(922\) −1.49187e7 + 2.58399e7i −0.577967 + 1.00107i
\(923\) −1.46146e6 −0.0564656
\(924\) 0 0
\(925\) 7.15598e6 0.274989
\(926\) −1.04770e7 + 1.81466e7i −0.401521 + 0.695455i
\(927\) 5.75829e6 + 9.97365e6i 0.220087 + 0.381202i
\(928\) −1.84832e6 3.20138e6i −0.0704543 0.122030i
\(929\) 2.01420e7 3.48870e7i 0.765709 1.32625i −0.174162 0.984717i \(-0.555722\pi\)
0.939871 0.341530i \(-0.110945\pi\)
\(930\) −5.30525e6 −0.201140
\(931\) 0 0
\(932\) 1.12238e7 0.423252
\(933\) 4.54284e6 7.86843e6i 0.170853 0.295927i
\(934\) 1.79199e7 + 3.10382e7i 0.672153 + 1.16420i
\(935\) 586404. + 1.01568e6i 0.0219365 + 0.0379952i
\(936\) 860544. 1.49051e6i 0.0321058 0.0556089i
\(937\) 1.34104e7 0.498992 0.249496 0.968376i \(-0.419735\pi\)
0.249496 + 0.968376i \(0.419735\pi\)
\(938\) 0 0
\(939\) −1.30419e7 −0.482698
\(940\) 1.35616e6 2.34894e6i 0.0500601 0.0867066i
\(941\) 1.36606e7 + 2.36609e7i 0.502918 + 0.871079i 0.999994 + 0.00337223i \(0.00107342\pi\)
−0.497077 + 0.867707i \(0.665593\pi\)
\(942\) 234720. + 406547.i 0.00861832 + 0.0149274i
\(943\) −2.29408e6 + 3.97347e6i −0.0840098 + 0.145509i
\(944\) 1.08861e7 0.397598
\(945\) 0 0
\(946\) 9.14762e6 0.332338
\(947\) −4.35872e6 + 7.54953e6i −0.157937 + 0.273555i −0.934125 0.356947i \(-0.883818\pi\)
0.776187 + 0.630502i \(0.217151\pi\)
\(948\) −4.69699e6 8.13543e6i −0.169746 0.294008i
\(949\) −3.40300e6 5.89417e6i −0.122658 0.212450i
\(950\) 1.07756e7 1.86639e7i 0.387376 0.670955i
\(951\) 2.45080e7 0.878731
\(952\) 0 0
\(953\) −1.62984e7 −0.581315 −0.290658 0.956827i \(-0.593874\pi\)
−0.290658 + 0.956827i \(0.593874\pi\)
\(954\) −1.73372e6 + 3.00290e6i −0.0616750 + 0.106824i
\(955\) −892710. 1.54622e6i −0.0316739 0.0548609i
\(956\) 3.07358e6 + 5.32360e6i 0.108768 + 0.188391i
\(957\) −5.81571e6 + 1.00731e7i −0.205269 + 0.355536i
\(958\) 7.01414e6 0.246923
\(959\) 0 0
\(960\) 958464. 0.0335659
\(961\) −1.74854e6 + 3.02855e6i −0.0610754 + 0.105786i
\(962\) −1.94021e6 3.36054e6i −0.0675944 0.117077i
\(963\) 8.03998e6 + 1.39257e7i 0.279376 + 0.483894i
\(964\) 7.63024e6 1.32160e7i 0.264451 0.458043i
\(965\) 2.15078e7 0.743493
\(966\) 0 0
\(967\) −5.49067e6 −0.188825 −0.0944124 0.995533i \(-0.530097\pi\)
−0.0944124 + 0.995533i \(0.530097\pi\)
\(968\) −1.05238e6 + 1.82278e6i −0.0360982 + 0.0625240i
\(969\) 1.24740e6 + 2.16056e6i 0.0426772 + 0.0739191i
\(970\) −5.89285e6 1.02067e7i −0.201093 0.348302i
\(971\) −2.25838e7 + 3.91162e7i −0.768685 + 1.33140i 0.169591 + 0.985514i \(0.445755\pi\)
−0.938276 + 0.345887i \(0.887578\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) −3.71027e6 −0.125317
\(975\) 3.65881e6 6.33724e6i 0.123262 0.213495i
\(976\) 5.73952e6 + 9.94114e6i 0.192864 + 0.334050i
\(977\) 1.19005e7 + 2.06123e7i 0.398868 + 0.690860i 0.993587 0.113074i \(-0.0360697\pi\)
−0.594718 + 0.803934i \(0.702736\pi\)
\(978\) −6.32232e6 + 1.09506e7i −0.211363 + 0.366092i
\(979\) 4.58261e7 1.52812
\(980\) 0 0
\(981\) 1.07356e7 0.356166
\(982\) 1.68747e7 2.92278e7i 0.558414 0.967201i
\(983\) −4.68239e6 8.11014e6i −0.154555 0.267698i 0.778342 0.627841i \(-0.216061\pi\)
−0.932897 + 0.360143i \(0.882728\pi\)
\(984\) −616896. 1.06850e6i −0.0203107 0.0351791i
\(985\) 1.86397e6 3.22848e6i 0.0612135 0.106025i
\(986\) 1.81944e6 0.0595999
\(987\) 0 0
\(988\) −1.16864e7 −0.380880
\(989\) 6.84155e6 1.18499e7i 0.222415 0.385234i
\(990\) −1.50790e6 2.61175e6i −0.0488971 0.0846923i
\(991\) 2.16958e7 + 3.75782e7i 0.701764 + 1.21549i 0.967847 + 0.251541i \(0.0809374\pi\)
−0.266082 + 0.963950i \(0.585729\pi\)
\(992\) 2.90202e6 5.02644e6i 0.0936312 0.162174i
\(993\) −9.90364e6 −0.318729
\(994\) 0 0
\(995\) −1.41076e7 −0.451747
\(996\) 7.40189e6 1.28204e7i 0.236425 0.409501i
\(997\) −2.17647e6 3.76975e6i −0.0693449 0.120109i 0.829268 0.558851i \(-0.188758\pi\)
−0.898613 + 0.438742i \(0.855424\pi\)
\(998\) 2.66556e6 + 4.61689e6i 0.0847153 + 0.146731i
\(999\) 1.06507e6 1.84475e6i 0.0337648 0.0584823i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.e.j.79.1 2
7.2 even 3 294.6.a.g.1.1 yes 1
7.3 odd 6 294.6.e.q.67.1 2
7.4 even 3 inner 294.6.e.j.67.1 2
7.5 odd 6 294.6.a.a.1.1 1
7.6 odd 2 294.6.e.q.79.1 2
21.2 odd 6 882.6.a.p.1.1 1
21.5 even 6 882.6.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.a.1.1 1 7.5 odd 6
294.6.a.g.1.1 yes 1 7.2 even 3
294.6.e.j.67.1 2 7.4 even 3 inner
294.6.e.j.79.1 2 1.1 even 1 trivial
294.6.e.q.67.1 2 7.3 odd 6
294.6.e.q.79.1 2 7.6 odd 2
882.6.a.p.1.1 1 21.2 odd 6
882.6.a.t.1.1 1 21.5 even 6