Properties

Label 294.6.e.o.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.o.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(4.50000 - 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-22.0000 - 38.1051i) q^{5} +36.0000 q^{6} -64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(88.0000 - 152.420i) q^{10} +(235.000 - 407.032i) q^{11} +(72.0000 + 124.708i) q^{12} -1158.00 q^{13} -396.000 q^{15} +(-128.000 - 221.703i) q^{16} +(-602.000 + 1042.69i) q^{17} +(162.000 - 280.592i) q^{18} +(1322.00 + 2289.77i) q^{19} +704.000 q^{20} +1880.00 q^{22} +(595.000 + 1030.57i) q^{23} +(-288.000 + 498.831i) q^{24} +(594.500 - 1029.70i) q^{25} +(-2316.00 - 4011.43i) q^{26} -729.000 q^{27} +3614.00 q^{29} +(-792.000 - 1371.78i) q^{30} +(-2808.00 + 4863.60i) q^{31} +(512.000 - 886.810i) q^{32} +(-2115.00 - 3663.29i) q^{33} -4816.00 q^{34} +1296.00 q^{36} +(3239.00 + 5610.11i) q^{37} +(-5288.00 + 9159.08i) q^{38} +(-5211.00 + 9025.72i) q^{39} +(1408.00 + 2438.73i) q^{40} +2856.00 q^{41} -13492.0 q^{43} +(3760.00 + 6512.51i) q^{44} +(-1782.00 + 3086.51i) q^{45} +(-2380.00 + 4122.28i) q^{46} +(9186.00 + 15910.6i) q^{47} -2304.00 q^{48} +4756.00 q^{50} +(5418.00 + 9384.25i) q^{51} +(9264.00 - 16045.7i) q^{52} +(2187.00 - 3788.00i) q^{53} +(-1458.00 - 2525.33i) q^{54} -20680.0 q^{55} +23796.0 q^{57} +(7228.00 + 12519.3i) q^{58} +(-15124.0 + 26195.5i) q^{59} +(3168.00 - 5487.14i) q^{60} +(-9771.00 - 16923.9i) q^{61} -22464.0 q^{62} +4096.00 q^{64} +(25476.0 + 44125.7i) q^{65} +(8460.00 - 14653.1i) q^{66} +(-27164.0 + 47049.4i) q^{67} +(-9632.00 - 16683.1i) q^{68} +10710.0 q^{69} -10730.0 q^{71} +(2592.00 + 4489.48i) q^{72} +(-17687.0 + 30634.8i) q^{73} +(-12956.0 + 22440.5i) q^{74} +(-5350.50 - 9267.34i) q^{75} -42304.0 q^{76} -41688.0 q^{78} +(24978.0 + 43263.2i) q^{79} +(-5632.00 + 9754.91i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(5712.00 + 9893.47i) q^{82} -26948.0 q^{83} +52976.0 q^{85} +(-26984.0 - 46737.7i) q^{86} +(16263.0 - 28168.3i) q^{87} +(-15040.0 + 26050.0i) q^{88} +(-50388.0 - 87274.6i) q^{89} -14256.0 q^{90} -19040.0 q^{92} +(25272.0 + 43772.4i) q^{93} +(-36744.0 + 63642.5i) q^{94} +(58168.0 - 100750. i) q^{95} +(-4608.00 - 7981.29i) q^{96} +77134.0 q^{97} -38070.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} - 44 q^{5} + 72 q^{6} - 128 q^{8} - 81 q^{9} + 176 q^{10} + 470 q^{11} + 144 q^{12} - 2316 q^{13} - 792 q^{15} - 256 q^{16} - 1204 q^{17} + 324 q^{18} + 2644 q^{19} + 1408 q^{20}+ \cdots - 76140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −22.0000 38.1051i −0.393548 0.681645i 0.599367 0.800475i \(-0.295419\pi\)
−0.992915 + 0.118830i \(0.962086\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 88.0000 152.420i 0.278280 0.481996i
\(11\) 235.000 407.032i 0.585580 1.01425i −0.409223 0.912434i \(-0.634200\pi\)
0.994803 0.101820i \(-0.0324665\pi\)
\(12\) 72.0000 + 124.708i 0.144338 + 0.250000i
\(13\) −1158.00 −1.90042 −0.950211 0.311606i \(-0.899133\pi\)
−0.950211 + 0.311606i \(0.899133\pi\)
\(14\) 0 0
\(15\) −396.000 −0.454430
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −602.000 + 1042.69i −0.505213 + 0.875054i 0.494769 + 0.869024i \(0.335253\pi\)
−0.999982 + 0.00602951i \(0.998081\pi\)
\(18\) 162.000 280.592i 0.117851 0.204124i
\(19\) 1322.00 + 2289.77i 0.840132 + 1.45515i 0.889783 + 0.456384i \(0.150856\pi\)
−0.0496508 + 0.998767i \(0.515811\pi\)
\(20\) 704.000 0.393548
\(21\) 0 0
\(22\) 1880.00 0.828135
\(23\) 595.000 + 1030.57i 0.234529 + 0.406217i 0.959136 0.282946i \(-0.0913117\pi\)
−0.724606 + 0.689163i \(0.757978\pi\)
\(24\) −288.000 + 498.831i −0.102062 + 0.176777i
\(25\) 594.500 1029.70i 0.190240 0.329505i
\(26\) −2316.00 4011.43i −0.671901 1.16377i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 3614.00 0.797982 0.398991 0.916955i \(-0.369360\pi\)
0.398991 + 0.916955i \(0.369360\pi\)
\(30\) −792.000 1371.78i −0.160665 0.278280i
\(31\) −2808.00 + 4863.60i −0.524799 + 0.908978i 0.474784 + 0.880102i \(0.342526\pi\)
−0.999583 + 0.0288760i \(0.990807\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) −2115.00 3663.29i −0.338085 0.585580i
\(34\) −4816.00 −0.714479
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 3239.00 + 5610.11i 0.388962 + 0.673701i 0.992310 0.123776i \(-0.0395006\pi\)
−0.603349 + 0.797478i \(0.706167\pi\)
\(38\) −5288.00 + 9159.08i −0.594063 + 1.02895i
\(39\) −5211.00 + 9025.72i −0.548605 + 0.950211i
\(40\) 1408.00 + 2438.73i 0.139140 + 0.240998i
\(41\) 2856.00 0.265337 0.132669 0.991160i \(-0.457645\pi\)
0.132669 + 0.991160i \(0.457645\pi\)
\(42\) 0 0
\(43\) −13492.0 −1.11277 −0.556385 0.830925i \(-0.687812\pi\)
−0.556385 + 0.830925i \(0.687812\pi\)
\(44\) 3760.00 + 6512.51i 0.292790 + 0.507127i
\(45\) −1782.00 + 3086.51i −0.131183 + 0.227215i
\(46\) −2380.00 + 4122.28i −0.165837 + 0.287239i
\(47\) 9186.00 + 15910.6i 0.606571 + 1.05061i 0.991801 + 0.127792i \(0.0407888\pi\)
−0.385230 + 0.922821i \(0.625878\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) 4756.00 0.269040
\(51\) 5418.00 + 9384.25i 0.291685 + 0.505213i
\(52\) 9264.00 16045.7i 0.475106 0.822907i
\(53\) 2187.00 3788.00i 0.106945 0.185234i −0.807586 0.589749i \(-0.799227\pi\)
0.914531 + 0.404516i \(0.132560\pi\)
\(54\) −1458.00 2525.33i −0.0680414 0.117851i
\(55\) −20680.0 −0.921815
\(56\) 0 0
\(57\) 23796.0 0.970101
\(58\) 7228.00 + 12519.3i 0.282129 + 0.488662i
\(59\) −15124.0 + 26195.5i −0.565635 + 0.979709i 0.431355 + 0.902182i \(0.358036\pi\)
−0.996990 + 0.0775270i \(0.975298\pi\)
\(60\) 3168.00 5487.14i 0.113608 0.196774i
\(61\) −9771.00 16923.9i −0.336213 0.582338i 0.647504 0.762062i \(-0.275813\pi\)
−0.983717 + 0.179724i \(0.942480\pi\)
\(62\) −22464.0 −0.742178
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 25476.0 + 44125.7i 0.747907 + 1.29541i
\(66\) 8460.00 14653.1i 0.239062 0.414068i
\(67\) −27164.0 + 47049.4i −0.739276 + 1.28046i 0.213545 + 0.976933i \(0.431499\pi\)
−0.952822 + 0.303531i \(0.901834\pi\)
\(68\) −9632.00 16683.1i −0.252606 0.437527i
\(69\) 10710.0 0.270811
\(70\) 0 0
\(71\) −10730.0 −0.252612 −0.126306 0.991991i \(-0.540312\pi\)
−0.126306 + 0.991991i \(0.540312\pi\)
\(72\) 2592.00 + 4489.48i 0.0589256 + 0.102062i
\(73\) −17687.0 + 30634.8i −0.388461 + 0.672834i −0.992243 0.124316i \(-0.960326\pi\)
0.603782 + 0.797149i \(0.293660\pi\)
\(74\) −12956.0 + 22440.5i −0.275037 + 0.476379i
\(75\) −5350.50 9267.34i −0.109835 0.190240i
\(76\) −42304.0 −0.840132
\(77\) 0 0
\(78\) −41688.0 −0.775844
\(79\) 24978.0 + 43263.2i 0.450288 + 0.779921i 0.998404 0.0564813i \(-0.0179881\pi\)
−0.548116 + 0.836402i \(0.684655\pi\)
\(80\) −5632.00 + 9754.91i −0.0983870 + 0.170411i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 5712.00 + 9893.47i 0.0938110 + 0.162485i
\(83\) −26948.0 −0.429370 −0.214685 0.976683i \(-0.568872\pi\)
−0.214685 + 0.976683i \(0.568872\pi\)
\(84\) 0 0
\(85\) 52976.0 0.795302
\(86\) −26984.0 46737.7i −0.393423 0.681429i
\(87\) 16263.0 28168.3i 0.230358 0.398991i
\(88\) −15040.0 + 26050.0i −0.207034 + 0.358593i
\(89\) −50388.0 87274.6i −0.674298 1.16792i −0.976673 0.214730i \(-0.931113\pi\)
0.302375 0.953189i \(-0.402220\pi\)
\(90\) −14256.0 −0.185520
\(91\) 0 0
\(92\) −19040.0 −0.234529
\(93\) 25272.0 + 43772.4i 0.302993 + 0.524799i
\(94\) −36744.0 + 63642.5i −0.428911 + 0.742895i
\(95\) 58168.0 100750.i 0.661264 1.14534i
\(96\) −4608.00 7981.29i −0.0510310 0.0883883i
\(97\) 77134.0 0.832370 0.416185 0.909280i \(-0.363367\pi\)
0.416185 + 0.909280i \(0.363367\pi\)
\(98\) 0 0
\(99\) −38070.0 −0.390387
\(100\) 9512.00 + 16475.3i 0.0951200 + 0.164753i
\(101\) −49732.0 + 86138.4i −0.485101 + 0.840220i −0.999853 0.0171189i \(-0.994551\pi\)
0.514752 + 0.857339i \(0.327884\pi\)
\(102\) −21672.0 + 37537.0i −0.206252 + 0.357239i
\(103\) −33472.0 57975.2i −0.310877 0.538455i 0.667675 0.744452i \(-0.267289\pi\)
−0.978552 + 0.205998i \(0.933956\pi\)
\(104\) 74112.0 0.671901
\(105\) 0 0
\(106\) 17496.0 0.151243
\(107\) 114099. + 197625.i 0.963435 + 1.66872i 0.713762 + 0.700388i \(0.246990\pi\)
0.249673 + 0.968330i \(0.419677\pi\)
\(108\) 5832.00 10101.3i 0.0481125 0.0833333i
\(109\) 47593.0 82433.5i 0.383687 0.664565i −0.607899 0.794014i \(-0.707988\pi\)
0.991586 + 0.129449i \(0.0413209\pi\)
\(110\) −41360.0 71637.6i −0.325911 0.564494i
\(111\) 58302.0 0.449134
\(112\) 0 0
\(113\) −261142. −1.92389 −0.961946 0.273240i \(-0.911905\pi\)
−0.961946 + 0.273240i \(0.911905\pi\)
\(114\) 47592.0 + 82431.8i 0.342982 + 0.594063i
\(115\) 26180.0 45345.1i 0.184597 0.319732i
\(116\) −28912.0 + 50077.1i −0.199496 + 0.345536i
\(117\) 46899.0 + 81231.5i 0.316737 + 0.548605i
\(118\) −120992. −0.799929
\(119\) 0 0
\(120\) 25344.0 0.160665
\(121\) −29924.5 51830.8i −0.185808 0.321828i
\(122\) 39084.0 67695.5i 0.237738 0.411775i
\(123\) 12852.0 22260.3i 0.0765963 0.132669i
\(124\) −44928.0 77817.6i −0.262399 0.454489i
\(125\) −189816. −1.08657
\(126\) 0 0
\(127\) −167652. −0.922358 −0.461179 0.887307i \(-0.652573\pi\)
−0.461179 + 0.887307i \(0.652573\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) −60714.0 + 105160.i −0.321229 + 0.556385i
\(130\) −101904. + 176503.i −0.528850 + 0.915996i
\(131\) 41534.0 + 71939.0i 0.211459 + 0.366257i 0.952171 0.305565i \(-0.0988453\pi\)
−0.740713 + 0.671822i \(0.765512\pi\)
\(132\) 67680.0 0.338085
\(133\) 0 0
\(134\) −217312. −1.04549
\(135\) 16038.0 + 27778.6i 0.0757383 + 0.131183i
\(136\) 38528.0 66732.5i 0.178620 0.309378i
\(137\) −81127.0 + 140516.i −0.369287 + 0.639624i −0.989454 0.144846i \(-0.953731\pi\)
0.620167 + 0.784470i \(0.287065\pi\)
\(138\) 21420.0 + 37100.5i 0.0957462 + 0.165837i
\(139\) −58844.0 −0.258324 −0.129162 0.991623i \(-0.541229\pi\)
−0.129162 + 0.991623i \(0.541229\pi\)
\(140\) 0 0
\(141\) 165348. 0.700408
\(142\) −21460.0 37169.8i −0.0893118 0.154693i
\(143\) −272130. + 471343.i −1.11285 + 1.92751i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) −79508.0 137712.i −0.314044 0.543941i
\(146\) −141496. −0.549366
\(147\) 0 0
\(148\) −103648. −0.388962
\(149\) −215349. 372995.i −0.794652 1.37638i −0.923060 0.384657i \(-0.874320\pi\)
0.128407 0.991722i \(-0.459014\pi\)
\(150\) 21402.0 37069.4i 0.0776652 0.134520i
\(151\) 250468. 433823.i 0.893943 1.54835i 0.0588359 0.998268i \(-0.481261\pi\)
0.835107 0.550087i \(-0.185406\pi\)
\(152\) −84608.0 146545.i −0.297031 0.514474i
\(153\) 97524.0 0.336808
\(154\) 0 0
\(155\) 247104. 0.826134
\(156\) −83376.0 144411.i −0.274302 0.475106i
\(157\) 140129. 242711.i 0.453711 0.785850i −0.544902 0.838499i \(-0.683433\pi\)
0.998613 + 0.0526497i \(0.0167667\pi\)
\(158\) −99912.0 + 173053.i −0.318401 + 0.551487i
\(159\) −19683.0 34092.0i −0.0617445 0.106945i
\(160\) −45056.0 −0.139140
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) 60008.0 + 103937.i 0.176905 + 0.306408i 0.940819 0.338910i \(-0.110058\pi\)
−0.763914 + 0.645318i \(0.776725\pi\)
\(164\) −22848.0 + 39573.9i −0.0663344 + 0.114894i
\(165\) −93060.0 + 161185.i −0.266105 + 0.460908i
\(166\) −53896.0 93350.6i −0.151805 0.262934i
\(167\) 546932. 1.51755 0.758774 0.651355i \(-0.225799\pi\)
0.758774 + 0.651355i \(0.225799\pi\)
\(168\) 0 0
\(169\) 969671. 2.61161
\(170\) 105952. + 183514.i 0.281182 + 0.487021i
\(171\) 107082. 185471.i 0.280044 0.485050i
\(172\) 107936. 186951.i 0.278192 0.481843i
\(173\) 183548. + 317914.i 0.466267 + 0.807598i 0.999258 0.0385233i \(-0.0122654\pi\)
−0.532991 + 0.846121i \(0.678932\pi\)
\(174\) 130104. 0.325775
\(175\) 0 0
\(176\) −120320. −0.292790
\(177\) 136116. + 235760.i 0.326570 + 0.565635i
\(178\) 201552. 349098.i 0.476801 0.825843i
\(179\) 44445.0 76981.0i 0.103679 0.179577i −0.809519 0.587094i \(-0.800272\pi\)
0.913198 + 0.407517i \(0.133605\pi\)
\(180\) −28512.0 49384.2i −0.0655913 0.113608i
\(181\) −782118. −1.77450 −0.887250 0.461290i \(-0.847387\pi\)
−0.887250 + 0.461290i \(0.847387\pi\)
\(182\) 0 0
\(183\) −175878. −0.388225
\(184\) −38080.0 65956.5i −0.0829187 0.143619i
\(185\) 142516. 246845.i 0.306150 0.530267i
\(186\) −101088. + 175090.i −0.214248 + 0.371089i
\(187\) 282940. + 490066.i 0.591685 + 1.02483i
\(188\) −293952. −0.606571
\(189\) 0 0
\(190\) 465344. 0.935169
\(191\) −381675. 661080.i −0.757025 1.31121i −0.944361 0.328910i \(-0.893319\pi\)
0.187336 0.982296i \(-0.440015\pi\)
\(192\) 18432.0 31925.2i 0.0360844 0.0625000i
\(193\) 188501. 326493.i 0.364267 0.630930i −0.624391 0.781112i \(-0.714653\pi\)
0.988658 + 0.150182i \(0.0479861\pi\)
\(194\) 154268. + 267200.i 0.294287 + 0.509721i
\(195\) 458568. 0.863609
\(196\) 0 0
\(197\) −68678.0 −0.126082 −0.0630409 0.998011i \(-0.520080\pi\)
−0.0630409 + 0.998011i \(0.520080\pi\)
\(198\) −76140.0 131878.i −0.138023 0.239062i
\(199\) −91288.0 + 158115.i −0.163411 + 0.283036i −0.936090 0.351761i \(-0.885583\pi\)
0.772679 + 0.634797i \(0.218916\pi\)
\(200\) −38048.0 + 65901.1i −0.0672600 + 0.116498i
\(201\) 244476. + 423445.i 0.426821 + 0.739276i
\(202\) −397856. −0.686037
\(203\) 0 0
\(204\) −173376. −0.291685
\(205\) −62832.0 108828.i −0.104423 0.180866i
\(206\) 133888. 231901.i 0.219823 0.380745i
\(207\) 48195.0 83476.2i 0.0781765 0.135406i
\(208\) 148224. + 256731.i 0.237553 + 0.411454i
\(209\) 1.24268e6 1.96786
\(210\) 0 0
\(211\) 232652. 0.359750 0.179875 0.983689i \(-0.442431\pi\)
0.179875 + 0.983689i \(0.442431\pi\)
\(212\) 34992.0 + 60607.9i 0.0534723 + 0.0926168i
\(213\) −48285.0 + 83632.1i −0.0729228 + 0.126306i
\(214\) −456396. + 790501.i −0.681251 + 1.17996i
\(215\) 296824. + 514114.i 0.437928 + 0.758514i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 380744. 0.542615
\(219\) 159183. + 275713.i 0.224278 + 0.388461i
\(220\) 165440. 286550.i 0.230454 0.399158i
\(221\) 697116. 1.20744e6i 0.960117 1.66297i
\(222\) 116604. + 201964.i 0.158793 + 0.275037i
\(223\) 167144. 0.225076 0.112538 0.993647i \(-0.464102\pi\)
0.112538 + 0.993647i \(0.464102\pi\)
\(224\) 0 0
\(225\) −96309.0 −0.126827
\(226\) −522284. 904622.i −0.680198 1.17814i
\(227\) −207864. + 360031.i −0.267741 + 0.463741i −0.968278 0.249875i \(-0.919610\pi\)
0.700537 + 0.713616i \(0.252944\pi\)
\(228\) −190368. + 329727.i −0.242525 + 0.420066i
\(229\) −236741. 410047.i −0.298322 0.516708i 0.677430 0.735587i \(-0.263093\pi\)
−0.975752 + 0.218879i \(0.929760\pi\)
\(230\) 209440. 0.261060
\(231\) 0 0
\(232\) −231296. −0.282129
\(233\) 778273. + 1.34801e6i 0.939166 + 1.62668i 0.767032 + 0.641609i \(0.221733\pi\)
0.172134 + 0.985074i \(0.444934\pi\)
\(234\) −187596. + 324926.i −0.223967 + 0.387922i
\(235\) 404184. 700067.i 0.477430 0.826933i
\(236\) −241984. 419129.i −0.282818 0.489855i
\(237\) 449604. 0.519947
\(238\) 0 0
\(239\) 655890. 0.742739 0.371370 0.928485i \(-0.378888\pi\)
0.371370 + 0.928485i \(0.378888\pi\)
\(240\) 50688.0 + 87794.2i 0.0568038 + 0.0983870i
\(241\) 444737. 770307.i 0.493243 0.854321i −0.506727 0.862107i \(-0.669145\pi\)
0.999970 + 0.00778518i \(0.00247812\pi\)
\(242\) 119698. 207323.i 0.131386 0.227567i
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 312672. 0.336213
\(245\) 0 0
\(246\) 102816. 0.108324
\(247\) −1.53088e6 2.65156e6i −1.59661 2.76540i
\(248\) 179712. 311270.i 0.185544 0.321372i
\(249\) −121266. + 210039.i −0.123948 + 0.214685i
\(250\) −379632. 657542.i −0.384161 0.665386i
\(251\) 131832. 0.132080 0.0660399 0.997817i \(-0.478964\pi\)
0.0660399 + 0.997817i \(0.478964\pi\)
\(252\) 0 0
\(253\) 559300. 0.549343
\(254\) −335304. 580764.i −0.326103 0.564827i
\(255\) 238392. 412907.i 0.229584 0.397651i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 732408. + 1.26857e6i 0.691704 + 1.19807i 0.971279 + 0.237943i \(0.0764730\pi\)
−0.279575 + 0.960124i \(0.590194\pi\)
\(258\) −485712. −0.454286
\(259\) 0 0
\(260\) −815232. −0.747907
\(261\) −146367. 253515.i −0.132997 0.230358i
\(262\) −166136. + 287756.i −0.149524 + 0.258983i
\(263\) −739845. + 1.28145e6i −0.659556 + 1.14238i 0.321175 + 0.947020i \(0.395922\pi\)
−0.980731 + 0.195364i \(0.937411\pi\)
\(264\) 135360. + 234450.i 0.119531 + 0.207034i
\(265\) −192456. −0.168351
\(266\) 0 0
\(267\) −906984. −0.778613
\(268\) −434624. 752791.i −0.369638 0.640232i
\(269\) 93926.0 162685.i 0.0791417 0.137077i −0.823738 0.566970i \(-0.808115\pi\)
0.902880 + 0.429893i \(0.141449\pi\)
\(270\) −64152.0 + 111115.i −0.0535551 + 0.0927601i
\(271\) −96900.0 167836.i −0.0801495 0.138823i 0.823165 0.567803i \(-0.192206\pi\)
−0.903314 + 0.428980i \(0.858873\pi\)
\(272\) 308224. 0.252606
\(273\) 0 0
\(274\) −649016. −0.522251
\(275\) −279415. 483961.i −0.222801 0.385903i
\(276\) −85680.0 + 148402.i −0.0677028 + 0.117265i
\(277\) 308531. 534391.i 0.241601 0.418466i −0.719569 0.694421i \(-0.755661\pi\)
0.961171 + 0.275955i \(0.0889940\pi\)
\(278\) −117688. 203842.i −0.0913314 0.158191i
\(279\) 454896. 0.349866
\(280\) 0 0
\(281\) −1.73129e6 −1.30799 −0.653994 0.756499i \(-0.726908\pi\)
−0.653994 + 0.756499i \(0.726908\pi\)
\(282\) 330696. + 572782.i 0.247632 + 0.428911i
\(283\) −178010. + 308322.i −0.132123 + 0.228844i −0.924495 0.381195i \(-0.875513\pi\)
0.792372 + 0.610039i \(0.208846\pi\)
\(284\) 85840.0 148679.i 0.0631530 0.109384i
\(285\) −523512. 906749.i −0.381781 0.661264i
\(286\) −2.17704e6 −1.57381
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −14879.5 25772.0i −0.0104796 0.0181512i
\(290\) 318032. 550848.i 0.222063 0.384624i
\(291\) 347103. 601200.i 0.240285 0.416185i
\(292\) −282992. 490157.i −0.194230 0.336417i
\(293\) 536664. 0.365202 0.182601 0.983187i \(-0.441548\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(294\) 0 0
\(295\) 1.33091e6 0.890419
\(296\) −207296. 359047.i −0.137519 0.238189i
\(297\) −171315. + 296726.i −0.112695 + 0.195193i
\(298\) 861396. 1.49198e6i 0.561904 0.973246i
\(299\) −689010. 1.19340e6i −0.445705 0.771984i
\(300\) 171216. 0.109835
\(301\) 0 0
\(302\) 2.00374e6 1.26423
\(303\) 447588. + 775245.i 0.280073 + 0.485101i
\(304\) 338432. 586181.i 0.210033 0.363788i
\(305\) −429924. + 744650.i −0.264632 + 0.458356i
\(306\) 195048. + 337833.i 0.119080 + 0.206252i
\(307\) −2.88398e6 −1.74641 −0.873205 0.487353i \(-0.837963\pi\)
−0.873205 + 0.487353i \(0.837963\pi\)
\(308\) 0 0
\(309\) −602496. −0.358970
\(310\) 494208. + 855993.i 0.292082 + 0.505902i
\(311\) 514790. 891642.i 0.301807 0.522745i −0.674738 0.738057i \(-0.735744\pi\)
0.976545 + 0.215312i \(0.0690769\pi\)
\(312\) 333504. 577646.i 0.193961 0.335950i
\(313\) −696485. 1.20635e6i −0.401838 0.696004i 0.592110 0.805857i \(-0.298295\pi\)
−0.993948 + 0.109854i \(0.964962\pi\)
\(314\) 1.12103e6 0.641644
\(315\) 0 0
\(316\) −799296. −0.450288
\(317\) 390015. + 675526.i 0.217988 + 0.377567i 0.954193 0.299192i \(-0.0967172\pi\)
−0.736205 + 0.676759i \(0.763384\pi\)
\(318\) 78732.0 136368.i 0.0436600 0.0756213i
\(319\) 849290. 1.47101e6i 0.467282 0.809357i
\(320\) −90112.0 156079.i −0.0491935 0.0852056i
\(321\) 2.05378e6 1.11248
\(322\) 0 0
\(323\) −3.18338e6 −1.69778
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) −688431. + 1.19240e6i −0.361536 + 0.626199i
\(326\) −240032. + 415748.i −0.125091 + 0.216664i
\(327\) −428337. 741901.i −0.221522 0.383687i
\(328\) −182784. −0.0938110
\(329\) 0 0
\(330\) −744480. −0.376329
\(331\) 706022. + 1.22287e6i 0.354200 + 0.613492i 0.986981 0.160839i \(-0.0514200\pi\)
−0.632781 + 0.774331i \(0.718087\pi\)
\(332\) 215584. 373402.i 0.107342 0.185922i
\(333\) 262359. 454419.i 0.129654 0.224567i
\(334\) 1.09386e6 + 1.89463e6i 0.536534 + 0.929304i
\(335\) 2.39043e6 1.16376
\(336\) 0 0
\(337\) −634662. −0.304416 −0.152208 0.988348i \(-0.548638\pi\)
−0.152208 + 0.988348i \(0.548638\pi\)
\(338\) 1.93934e6 + 3.35904e6i 0.923342 + 1.59928i
\(339\) −1.17514e6 + 2.03540e6i −0.555380 + 0.961946i
\(340\) −423808. + 734057.i −0.198825 + 0.344376i
\(341\) 1.31976e6 + 2.28589e6i 0.614623 + 1.06456i
\(342\) 856656. 0.396042
\(343\) 0 0
\(344\) 863488. 0.393423
\(345\) −235620. 408106.i −0.106577 0.184597i
\(346\) −734192. + 1.27166e6i −0.329700 + 0.571058i
\(347\) −1.53971e6 + 2.66686e6i −0.686460 + 1.18898i 0.286515 + 0.958076i \(0.407503\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(348\) 260208. + 450693.i 0.115179 + 0.199496i
\(349\) −2.60671e6 −1.14559 −0.572796 0.819698i \(-0.694141\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(350\) 0 0
\(351\) 844182. 0.365736
\(352\) −240640. 416801.i −0.103517 0.179296i
\(353\) 31566.0 54673.9i 0.0134829 0.0233530i −0.859205 0.511631i \(-0.829041\pi\)
0.872688 + 0.488278i \(0.162375\pi\)
\(354\) −544464. + 943039.i −0.230920 + 0.399965i
\(355\) 236060. + 408868.i 0.0994149 + 0.172192i
\(356\) 1.61242e6 0.674298
\(357\) 0 0
\(358\) 355560. 0.146624
\(359\) −239635. 415060.i −0.0981328 0.169971i 0.812779 0.582572i \(-0.197954\pi\)
−0.910912 + 0.412601i \(0.864620\pi\)
\(360\) 114048. 197537.i 0.0463801 0.0803326i
\(361\) −2.25732e6 + 3.90979e6i −0.911643 + 1.57901i
\(362\) −1.56424e6 2.70934e6i −0.627380 1.08665i
\(363\) −538641. −0.214552
\(364\) 0 0
\(365\) 1.55646e6 0.611512
\(366\) −351756. 609259.i −0.137258 0.237738i
\(367\) 667256. 1.15572e6i 0.258599 0.447907i −0.707268 0.706946i \(-0.750072\pi\)
0.965867 + 0.259039i \(0.0834057\pi\)
\(368\) 152320. 263826.i 0.0586324 0.101554i
\(369\) −115668. 200343.i −0.0442229 0.0765963i
\(370\) 1.14013e6 0.432962
\(371\) 0 0
\(372\) −808704. −0.302993
\(373\) 848797. + 1.47016e6i 0.315887 + 0.547132i 0.979626 0.200832i \(-0.0643646\pi\)
−0.663739 + 0.747965i \(0.731031\pi\)
\(374\) −1.13176e6 + 1.96027e6i −0.418384 + 0.724663i
\(375\) −854172. + 1.47947e6i −0.313666 + 0.543285i
\(376\) −587904. 1.01828e6i −0.214455 0.371447i
\(377\) −4.18501e6 −1.51650
\(378\) 0 0
\(379\) 2.51074e6 0.897850 0.448925 0.893569i \(-0.351807\pi\)
0.448925 + 0.893569i \(0.351807\pi\)
\(380\) 930688. + 1.61200e6i 0.330632 + 0.572672i
\(381\) −754434. + 1.30672e6i −0.266262 + 0.461179i
\(382\) 1.52670e6 2.64432e6i 0.535298 0.927163i
\(383\) −279572. 484233.i −0.0973860 0.168678i 0.813216 0.581962i \(-0.197715\pi\)
−0.910602 + 0.413285i \(0.864381\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 1.50801e6 0.515152
\(387\) 546426. + 946438.i 0.185462 + 0.321229i
\(388\) −617072. + 1.06880e6i −0.208093 + 0.360427i
\(389\) −2.25528e6 + 3.90625e6i −0.755658 + 1.30884i 0.189388 + 0.981902i \(0.439350\pi\)
−0.945046 + 0.326936i \(0.893984\pi\)
\(390\) 917136. + 1.58853e6i 0.305332 + 0.528850i
\(391\) −1.43276e6 −0.473949
\(392\) 0 0
\(393\) 747612. 0.244171
\(394\) −137356. 237908.i −0.0445766 0.0772090i
\(395\) 1.09903e6 1.90358e6i 0.354419 0.613873i
\(396\) 304560. 527513.i 0.0975966 0.169042i
\(397\) −2.59931e6 4.50214e6i −0.827717 1.43365i −0.899825 0.436251i \(-0.856306\pi\)
0.0721076 0.997397i \(-0.477027\pi\)
\(398\) −730304. −0.231098
\(399\) 0 0
\(400\) −304384. −0.0951200
\(401\) 3.17408e6 + 5.49767e6i 0.985728 + 1.70733i 0.638656 + 0.769492i \(0.279491\pi\)
0.347072 + 0.937838i \(0.387176\pi\)
\(402\) −977904. + 1.69378e6i −0.301808 + 0.522747i
\(403\) 3.25166e6 5.63205e6i 0.997340 1.72744i
\(404\) −795712. 1.37821e6i −0.242551 0.420110i
\(405\) 288684. 0.0874551
\(406\) 0 0
\(407\) 3.04466e6 0.911072
\(408\) −346752. 600592.i −0.103126 0.178620i
\(409\) 90821.0 157307.i 0.0268459 0.0464985i −0.852290 0.523069i \(-0.824787\pi\)
0.879136 + 0.476571i \(0.158120\pi\)
\(410\) 251328. 435313.i 0.0738382 0.127892i
\(411\) 730143. + 1.26464e6i 0.213208 + 0.369287i
\(412\) 1.07110e6 0.310877
\(413\) 0 0
\(414\) 385560. 0.110558
\(415\) 592856. + 1.02686e6i 0.168978 + 0.292678i
\(416\) −592896. + 1.02693e6i −0.167975 + 0.290942i
\(417\) −264798. + 458644.i −0.0745718 + 0.129162i
\(418\) 2.48536e6 + 4.30477e6i 0.695743 + 1.20506i
\(419\) −5.62699e6 −1.56582 −0.782909 0.622136i \(-0.786265\pi\)
−0.782909 + 0.622136i \(0.786265\pi\)
\(420\) 0 0
\(421\) −4.42671e6 −1.21724 −0.608619 0.793462i \(-0.708276\pi\)
−0.608619 + 0.793462i \(0.708276\pi\)
\(422\) 465304. + 805930.i 0.127191 + 0.220301i
\(423\) 744066. 1.28876e6i 0.202190 0.350204i
\(424\) −139968. + 242432.i −0.0378106 + 0.0654900i
\(425\) 715778. + 1.23976e6i 0.192223 + 0.332941i
\(426\) −386280. −0.103128
\(427\) 0 0
\(428\) −3.65117e6 −0.963435
\(429\) 2.44917e6 + 4.24209e6i 0.642504 + 1.11285i
\(430\) −1.18730e6 + 2.05646e6i −0.309662 + 0.536350i
\(431\) 720813. 1.24848e6i 0.186909 0.323735i −0.757309 0.653056i \(-0.773486\pi\)
0.944218 + 0.329321i \(0.106820\pi\)
\(432\) 93312.0 + 161621.i 0.0240563 + 0.0416667i
\(433\) −3.89661e6 −0.998775 −0.499387 0.866379i \(-0.666442\pi\)
−0.499387 + 0.866379i \(0.666442\pi\)
\(434\) 0 0
\(435\) −1.43114e6 −0.362627
\(436\) 761488. + 1.31894e6i 0.191843 + 0.332282i
\(437\) −1.57318e6 + 2.72483e6i −0.394071 + 0.682552i
\(438\) −636732. + 1.10285e6i −0.158588 + 0.274683i
\(439\) −2.55604e6 4.42718e6i −0.633003 1.09639i −0.986935 0.161122i \(-0.948489\pi\)
0.353932 0.935271i \(-0.384845\pi\)
\(440\) 1.32352e6 0.325911
\(441\) 0 0
\(442\) 5.57693e6 1.35781
\(443\) −2.72035e6 4.71179e6i −0.658591 1.14071i −0.980981 0.194106i \(-0.937820\pi\)
0.322390 0.946607i \(-0.395514\pi\)
\(444\) −466416. + 807856.i −0.112284 + 0.194481i
\(445\) −2.21707e6 + 3.84008e6i −0.530737 + 0.919264i
\(446\) 334288. + 579004.i 0.0795763 + 0.137830i
\(447\) −3.87628e6 −0.917586
\(448\) 0 0
\(449\) −1.31525e6 −0.307887 −0.153943 0.988080i \(-0.549197\pi\)
−0.153943 + 0.988080i \(0.549197\pi\)
\(450\) −192618. 333624.i −0.0448400 0.0776652i
\(451\) 671160. 1.16248e6i 0.155376 0.269120i
\(452\) 2.08914e6 3.61849e6i 0.480973 0.833070i
\(453\) −2.25421e6 3.90441e6i −0.516118 0.893943i
\(454\) −1.66291e6 −0.378643
\(455\) 0 0
\(456\) −1.52294e6 −0.342982
\(457\) −1.38802e6 2.40412e6i −0.310889 0.538476i 0.667666 0.744461i \(-0.267293\pi\)
−0.978555 + 0.205985i \(0.933960\pi\)
\(458\) 946964. 1.64019e6i 0.210945 0.365368i
\(459\) 438858. 760124.i 0.0972282 0.168404i
\(460\) 418880. + 725521.i 0.0922986 + 0.159866i
\(461\) 138080. 0.0302607 0.0151303 0.999886i \(-0.495184\pi\)
0.0151303 + 0.999886i \(0.495184\pi\)
\(462\) 0 0
\(463\) −364076. −0.0789295 −0.0394648 0.999221i \(-0.512565\pi\)
−0.0394648 + 0.999221i \(0.512565\pi\)
\(464\) −462592. 801233.i −0.0997478 0.172768i
\(465\) 1.11197e6 1.92599e6i 0.238484 0.413067i
\(466\) −3.11309e6 + 5.39203e6i −0.664090 + 1.15024i
\(467\) 2.86948e6 + 4.97009e6i 0.608852 + 1.05456i 0.991430 + 0.130639i \(0.0417029\pi\)
−0.382578 + 0.923923i \(0.624964\pi\)
\(468\) −1.50077e6 −0.316737
\(469\) 0 0
\(470\) 3.23347e6 0.675188
\(471\) −1.26116e6 2.18439e6i −0.261950 0.453711i
\(472\) 967936. 1.67651e6i 0.199982 0.346380i
\(473\) −3.17062e6 + 5.49167e6i −0.651615 + 1.12863i
\(474\) 899208. + 1.55747e6i 0.183829 + 0.318401i
\(475\) 3.14372e6 0.639307
\(476\) 0 0
\(477\) −354294. −0.0712964
\(478\) 1.31178e6 + 2.27207e6i 0.262598 + 0.454833i
\(479\) −2.75998e6 + 4.78042e6i −0.549625 + 0.951979i 0.448675 + 0.893695i \(0.351896\pi\)
−0.998300 + 0.0582840i \(0.981437\pi\)
\(480\) −202752. + 351177.i −0.0401663 + 0.0695701i
\(481\) −3.75076e6 6.49651e6i −0.739191 1.28032i
\(482\) 3.55790e6 0.697550
\(483\) 0 0
\(484\) 957584. 0.185808
\(485\) −1.69695e6 2.93920e6i −0.327578 0.567381i
\(486\) −118098. + 204552.i −0.0226805 + 0.0392837i
\(487\) −2.11511e6 + 3.66348e6i −0.404121 + 0.699957i −0.994219 0.107374i \(-0.965756\pi\)
0.590098 + 0.807332i \(0.299089\pi\)
\(488\) 625344. + 1.08313e6i 0.118869 + 0.205888i
\(489\) 1.08014e6 0.204272
\(490\) 0 0
\(491\) −7.21423e6 −1.35047 −0.675237 0.737601i \(-0.735959\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(492\) 205632. + 356165.i 0.0382982 + 0.0663344i
\(493\) −2.17563e6 + 3.76830e6i −0.403151 + 0.698277i
\(494\) 6.12350e6 1.06062e7i 1.12897 1.95543i
\(495\) 837540. + 1.45066e6i 0.153636 + 0.266105i
\(496\) 1.43770e6 0.262399
\(497\) 0 0
\(498\) −970128. −0.175289
\(499\) 112402. + 194686.i 0.0202080 + 0.0350012i 0.875953 0.482397i \(-0.160234\pi\)
−0.855745 + 0.517399i \(0.826900\pi\)
\(500\) 1.51853e6 2.63017e6i 0.271643 0.470499i
\(501\) 2.46119e6 4.26291e6i 0.438078 0.758774i
\(502\) 263664. + 456679.i 0.0466973 + 0.0808821i
\(503\) 5.06983e6 0.893457 0.446728 0.894670i \(-0.352589\pi\)
0.446728 + 0.894670i \(0.352589\pi\)
\(504\) 0 0
\(505\) 4.37642e6 0.763643
\(506\) 1.11860e6 + 1.93747e6i 0.194222 + 0.336402i
\(507\) 4.36352e6 7.55784e6i 0.753906 1.30580i
\(508\) 1.34122e6 2.32305e6i 0.230589 0.399393i
\(509\) −2.74067e6 4.74699e6i −0.468881 0.812126i 0.530486 0.847694i \(-0.322009\pi\)
−0.999367 + 0.0355675i \(0.988676\pi\)
\(510\) 1.90714e6 0.324681
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −963738. 1.66924e6i −0.161683 0.280044i
\(514\) −2.92963e6 + 5.07427e6i −0.489109 + 0.847161i
\(515\) −1.47277e6 + 2.55091e6i −0.244690 + 0.423816i
\(516\) −971424. 1.68256e6i −0.160614 0.278192i
\(517\) 8.63484e6 1.42078
\(518\) 0 0
\(519\) 3.30386e6 0.538398
\(520\) −1.63046e6 2.82405e6i −0.264425 0.457998i
\(521\) −3.94466e6 + 6.83235e6i −0.636671 + 1.10275i 0.349488 + 0.936941i \(0.386356\pi\)
−0.986158 + 0.165805i \(0.946978\pi\)
\(522\) 585468. 1.01406e6i 0.0940431 0.162887i
\(523\) 4.87475e6 + 8.44331e6i 0.779288 + 1.34977i 0.932352 + 0.361551i \(0.117753\pi\)
−0.153064 + 0.988216i \(0.548914\pi\)
\(524\) −1.32909e6 −0.211459
\(525\) 0 0
\(526\) −5.91876e6 −0.932752
\(527\) −3.38083e6 5.85577e6i −0.530270 0.918455i
\(528\) −541440. + 937802.i −0.0845212 + 0.146395i
\(529\) 2.51012e6 4.34766e6i 0.389992 0.675486i
\(530\) −384912. 666687.i −0.0595212 0.103094i
\(531\) 2.45009e6 0.377090
\(532\) 0 0
\(533\) −3.30725e6 −0.504253
\(534\) −1.81397e6 3.14188e6i −0.275281 0.476801i
\(535\) 5.02036e6 8.69551e6i 0.758316 1.31344i
\(536\) 1.73850e6 3.01116e6i 0.261374 0.452712i
\(537\) −400005. 692829.i −0.0598590 0.103679i
\(538\) 751408. 0.111923
\(539\) 0 0
\(540\) −513216. −0.0757383
\(541\) 2.08727e6 + 3.61526e6i 0.306610 + 0.531063i 0.977618 0.210386i \(-0.0674721\pi\)
−0.671009 + 0.741449i \(0.734139\pi\)
\(542\) 387600. 671343.i 0.0566742 0.0981626i
\(543\) −3.51953e6 + 6.09601e6i −0.512254 + 0.887250i
\(544\) 616448. + 1.06772e6i 0.0893098 + 0.154689i
\(545\) −4.18818e6 −0.603997
\(546\) 0 0
\(547\) −2.72887e6 −0.389955 −0.194978 0.980808i \(-0.562463\pi\)
−0.194978 + 0.980808i \(0.562463\pi\)
\(548\) −1.29803e6 2.24826e6i −0.184643 0.319812i
\(549\) −791451. + 1.37083e6i −0.112071 + 0.194113i
\(550\) 1.11766e6 1.93584e6i 0.157544 0.272875i
\(551\) 4.77771e6 + 8.27523e6i 0.670410 + 1.16118i
\(552\) −685440. −0.0957462
\(553\) 0 0
\(554\) 2.46825e6 0.341676
\(555\) −1.28264e6 2.22160e6i −0.176756 0.306150i
\(556\) 470752. 815366.i 0.0645811 0.111858i
\(557\) 3.67552e6 6.36618e6i 0.501973 0.869442i −0.498025 0.867163i \(-0.665941\pi\)
0.999997 0.00227953i \(-0.000725597\pi\)
\(558\) 909792. + 1.57581e6i 0.123696 + 0.214248i
\(559\) 1.56237e7 2.11473
\(560\) 0 0
\(561\) 5.09292e6 0.683219
\(562\) −3.46258e6 5.99736e6i −0.462444 0.800976i
\(563\) 6.89103e6 1.19356e7i 0.916248 1.58699i 0.111184 0.993800i \(-0.464536\pi\)
0.805064 0.593188i \(-0.202131\pi\)
\(564\) −1.32278e6 + 2.29113e6i −0.175102 + 0.303286i
\(565\) 5.74512e6 + 9.95085e6i 0.757144 + 1.31141i
\(566\) −1.42408e6 −0.186850
\(567\) 0 0
\(568\) 686720. 0.0893118
\(569\) −1.35609e6 2.34881e6i −0.175593 0.304136i 0.764773 0.644299i \(-0.222851\pi\)
−0.940366 + 0.340164i \(0.889518\pi\)
\(570\) 2.09405e6 3.62700e6i 0.269960 0.467585i
\(571\) −2.47199e6 + 4.28161e6i −0.317290 + 0.549562i −0.979922 0.199383i \(-0.936106\pi\)
0.662632 + 0.748945i \(0.269439\pi\)
\(572\) −4.35408e6 7.54149e6i −0.556425 0.963756i
\(573\) −6.87015e6 −0.874137
\(574\) 0 0
\(575\) 1.41491e6 0.178468
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) 6.63415e6 1.14907e7i 0.829556 1.43683i −0.0688315 0.997628i \(-0.521927\pi\)
0.898387 0.439204i \(-0.144740\pi\)
\(578\) 59518.0 103088.i 0.00741018 0.0128348i
\(579\) −1.69651e6 2.93844e6i −0.210310 0.364267i
\(580\) 2.54426e6 0.314044
\(581\) 0 0
\(582\) 2.77682e6 0.339814
\(583\) −1.02789e6 1.78036e6i −0.125249 0.216938i
\(584\) 1.13197e6 1.96063e6i 0.137342 0.237883i
\(585\) 2.06356e6 3.57418e6i 0.249302 0.431805i
\(586\) 1.07333e6 + 1.85906e6i 0.129118 + 0.223640i
\(587\) 1.67205e6 0.200287 0.100144 0.994973i \(-0.468070\pi\)
0.100144 + 0.994973i \(0.468070\pi\)
\(588\) 0 0
\(589\) −1.48487e7 −1.76360
\(590\) 2.66182e6 + 4.61041e6i 0.314811 + 0.545268i
\(591\) −309051. + 535292.i −0.0363967 + 0.0630409i
\(592\) 829184. 1.43619e6i 0.0972404 0.168425i
\(593\) −2.55847e6 4.43139e6i −0.298774 0.517492i 0.677082 0.735908i \(-0.263244\pi\)
−0.975856 + 0.218416i \(0.929911\pi\)
\(594\) −1.37052e6 −0.159375
\(595\) 0 0
\(596\) 6.89117e6 0.794652
\(597\) 821592. + 1.42304e6i 0.0943453 + 0.163411i
\(598\) 2.75604e6 4.77360e6i 0.315161 0.545875i
\(599\) 3.57966e6 6.20015e6i 0.407638 0.706049i −0.586987 0.809596i \(-0.699686\pi\)
0.994625 + 0.103547i \(0.0330193\pi\)
\(600\) 342432. + 593110.i 0.0388326 + 0.0672600i
\(601\) −9.63384e6 −1.08796 −0.543980 0.839098i \(-0.683083\pi\)
−0.543980 + 0.839098i \(0.683083\pi\)
\(602\) 0 0
\(603\) 4.40057e6 0.492851
\(604\) 4.00749e6 + 6.94117e6i 0.446972 + 0.774177i
\(605\) −1.31668e6 + 2.28055e6i −0.146248 + 0.253310i
\(606\) −1.79035e6 + 3.10098e6i −0.198042 + 0.343018i
\(607\) −2.76058e6 4.78146e6i −0.304108 0.526731i 0.672954 0.739684i \(-0.265025\pi\)
−0.977062 + 0.212953i \(0.931692\pi\)
\(608\) 2.70746e6 0.297031
\(609\) 0 0
\(610\) −3.43939e6 −0.374246
\(611\) −1.06374e7 1.84245e7i −1.15274 1.99661i
\(612\) −780192. + 1.35133e6i −0.0842021 + 0.145842i
\(613\) −2.39945e6 + 4.15597e6i −0.257906 + 0.446706i −0.965681 0.259732i \(-0.916366\pi\)
0.707775 + 0.706438i \(0.249699\pi\)
\(614\) −5.76796e6 9.99040e6i −0.617449 1.06945i
\(615\) −1.13098e6 −0.120577
\(616\) 0 0
\(617\) 2.71826e6 0.287461 0.143730 0.989617i \(-0.454090\pi\)
0.143730 + 0.989617i \(0.454090\pi\)
\(618\) −1.20499e6 2.08711e6i −0.126915 0.219823i
\(619\) 2.17167e6 3.76145e6i 0.227807 0.394574i −0.729351 0.684140i \(-0.760178\pi\)
0.957158 + 0.289566i \(0.0935110\pi\)
\(620\) −1.97683e6 + 3.42397e6i −0.206534 + 0.357727i
\(621\) −433755. 751286.i −0.0451352 0.0781765i
\(622\) 4.11832e6 0.426819
\(623\) 0 0
\(624\) 2.66803e6 0.274302
\(625\) 2.31814e6 + 4.01514e6i 0.237377 + 0.411150i
\(626\) 2.78594e6 4.82539e6i 0.284142 0.492149i
\(627\) 5.59206e6 9.68573e6i 0.568071 0.983929i
\(628\) 2.24206e6 + 3.88337e6i 0.226855 + 0.392925i
\(629\) −7.79951e6 −0.786033
\(630\) 0 0
\(631\) 1.11952e6 0.111933 0.0559667 0.998433i \(-0.482176\pi\)
0.0559667 + 0.998433i \(0.482176\pi\)
\(632\) −1.59859e6 2.76884e6i −0.159201 0.275744i
\(633\) 1.04693e6 1.81334e6i 0.103851 0.179875i
\(634\) −1.56006e6 + 2.70210e6i −0.154141 + 0.266980i
\(635\) 3.68834e6 + 6.38840e6i 0.362992 + 0.628721i
\(636\) 629856. 0.0617445
\(637\) 0 0
\(638\) 6.79432e6 0.660837
\(639\) 434565. + 752689.i 0.0421020 + 0.0729228i
\(640\) 360448. 624314.i 0.0347851 0.0602495i
\(641\) 1.98294e6 3.43455e6i 0.190618 0.330161i −0.754837 0.655912i \(-0.772284\pi\)
0.945455 + 0.325752i \(0.105617\pi\)
\(642\) 4.10756e6 + 7.11451e6i 0.393321 + 0.681251i
\(643\) 1.92086e7 1.83218 0.916092 0.400968i \(-0.131326\pi\)
0.916092 + 0.400968i \(0.131326\pi\)
\(644\) 0 0
\(645\) 5.34283e6 0.505676
\(646\) −6.36675e6 1.10275e7i −0.600256 1.03967i
\(647\) −2.36369e6 + 4.09404e6i −0.221989 + 0.384495i −0.955412 0.295277i \(-0.904588\pi\)
0.733423 + 0.679772i \(0.237921\pi\)
\(648\) 209952. 363648.i 0.0196419 0.0340207i
\(649\) 7.10828e6 + 1.23119e7i 0.662450 + 1.14740i
\(650\) −5.50745e6 −0.511290
\(651\) 0 0
\(652\) −1.92026e6 −0.176905
\(653\) −6.05794e6 1.04927e7i −0.555958 0.962947i −0.997828 0.0658685i \(-0.979018\pi\)
0.441870 0.897079i \(-0.354315\pi\)
\(654\) 1.71335e6 2.96761e6i 0.156639 0.271308i
\(655\) 1.82750e6 3.16532e6i 0.166438 0.288280i
\(656\) −365568. 633182.i −0.0331672 0.0574472i
\(657\) 2.86529e6 0.258974
\(658\) 0 0
\(659\) 5.91457e6 0.530530 0.265265 0.964176i \(-0.414541\pi\)
0.265265 + 0.964176i \(0.414541\pi\)
\(660\) −1.48896e6 2.57895e6i −0.133053 0.230454i
\(661\) −7.08896e6 + 1.22784e7i −0.631072 + 1.09305i 0.356261 + 0.934387i \(0.384052\pi\)
−0.987333 + 0.158663i \(0.949282\pi\)
\(662\) −2.82409e6 + 4.89146e6i −0.250457 + 0.433804i
\(663\) −6.27404e6 1.08670e7i −0.554324 0.960117i
\(664\) 1.72467e6 0.151805
\(665\) 0 0
\(666\) 2.09887e6 0.183358
\(667\) 2.15033e6 + 3.72448e6i 0.187150 + 0.324154i
\(668\) −4.37546e6 + 7.57851e6i −0.379387 + 0.657117i
\(669\) 752148. 1.30276e6i 0.0649738 0.112538i
\(670\) 4.78086e6 + 8.28070e6i 0.411452 + 0.712656i
\(671\) −9.18474e6 −0.787518
\(672\) 0 0
\(673\) 1.34245e7 1.14251 0.571256 0.820772i \(-0.306456\pi\)
0.571256 + 0.820772i \(0.306456\pi\)
\(674\) −1.26932e6 2.19853e6i −0.107627 0.186416i
\(675\) −433390. + 750654.i −0.0366117 + 0.0634133i
\(676\) −7.75737e6 + 1.34362e7i −0.652901 + 1.13086i
\(677\) 4.33656e6 + 7.51114e6i 0.363642 + 0.629846i 0.988557 0.150846i \(-0.0481999\pi\)
−0.624915 + 0.780692i \(0.714867\pi\)
\(678\) −9.40111e6 −0.785425
\(679\) 0 0
\(680\) −3.39046e6 −0.281182
\(681\) 1.87078e6 + 3.24028e6i 0.154580 + 0.267741i
\(682\) −5.27904e6 + 9.14357e6i −0.434604 + 0.752757i
\(683\) −7.48884e6 + 1.29711e7i −0.614275 + 1.06396i 0.376236 + 0.926524i \(0.377218\pi\)
−0.990511 + 0.137432i \(0.956115\pi\)
\(684\) 1.71331e6 + 2.96754e6i 0.140022 + 0.242525i
\(685\) 7.13918e6 0.581329
\(686\) 0 0
\(687\) −4.26134e6 −0.344472
\(688\) 1.72698e6 + 2.99121e6i 0.139096 + 0.240922i
\(689\) −2.53255e6 + 4.38650e6i −0.203240 + 0.352022i
\(690\) 942480. 1.63242e6i 0.0753615 0.130530i
\(691\) 4.38371e6 + 7.59281e6i 0.349258 + 0.604933i 0.986118 0.166047i \(-0.0531003\pi\)
−0.636860 + 0.770980i \(0.719767\pi\)
\(692\) −5.87354e6 −0.466267
\(693\) 0 0
\(694\) −1.23177e7 −0.970802
\(695\) 1.29457e6 + 2.24226e6i 0.101663 + 0.176085i
\(696\) −1.04083e6 + 1.80277e6i −0.0814437 + 0.141065i
\(697\) −1.71931e6 + 2.97794e6i −0.134052 + 0.232185i
\(698\) −5.21343e6 9.02992e6i −0.405028 0.701529i
\(699\) 1.40089e7 1.08445
\(700\) 0 0
\(701\) −1.99459e7 −1.53306 −0.766529 0.642209i \(-0.778018\pi\)
−0.766529 + 0.642209i \(0.778018\pi\)
\(702\) 1.68836e6 + 2.92433e6i 0.129307 + 0.223967i
\(703\) −8.56392e6 + 1.48331e7i −0.653558 + 1.13200i
\(704\) 962560. 1.66720e6i 0.0731975 0.126782i
\(705\) −3.63766e6 6.30061e6i −0.275644 0.477430i
\(706\) 252528. 0.0190677
\(707\) 0 0
\(708\) −4.35571e6 −0.326570
\(709\) 1.33193e7 + 2.30698e7i 0.995100 + 1.72356i 0.583174 + 0.812347i \(0.301811\pi\)
0.411926 + 0.911217i \(0.364856\pi\)
\(710\) −944240. + 1.63547e6i −0.0702970 + 0.121758i
\(711\) 2.02322e6 3.50432e6i 0.150096 0.259974i
\(712\) 3.22483e6 + 5.58557e6i 0.238400 + 0.412922i
\(713\) −6.68304e6 −0.492323
\(714\) 0 0
\(715\) 2.39474e7 1.75184
\(716\) 711120. + 1.23170e6i 0.0518394 + 0.0897886i
\(717\) 2.95150e6 5.11216e6i 0.214410 0.371370i
\(718\) 958540. 1.66024e6i 0.0693904 0.120188i
\(719\) 587040. + 1.01678e6i 0.0423492 + 0.0733510i 0.886423 0.462876i \(-0.153182\pi\)
−0.844074 + 0.536227i \(0.819849\pi\)
\(720\) 912384. 0.0655913
\(721\) 0 0
\(722\) −1.80585e7 −1.28926
\(723\) −4.00263e6 6.93276e6i −0.284774 0.493243i
\(724\) 6.25694e6 1.08373e7i 0.443625 0.768381i
\(725\) 2.14852e6 3.72135e6i 0.151808 0.262939i
\(726\) −1.07728e6 1.86591e6i −0.0758556 0.131386i
\(727\) 1.05734e7 0.741957 0.370979 0.928641i \(-0.379022\pi\)
0.370979 + 0.928641i \(0.379022\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 3.11291e6 + 5.39172e6i 0.216202 + 0.374473i
\(731\) 8.12218e6 1.40680e7i 0.562185 0.973733i
\(732\) 1.40702e6 2.43704e6i 0.0970563 0.168106i
\(733\) −1.15835e7 2.00632e7i −0.796306 1.37924i −0.922007 0.387174i \(-0.873451\pi\)
0.125701 0.992068i \(-0.459882\pi\)
\(734\) 5.33805e6 0.365715
\(735\) 0 0
\(736\) 1.21856e6 0.0829187
\(737\) 1.27671e7 + 2.21132e7i 0.865811 + 1.49963i
\(738\) 462672. 801371.i 0.0312703 0.0541618i
\(739\) 7.76669e6 1.34523e7i 0.523148 0.906119i −0.476489 0.879181i \(-0.658091\pi\)
0.999637 0.0269388i \(-0.00857593\pi\)
\(740\) 2.28026e6 + 3.94952e6i 0.153075 + 0.265134i
\(741\) −2.75558e7 −1.84360
\(742\) 0 0
\(743\) 2.54630e7 1.69215 0.846074 0.533066i \(-0.178960\pi\)
0.846074 + 0.533066i \(0.178960\pi\)
\(744\) −1.61741e6 2.80143e6i −0.107124 0.185544i
\(745\) −9.47536e6 + 1.64118e7i −0.625468 + 1.08334i
\(746\) −3.39519e6 + 5.88064e6i −0.223366 + 0.386881i
\(747\) 1.09139e6 + 1.89035e6i 0.0715616 + 0.123948i
\(748\) −9.05408e6 −0.591685
\(749\) 0 0
\(750\) −6.83338e6 −0.443590
\(751\) −4.94256e6 8.56077e6i −0.319781 0.553876i 0.660662 0.750684i \(-0.270276\pi\)
−0.980442 + 0.196808i \(0.936943\pi\)
\(752\) 2.35162e6 4.07312e6i 0.151643 0.262653i
\(753\) 593244. 1.02753e6i 0.0381282 0.0660399i
\(754\) −8.37002e6 1.44973e7i −0.536165 0.928665i
\(755\) −2.20412e7 −1.40724
\(756\) 0 0
\(757\) −6.41980e6 −0.407176 −0.203588 0.979057i \(-0.565260\pi\)
−0.203588 + 0.979057i \(0.565260\pi\)
\(758\) 5.02148e6 + 8.69746e6i 0.317438 + 0.549819i
\(759\) 2.51685e6 4.35931e6i 0.158582 0.274671i
\(760\) −3.72275e6 + 6.44800e6i −0.233792 + 0.404940i
\(761\) 2.52526e6 + 4.37388e6i 0.158068 + 0.273782i 0.934172 0.356823i \(-0.116140\pi\)
−0.776104 + 0.630605i \(0.782807\pi\)
\(762\) −6.03547e6 −0.376551
\(763\) 0 0
\(764\) 1.22136e7 0.757025
\(765\) −2.14553e6 3.71616e6i −0.132550 0.229584i
\(766\) 1.11829e6 1.93693e6i 0.0688623 0.119273i
\(767\) 1.75136e7 3.03344e7i 1.07495 1.86186i
\(768\) 294912. + 510803.i 0.0180422 + 0.0312500i
\(769\) 2.28169e6 0.139136 0.0695682 0.997577i \(-0.477838\pi\)
0.0695682 + 0.997577i \(0.477838\pi\)
\(770\) 0 0
\(771\) 1.31833e7 0.798711
\(772\) 3.01602e6 + 5.22389e6i 0.182134 + 0.315465i
\(773\) −1.36889e7 + 2.37098e7i −0.823984 + 1.42718i 0.0787088 + 0.996898i \(0.474920\pi\)
−0.902693 + 0.430285i \(0.858413\pi\)
\(774\) −2.18570e6 + 3.78575e6i −0.131141 + 0.227143i
\(775\) 3.33871e6 + 5.78282e6i 0.199675 + 0.345848i
\(776\) −4.93658e6 −0.294287
\(777\) 0 0
\(778\) −1.80422e7 −1.06866
\(779\) 3.77563e6 + 6.53959e6i 0.222918 + 0.386106i
\(780\) −3.66854e6 + 6.35410e6i −0.215902 + 0.373954i
\(781\) −2.52155e6 + 4.36745e6i −0.147924 + 0.256213i
\(782\) −2.86552e6 4.96323e6i −0.167566 0.290233i
\(783\) −2.63461e6 −0.153572
\(784\) 0 0
\(785\) −1.23314e7 −0.714227
\(786\) 1.49522e6 + 2.58980e6i 0.0863276 + 0.149524i
\(787\) −1.02131e7 + 1.76897e7i −0.587791 + 1.01808i 0.406730 + 0.913548i \(0.366669\pi\)
−0.994521 + 0.104535i \(0.966665\pi\)
\(788\) 549424. 951630.i 0.0315204 0.0545950i
\(789\) 6.65860e6 + 1.15330e7i 0.380795 + 0.659556i
\(790\) 8.79226e6 0.501225
\(791\) 0 0
\(792\) 2.43648e6 0.138023
\(793\) 1.13148e7 + 1.95978e7i 0.638947 + 1.10669i
\(794\) 1.03972e7 1.80086e7i 0.585284 1.01374i
\(795\) −866052. + 1.50005e6i −0.0485989 + 0.0841757i
\(796\) −1.46061e6 2.52985e6i −0.0817054 0.141518i
\(797\) 2.31557e7 1.29126 0.645628 0.763652i \(-0.276596\pi\)
0.645628 + 0.763652i \(0.276596\pi\)
\(798\) 0 0
\(799\) −2.21199e7 −1.22579
\(800\) −608768. 1.05442e6i −0.0336300 0.0582489i
\(801\) −4.08143e6 + 7.06924e6i −0.224766 + 0.389306i
\(802\) −1.26963e7 + 2.19907e7i −0.697015 + 1.20727i
\(803\) 8.31289e6 + 1.43983e7i 0.454949 + 0.787996i
\(804\) −7.82323e6 −0.426821
\(805\) 0 0
\(806\) 2.60133e7 1.41045
\(807\) −845334. 1.46416e6i −0.0456925 0.0791417i
\(808\) 3.18285e6 5.51285e6i 0.171509 0.297063i
\(809\) −5.74472e6 + 9.95016e6i −0.308601 + 0.534513i −0.978057 0.208339i \(-0.933194\pi\)
0.669455 + 0.742852i \(0.266528\pi\)
\(810\) 577368. + 1.00003e6i 0.0309200 + 0.0535551i
\(811\) 1.72443e7 0.920648 0.460324 0.887751i \(-0.347733\pi\)
0.460324 + 0.887751i \(0.347733\pi\)
\(812\) 0 0
\(813\) −1.74420e6 −0.0925486
\(814\) 6.08932e6 + 1.05470e7i 0.322113 + 0.557915i
\(815\) 2.64035e6 4.57322e6i 0.139241 0.241173i
\(816\) 1.38701e6 2.40237e6i 0.0729212 0.126303i
\(817\) −1.78364e7 3.08936e7i −0.934873 1.61925i
\(818\) 726568. 0.0379658
\(819\) 0 0
\(820\) 2.01062e6 0.104423
\(821\) −685385. 1.18712e6i −0.0354876 0.0614663i 0.847736 0.530418i \(-0.177965\pi\)
−0.883224 + 0.468952i \(0.844632\pi\)
\(822\) −2.92057e6 + 5.05858e6i −0.150761 + 0.261125i
\(823\) −4.28425e6 + 7.42055e6i −0.220483 + 0.381888i −0.954955 0.296751i \(-0.904097\pi\)
0.734472 + 0.678639i \(0.237430\pi\)
\(824\) 2.14221e6 + 3.71041e6i 0.109912 + 0.190373i
\(825\) −5.02947e6 −0.257269
\(826\) 0 0
\(827\) −1.33258e6 −0.0677533 −0.0338766 0.999426i \(-0.510785\pi\)
−0.0338766 + 0.999426i \(0.510785\pi\)
\(828\) 771120. + 1.33562e6i 0.0390882 + 0.0677028i
\(829\) −3.12830e6 + 5.41837e6i −0.158096 + 0.273831i −0.934182 0.356796i \(-0.883869\pi\)
0.776086 + 0.630627i \(0.217202\pi\)
\(830\) −2.37142e6 + 4.10743e6i −0.119485 + 0.206954i
\(831\) −2.77678e6 4.80952e6i −0.139489 0.241601i
\(832\) −4.74317e6 −0.237553
\(833\) 0 0
\(834\) −2.11838e6 −0.105460
\(835\) −1.20325e7 2.08409e7i −0.597228 1.03443i
\(836\) −9.94144e6 + 1.72191e7i −0.491964 + 0.852107i
\(837\) 2.04703e6 3.54556e6i 0.100998 0.174933i
\(838\) −1.12540e7 1.94925e7i −0.553600 0.958864i
\(839\) −1.61258e6 −0.0790891 −0.0395445 0.999218i \(-0.512591\pi\)
−0.0395445 + 0.999218i \(0.512591\pi\)
\(840\) 0 0
\(841\) −7.45015e6 −0.363225
\(842\) −8.85342e6 1.53346e7i −0.430359 0.745404i
\(843\) −7.79080e6 + 1.34941e7i −0.377584 + 0.653994i
\(844\) −1.86122e6 + 3.22372e6i −0.0899375 + 0.155776i
\(845\) −2.13328e7 3.69494e7i −1.02779 1.78019i
\(846\) 5.95253e6 0.285940
\(847\) 0 0
\(848\) −1.11974e6 −0.0534723
\(849\) 1.60209e6 + 2.77490e6i 0.0762812 + 0.132123i
\(850\) −2.86311e6 + 4.95906e6i −0.135922 + 0.235424i
\(851\) −3.85441e6 + 6.67603e6i −0.182446 + 0.316005i
\(852\) −772560. 1.33811e6i −0.0364614 0.0631530i
\(853\) −3.44919e7 −1.62310 −0.811548 0.584286i \(-0.801375\pi\)
−0.811548 + 0.584286i \(0.801375\pi\)
\(854\) 0 0
\(855\) −9.42322e6 −0.440843
\(856\) −7.30234e6 1.26480e7i −0.340626 0.589981i
\(857\) 9.27436e6 1.60637e7i 0.431352 0.747123i −0.565638 0.824654i \(-0.691370\pi\)
0.996990 + 0.0775302i \(0.0247034\pi\)
\(858\) −9.79668e6 + 1.69683e7i −0.454319 + 0.786903i
\(859\) 1.28218e7 + 2.22079e7i 0.592877 + 1.02689i 0.993843 + 0.110800i \(0.0353414\pi\)
−0.400965 + 0.916093i \(0.631325\pi\)
\(860\) −9.49837e6 −0.437928
\(861\) 0 0
\(862\) 5.76650e6 0.264329
\(863\) 1.24949e7 + 2.16419e7i 0.571093 + 0.989163i 0.996454 + 0.0841389i \(0.0268139\pi\)
−0.425361 + 0.905024i \(0.639853\pi\)
\(864\) −373248. + 646484.i −0.0170103 + 0.0294628i
\(865\) 8.07611e6 1.39882e7i 0.366997 0.635657i
\(866\) −7.79323e6 1.34983e7i −0.353120 0.611622i
\(867\) −267831. −0.0121008
\(868\) 0 0
\(869\) 2.34793e7 1.05472
\(870\) −2.86229e6 4.95763e6i −0.128208 0.222063i
\(871\) 3.14559e7 5.44832e7i 1.40494 2.43342i
\(872\) −3.04595e6 + 5.27574e6i −0.135654 + 0.234959i
\(873\) −3.12393e6 5.41080e6i −0.138728 0.240285i
\(874\) −1.25854e7 −0.557301
\(875\) 0 0
\(876\) −5.09386e6 −0.224278
\(877\) 1.73169e7 + 2.99937e7i 0.760274 + 1.31683i 0.942709 + 0.333616i \(0.108269\pi\)
−0.182435 + 0.983218i \(0.558398\pi\)
\(878\) 1.02241e7 1.77087e7i 0.447601 0.775267i
\(879\) 2.41499e6 4.18288e6i 0.105425 0.182601i
\(880\) 2.64704e6 + 4.58481e6i 0.115227 + 0.199579i
\(881\) 2.92434e7 1.26937 0.634685 0.772771i \(-0.281130\pi\)
0.634685 + 0.772771i \(0.281130\pi\)
\(882\) 0 0
\(883\) −3.76532e7 −1.62518 −0.812588 0.582839i \(-0.801942\pi\)
−0.812588 + 0.582839i \(0.801942\pi\)
\(884\) 1.11539e7 + 1.93190e7i 0.480059 + 0.831486i
\(885\) 5.98910e6 1.03734e7i 0.257042 0.445209i
\(886\) 1.08814e7 1.88471e7i 0.465694 0.806606i
\(887\) 1.04101e6 + 1.80308e6i 0.0444267 + 0.0769493i 0.887384 0.461032i \(-0.152521\pi\)
−0.842957 + 0.537981i \(0.819187\pi\)
\(888\) −3.73133e6 −0.158793
\(889\) 0 0
\(890\) −1.77366e7 −0.750576
\(891\) 1.54184e6 + 2.67054e6i 0.0650644 + 0.112695i
\(892\) −1.33715e6 + 2.31602e6i −0.0562689 + 0.0974606i
\(893\) −2.42878e7 + 4.20677e7i −1.01920 + 1.76531i
\(894\) −7.75256e6 1.34278e7i −0.324415 0.561904i
\(895\) −3.91116e6 −0.163210
\(896\) 0 0
\(897\) −1.24022e7 −0.514656
\(898\) −2.63049e6 4.55615e6i −0.108854 0.188541i
\(899\) −1.01481e7 + 1.75770e7i −0.418780 + 0.725348i
\(900\) 770472. 1.33450e6i 0.0317067 0.0549176i
\(901\) 2.63315e6 + 4.56075e6i 0.108060 + 0.187165i
\(902\) 5.36928e6 0.219735
\(903\) 0 0
\(904\) 1.67131e7 0.680198
\(905\) 1.72066e7 + 2.98027e7i 0.698351 + 1.20958i
\(906\) 9.01685e6 1.56176e7i 0.364951 0.632113i
\(907\) −8.11750e6 + 1.40599e7i −0.327645 + 0.567499i −0.982044 0.188651i \(-0.939588\pi\)
0.654399 + 0.756150i \(0.272922\pi\)
\(908\) −3.32582e6 5.76050e6i −0.133870 0.231870i
\(909\) 8.05658e6 0.323401
\(910\) 0 0
\(911\) −2.58656e7 −1.03259 −0.516294 0.856412i \(-0.672689\pi\)
−0.516294 + 0.856412i \(0.672689\pi\)
\(912\) −3.04589e6 5.27563e6i −0.121263 0.210033i
\(913\) −6.33278e6 + 1.09687e7i −0.251430 + 0.435490i
\(914\) 5.55208e6 9.61649e6i 0.219832 0.380760i
\(915\) 3.86932e6 + 6.70185e6i 0.152785 + 0.264632i
\(916\) 7.57571e6 0.298322
\(917\) 0 0
\(918\) 3.51086e6 0.137501
\(919\) 6.16329e6 + 1.06751e7i 0.240726 + 0.416950i 0.960921 0.276821i \(-0.0892810\pi\)
−0.720195 + 0.693772i \(0.755948\pi\)
\(920\) −1.67552e6 + 2.90209e6i −0.0652650 + 0.113042i
\(921\) −1.29779e7 + 2.24784e7i −0.504145 + 0.873205i
\(922\) 276160. + 478323.i 0.0106988 + 0.0185308i
\(923\) 1.24253e7 0.480069
\(924\) 0 0
\(925\) 7.70234e6 0.295984
\(926\) −728152. 1.26120e6i −0.0279058 0.0483343i
\(927\) −2.71123e6 + 4.69599e6i −0.103626 + 0.179485i
\(928\) 1.85037e6 3.20493e6i 0.0705323 0.122166i
\(929\) 2.07564e7 + 3.59511e7i 0.789064 + 1.36670i 0.926541 + 0.376195i \(0.122768\pi\)
−0.137476 + 0.990505i \(0.543899\pi\)
\(930\) 8.89574e6 0.337268
\(931\) 0 0
\(932\) −2.49047e7 −0.939166
\(933\) −4.63311e6 8.02478e6i −0.174248 0.301807i
\(934\) −1.14779e7 + 1.98804e7i −0.430523 + 0.745688i
\(935\) 1.24494e7 2.15629e7i 0.465713 0.806638i
\(936\) −3.00154e6 5.19881e6i −0.111983 0.193961i
\(937\) 2.26895e7 0.844260 0.422130 0.906535i \(-0.361283\pi\)
0.422130 + 0.906535i \(0.361283\pi\)
\(938\) 0 0
\(939\) −1.25367e7 −0.464002
\(940\) 6.46694e6 + 1.12011e7i 0.238715 + 0.413466i
\(941\) −7.91067e6 + 1.37017e7i −0.291232 + 0.504429i −0.974101 0.226112i \(-0.927399\pi\)
0.682869 + 0.730541i \(0.260732\pi\)
\(942\) 5.04464e6 8.73758e6i 0.185227 0.320822i
\(943\) 1.69932e6 + 2.94331e6i 0.0622294 + 0.107785i
\(944\) 7.74349e6 0.282818
\(945\) 0 0
\(946\) −2.53650e7 −0.921523
\(947\) −2.58789e7 4.48236e7i −0.937716 1.62417i −0.769717 0.638385i \(-0.779603\pi\)
−0.167999 0.985787i \(-0.553731\pi\)
\(948\) −3.59683e6 + 6.22990e6i −0.129987 + 0.225144i
\(949\) 2.04815e7 3.54751e7i 0.738239 1.27867i
\(950\) 6.28743e6 + 1.08902e7i 0.226029 + 0.391494i
\(951\) 7.02027e6 0.251711
\(952\) 0 0
\(953\) 2.29818e7 0.819695 0.409848 0.912154i \(-0.365582\pi\)
0.409848 + 0.912154i \(0.365582\pi\)
\(954\) −708588. 1.22731e6i −0.0252071 0.0436600i
\(955\) −1.67937e7 + 2.90875e7i −0.595851 + 1.03204i
\(956\) −5.24712e6 + 9.08828e6i −0.185685 + 0.321615i
\(957\) −7.64361e6 1.32391e7i −0.269786 0.467282i
\(958\) −2.20798e7 −0.777288
\(959\) 0 0
\(960\) −1.62202e6 −0.0568038
\(961\) −1.45515e6 2.52040e6i −0.0508277 0.0880361i
\(962\) 1.50030e7 2.59860e7i 0.522687 0.905321i
\(963\) 9.24202e6 1.60076e7i 0.321145 0.556239i
\(964\) 7.11579e6 + 1.23249e7i 0.246621 + 0.427161i
\(965\) −1.65881e7 −0.573427
\(966\) 0 0
\(967\) 3.20783e7 1.10318 0.551588 0.834117i \(-0.314022\pi\)
0.551588 + 0.834117i \(0.314022\pi\)
\(968\) 1.91517e6 + 3.31717e6i 0.0656929 + 0.113783i
\(969\) −1.43252e7 + 2.48120e7i −0.490107 + 0.848890i
\(970\) 6.78779e6 1.17568e7i 0.231632 0.401199i
\(971\) −3.65551e6 6.33152e6i −0.124423 0.215506i 0.797084 0.603868i \(-0.206375\pi\)
−0.921507 + 0.388361i \(0.873041\pi\)
\(972\) −944784. −0.0320750
\(973\) 0 0
\(974\) −1.69209e7 −0.571513
\(975\) 6.19588e6 + 1.07316e7i 0.208733 + 0.361536i
\(976\) −2.50138e6 + 4.33251e6i −0.0840532 + 0.145584i
\(977\) −3.79300e6 + 6.56967e6i −0.127129 + 0.220195i −0.922563 0.385846i \(-0.873910\pi\)
0.795434 + 0.606040i \(0.207243\pi\)
\(978\) 2.16029e6 + 3.74173e6i 0.0722212 + 0.125091i
\(979\) −4.73647e7 −1.57942
\(980\) 0 0
\(981\) −7.71007e6 −0.255791
\(982\) −1.44285e7 2.49908e7i −0.477464 0.826993i
\(983\) 1.23911e7 2.14621e7i 0.409004 0.708415i −0.585775 0.810474i \(-0.699210\pi\)
0.994778 + 0.102059i \(0.0325430\pi\)
\(984\) −822528. + 1.42466e6i −0.0270809 + 0.0469055i
\(985\) 1.51092e6 + 2.61698e6i 0.0496192 + 0.0859430i
\(986\) −1.74050e7 −0.570141
\(987\) 0 0
\(988\) 4.89880e7 1.59661
\(989\) −8.02774e6 1.39045e7i −0.260977 0.452026i
\(990\) −3.35016e6 + 5.80265e6i −0.108637 + 0.188165i
\(991\) 3.81765e6 6.61237e6i 0.123484 0.213881i −0.797655 0.603114i \(-0.793926\pi\)
0.921140 + 0.389233i \(0.127260\pi\)
\(992\) 2.87539e6 + 4.98033e6i 0.0927722 + 0.160686i
\(993\) 1.27084e7 0.408995
\(994\) 0 0
\(995\) 8.03334e6 0.257240
\(996\) −1.94026e6 3.36062e6i −0.0619742 0.107342i
\(997\) 1.44892e7 2.50961e7i 0.461644 0.799592i −0.537399 0.843328i \(-0.680593\pi\)
0.999043 + 0.0437367i \(0.0139263\pi\)
\(998\) −449608. + 778744.i −0.0142892 + 0.0247496i
\(999\) −2.36123e6 4.08977e6i −0.0748557 0.129654i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.e.o.67.1 2
7.2 even 3 inner 294.6.e.o.79.1 2
7.3 odd 6 294.6.a.f.1.1 1
7.4 even 3 42.6.a.b.1.1 1
7.5 odd 6 294.6.e.k.79.1 2
7.6 odd 2 294.6.e.k.67.1 2
21.11 odd 6 126.6.a.h.1.1 1
21.17 even 6 882.6.a.v.1.1 1
28.11 odd 6 336.6.a.o.1.1 1
35.4 even 6 1050.6.a.o.1.1 1
35.18 odd 12 1050.6.g.l.799.2 2
35.32 odd 12 1050.6.g.l.799.1 2
84.11 even 6 1008.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.b.1.1 1 7.4 even 3
126.6.a.h.1.1 1 21.11 odd 6
294.6.a.f.1.1 1 7.3 odd 6
294.6.e.k.67.1 2 7.6 odd 2
294.6.e.k.79.1 2 7.5 odd 6
294.6.e.o.67.1 2 1.1 even 1 trivial
294.6.e.o.79.1 2 7.2 even 3 inner
336.6.a.o.1.1 1 28.11 odd 6
882.6.a.v.1.1 1 21.17 even 6
1008.6.a.g.1.1 1 84.11 even 6
1050.6.a.o.1.1 1 35.4 even 6
1050.6.g.l.799.1 2 35.32 odd 12
1050.6.g.l.799.2 2 35.18 odd 12