Properties

Label 42.6.a.b.1.1
Level $42$
Weight $6$
Character 42.1
Self dual yes
Analytic conductor $6.736$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(1,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.73612043215\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 42.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +44.0000 q^{5} +36.0000 q^{6} -49.0000 q^{7} -64.0000 q^{8} +81.0000 q^{9} -176.000 q^{10} -470.000 q^{11} -144.000 q^{12} -1158.00 q^{13} +196.000 q^{14} -396.000 q^{15} +256.000 q^{16} +1204.00 q^{17} -324.000 q^{18} -2644.00 q^{19} +704.000 q^{20} +441.000 q^{21} +1880.00 q^{22} -1190.00 q^{23} +576.000 q^{24} -1189.00 q^{25} +4632.00 q^{26} -729.000 q^{27} -784.000 q^{28} +3614.00 q^{29} +1584.00 q^{30} +5616.00 q^{31} -1024.00 q^{32} +4230.00 q^{33} -4816.00 q^{34} -2156.00 q^{35} +1296.00 q^{36} -6478.00 q^{37} +10576.0 q^{38} +10422.0 q^{39} -2816.00 q^{40} +2856.00 q^{41} -1764.00 q^{42} -13492.0 q^{43} -7520.00 q^{44} +3564.00 q^{45} +4760.00 q^{46} -18372.0 q^{47} -2304.00 q^{48} +2401.00 q^{49} +4756.00 q^{50} -10836.0 q^{51} -18528.0 q^{52} -4374.00 q^{53} +2916.00 q^{54} -20680.0 q^{55} +3136.00 q^{56} +23796.0 q^{57} -14456.0 q^{58} +30248.0 q^{59} -6336.00 q^{60} +19542.0 q^{61} -22464.0 q^{62} -3969.00 q^{63} +4096.00 q^{64} -50952.0 q^{65} -16920.0 q^{66} +54328.0 q^{67} +19264.0 q^{68} +10710.0 q^{69} +8624.00 q^{70} -10730.0 q^{71} -5184.00 q^{72} +35374.0 q^{73} +25912.0 q^{74} +10701.0 q^{75} -42304.0 q^{76} +23030.0 q^{77} -41688.0 q^{78} -49956.0 q^{79} +11264.0 q^{80} +6561.00 q^{81} -11424.0 q^{82} -26948.0 q^{83} +7056.00 q^{84} +52976.0 q^{85} +53968.0 q^{86} -32526.0 q^{87} +30080.0 q^{88} +100776. q^{89} -14256.0 q^{90} +56742.0 q^{91} -19040.0 q^{92} -50544.0 q^{93} +73488.0 q^{94} -116336. q^{95} +9216.00 q^{96} +77134.0 q^{97} -9604.00 q^{98} -38070.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 44.0000 0.787096 0.393548 0.919304i \(-0.371248\pi\)
0.393548 + 0.919304i \(0.371248\pi\)
\(6\) 36.0000 0.408248
\(7\) −49.0000 −0.377964
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) −176.000 −0.556561
\(11\) −470.000 −1.17116 −0.585580 0.810615i \(-0.699133\pi\)
−0.585580 + 0.810615i \(0.699133\pi\)
\(12\) −144.000 −0.288675
\(13\) −1158.00 −1.90042 −0.950211 0.311606i \(-0.899133\pi\)
−0.950211 + 0.311606i \(0.899133\pi\)
\(14\) 196.000 0.267261
\(15\) −396.000 −0.454430
\(16\) 256.000 0.250000
\(17\) 1204.00 1.01043 0.505213 0.862995i \(-0.331414\pi\)
0.505213 + 0.862995i \(0.331414\pi\)
\(18\) −324.000 −0.235702
\(19\) −2644.00 −1.68026 −0.840132 0.542382i \(-0.817522\pi\)
−0.840132 + 0.542382i \(0.817522\pi\)
\(20\) 704.000 0.393548
\(21\) 441.000 0.218218
\(22\) 1880.00 0.828135
\(23\) −1190.00 −0.469059 −0.234529 0.972109i \(-0.575355\pi\)
−0.234529 + 0.972109i \(0.575355\pi\)
\(24\) 576.000 0.204124
\(25\) −1189.00 −0.380480
\(26\) 4632.00 1.34380
\(27\) −729.000 −0.192450
\(28\) −784.000 −0.188982
\(29\) 3614.00 0.797982 0.398991 0.916955i \(-0.369360\pi\)
0.398991 + 0.916955i \(0.369360\pi\)
\(30\) 1584.00 0.321331
\(31\) 5616.00 1.04960 0.524799 0.851226i \(-0.324141\pi\)
0.524799 + 0.851226i \(0.324141\pi\)
\(32\) −1024.00 −0.176777
\(33\) 4230.00 0.676169
\(34\) −4816.00 −0.714479
\(35\) −2156.00 −0.297494
\(36\) 1296.00 0.166667
\(37\) −6478.00 −0.777923 −0.388962 0.921254i \(-0.627166\pi\)
−0.388962 + 0.921254i \(0.627166\pi\)
\(38\) 10576.0 1.18813
\(39\) 10422.0 1.09721
\(40\) −2816.00 −0.278280
\(41\) 2856.00 0.265337 0.132669 0.991160i \(-0.457645\pi\)
0.132669 + 0.991160i \(0.457645\pi\)
\(42\) −1764.00 −0.154303
\(43\) −13492.0 −1.11277 −0.556385 0.830925i \(-0.687812\pi\)
−0.556385 + 0.830925i \(0.687812\pi\)
\(44\) −7520.00 −0.585580
\(45\) 3564.00 0.262365
\(46\) 4760.00 0.331675
\(47\) −18372.0 −1.21314 −0.606571 0.795029i \(-0.707456\pi\)
−0.606571 + 0.795029i \(0.707456\pi\)
\(48\) −2304.00 −0.144338
\(49\) 2401.00 0.142857
\(50\) 4756.00 0.269040
\(51\) −10836.0 −0.583369
\(52\) −18528.0 −0.950211
\(53\) −4374.00 −0.213889 −0.106945 0.994265i \(-0.534107\pi\)
−0.106945 + 0.994265i \(0.534107\pi\)
\(54\) 2916.00 0.136083
\(55\) −20680.0 −0.921815
\(56\) 3136.00 0.133631
\(57\) 23796.0 0.970101
\(58\) −14456.0 −0.564259
\(59\) 30248.0 1.13127 0.565635 0.824655i \(-0.308631\pi\)
0.565635 + 0.824655i \(0.308631\pi\)
\(60\) −6336.00 −0.227215
\(61\) 19542.0 0.672426 0.336213 0.941786i \(-0.390854\pi\)
0.336213 + 0.941786i \(0.390854\pi\)
\(62\) −22464.0 −0.742178
\(63\) −3969.00 −0.125988
\(64\) 4096.00 0.125000
\(65\) −50952.0 −1.49581
\(66\) −16920.0 −0.478124
\(67\) 54328.0 1.47855 0.739276 0.673402i \(-0.235168\pi\)
0.739276 + 0.673402i \(0.235168\pi\)
\(68\) 19264.0 0.505213
\(69\) 10710.0 0.270811
\(70\) 8624.00 0.210360
\(71\) −10730.0 −0.252612 −0.126306 0.991991i \(-0.540312\pi\)
−0.126306 + 0.991991i \(0.540312\pi\)
\(72\) −5184.00 −0.117851
\(73\) 35374.0 0.776921 0.388461 0.921465i \(-0.373007\pi\)
0.388461 + 0.921465i \(0.373007\pi\)
\(74\) 25912.0 0.550075
\(75\) 10701.0 0.219670
\(76\) −42304.0 −0.840132
\(77\) 23030.0 0.442657
\(78\) −41688.0 −0.775844
\(79\) −49956.0 −0.900575 −0.450288 0.892884i \(-0.648679\pi\)
−0.450288 + 0.892884i \(0.648679\pi\)
\(80\) 11264.0 0.196774
\(81\) 6561.00 0.111111
\(82\) −11424.0 −0.187622
\(83\) −26948.0 −0.429370 −0.214685 0.976683i \(-0.568872\pi\)
−0.214685 + 0.976683i \(0.568872\pi\)
\(84\) 7056.00 0.109109
\(85\) 52976.0 0.795302
\(86\) 53968.0 0.786847
\(87\) −32526.0 −0.460715
\(88\) 30080.0 0.414068
\(89\) 100776. 1.34860 0.674298 0.738459i \(-0.264446\pi\)
0.674298 + 0.738459i \(0.264446\pi\)
\(90\) −14256.0 −0.185520
\(91\) 56742.0 0.718292
\(92\) −19040.0 −0.234529
\(93\) −50544.0 −0.605986
\(94\) 73488.0 0.857821
\(95\) −116336. −1.32253
\(96\) 9216.00 0.102062
\(97\) 77134.0 0.832370 0.416185 0.909280i \(-0.363367\pi\)
0.416185 + 0.909280i \(0.363367\pi\)
\(98\) −9604.00 −0.101015
\(99\) −38070.0 −0.390387
\(100\) −19024.0 −0.190240
\(101\) 99464.0 0.970203 0.485101 0.874458i \(-0.338783\pi\)
0.485101 + 0.874458i \(0.338783\pi\)
\(102\) 43344.0 0.412504
\(103\) 66944.0 0.621754 0.310877 0.950450i \(-0.399377\pi\)
0.310877 + 0.950450i \(0.399377\pi\)
\(104\) 74112.0 0.671901
\(105\) 19404.0 0.171758
\(106\) 17496.0 0.151243
\(107\) −228198. −1.92687 −0.963435 0.267942i \(-0.913656\pi\)
−0.963435 + 0.267942i \(0.913656\pi\)
\(108\) −11664.0 −0.0962250
\(109\) −95186.0 −0.767374 −0.383687 0.923463i \(-0.625346\pi\)
−0.383687 + 0.923463i \(0.625346\pi\)
\(110\) 82720.0 0.651822
\(111\) 58302.0 0.449134
\(112\) −12544.0 −0.0944911
\(113\) −261142. −1.92389 −0.961946 0.273240i \(-0.911905\pi\)
−0.961946 + 0.273240i \(0.911905\pi\)
\(114\) −95184.0 −0.685965
\(115\) −52360.0 −0.369194
\(116\) 57824.0 0.398991
\(117\) −93798.0 −0.633474
\(118\) −120992. −0.799929
\(119\) −58996.0 −0.381905
\(120\) 25344.0 0.160665
\(121\) 59849.0 0.371615
\(122\) −78168.0 −0.475477
\(123\) −25704.0 −0.153193
\(124\) 89856.0 0.524799
\(125\) −189816. −1.08657
\(126\) 15876.0 0.0890871
\(127\) −167652. −0.922358 −0.461179 0.887307i \(-0.652573\pi\)
−0.461179 + 0.887307i \(0.652573\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 121428. 0.642458
\(130\) 203808. 1.05770
\(131\) −83068.0 −0.422917 −0.211459 0.977387i \(-0.567821\pi\)
−0.211459 + 0.977387i \(0.567821\pi\)
\(132\) 67680.0 0.338085
\(133\) 129556. 0.635080
\(134\) −217312. −1.04549
\(135\) −32076.0 −0.151477
\(136\) −77056.0 −0.357239
\(137\) 162254. 0.738574 0.369287 0.929315i \(-0.379602\pi\)
0.369287 + 0.929315i \(0.379602\pi\)
\(138\) −42840.0 −0.191492
\(139\) −58844.0 −0.258324 −0.129162 0.991623i \(-0.541229\pi\)
−0.129162 + 0.991623i \(0.541229\pi\)
\(140\) −34496.0 −0.148747
\(141\) 165348. 0.700408
\(142\) 42920.0 0.178624
\(143\) 544260. 2.22570
\(144\) 20736.0 0.0833333
\(145\) 159016. 0.628088
\(146\) −141496. −0.549366
\(147\) −21609.0 −0.0824786
\(148\) −103648. −0.388962
\(149\) 430698. 1.58930 0.794652 0.607065i \(-0.207653\pi\)
0.794652 + 0.607065i \(0.207653\pi\)
\(150\) −42804.0 −0.155330
\(151\) −500936. −1.78789 −0.893943 0.448180i \(-0.852072\pi\)
−0.893943 + 0.448180i \(0.852072\pi\)
\(152\) 169216. 0.594063
\(153\) 97524.0 0.336808
\(154\) −92120.0 −0.313006
\(155\) 247104. 0.826134
\(156\) 166752. 0.548605
\(157\) −280258. −0.907421 −0.453711 0.891149i \(-0.649900\pi\)
−0.453711 + 0.891149i \(0.649900\pi\)
\(158\) 199824. 0.636803
\(159\) 39366.0 0.123489
\(160\) −45056.0 −0.139140
\(161\) 58310.0 0.177288
\(162\) −26244.0 −0.0785674
\(163\) −120016. −0.353810 −0.176905 0.984228i \(-0.556609\pi\)
−0.176905 + 0.984228i \(0.556609\pi\)
\(164\) 45696.0 0.132669
\(165\) 186120. 0.532210
\(166\) 107792. 0.303610
\(167\) 546932. 1.51755 0.758774 0.651355i \(-0.225799\pi\)
0.758774 + 0.651355i \(0.225799\pi\)
\(168\) −28224.0 −0.0771517
\(169\) 969671. 2.61161
\(170\) −211904. −0.562363
\(171\) −214164. −0.560088
\(172\) −215872. −0.556385
\(173\) −367096. −0.932533 −0.466267 0.884644i \(-0.654401\pi\)
−0.466267 + 0.884644i \(0.654401\pi\)
\(174\) 130104. 0.325775
\(175\) 58261.0 0.143808
\(176\) −120320. −0.292790
\(177\) −272232. −0.653140
\(178\) −403104. −0.953602
\(179\) −88890.0 −0.207358 −0.103679 0.994611i \(-0.533061\pi\)
−0.103679 + 0.994611i \(0.533061\pi\)
\(180\) 57024.0 0.131183
\(181\) −782118. −1.77450 −0.887250 0.461290i \(-0.847387\pi\)
−0.887250 + 0.461290i \(0.847387\pi\)
\(182\) −226968. −0.507909
\(183\) −175878. −0.388225
\(184\) 76160.0 0.165837
\(185\) −285032. −0.612300
\(186\) 202176. 0.428496
\(187\) −565880. −1.18337
\(188\) −293952. −0.606571
\(189\) 35721.0 0.0727393
\(190\) 465344. 0.935169
\(191\) 763350. 1.51405 0.757025 0.653386i \(-0.226652\pi\)
0.757025 + 0.653386i \(0.226652\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −377002. −0.728535 −0.364267 0.931294i \(-0.618681\pi\)
−0.364267 + 0.931294i \(0.618681\pi\)
\(194\) −308536. −0.588575
\(195\) 458568. 0.863609
\(196\) 38416.0 0.0714286
\(197\) −68678.0 −0.126082 −0.0630409 0.998011i \(-0.520080\pi\)
−0.0630409 + 0.998011i \(0.520080\pi\)
\(198\) 152280. 0.276045
\(199\) 182576. 0.326822 0.163411 0.986558i \(-0.447750\pi\)
0.163411 + 0.986558i \(0.447750\pi\)
\(200\) 76096.0 0.134520
\(201\) −488952. −0.853643
\(202\) −397856. −0.686037
\(203\) −177086. −0.301609
\(204\) −173376. −0.291685
\(205\) 125664. 0.208846
\(206\) −267776. −0.439646
\(207\) −96390.0 −0.156353
\(208\) −296448. −0.475106
\(209\) 1.24268e6 1.96786
\(210\) −77616.0 −0.121452
\(211\) 232652. 0.359750 0.179875 0.983689i \(-0.442431\pi\)
0.179875 + 0.983689i \(0.442431\pi\)
\(212\) −69984.0 −0.106945
\(213\) 96570.0 0.145846
\(214\) 912792. 1.36250
\(215\) −593648. −0.875856
\(216\) 46656.0 0.0680414
\(217\) −275184. −0.396711
\(218\) 380744. 0.542615
\(219\) −318366. −0.448556
\(220\) −330880. −0.460908
\(221\) −1.39423e6 −1.92023
\(222\) −233208. −0.317586
\(223\) 167144. 0.225076 0.112538 0.993647i \(-0.464102\pi\)
0.112538 + 0.993647i \(0.464102\pi\)
\(224\) 50176.0 0.0668153
\(225\) −96309.0 −0.126827
\(226\) 1.04457e6 1.36040
\(227\) 415728. 0.535482 0.267741 0.963491i \(-0.413723\pi\)
0.267741 + 0.963491i \(0.413723\pi\)
\(228\) 380736. 0.485050
\(229\) 473482. 0.596643 0.298322 0.954465i \(-0.403573\pi\)
0.298322 + 0.954465i \(0.403573\pi\)
\(230\) 209440. 0.261060
\(231\) −207270. −0.255568
\(232\) −231296. −0.282129
\(233\) −1.55655e6 −1.87833 −0.939166 0.343465i \(-0.888399\pi\)
−0.939166 + 0.343465i \(0.888399\pi\)
\(234\) 375192. 0.447934
\(235\) −808368. −0.954859
\(236\) 483968. 0.565635
\(237\) 449604. 0.519947
\(238\) 235984. 0.270048
\(239\) 655890. 0.742739 0.371370 0.928485i \(-0.378888\pi\)
0.371370 + 0.928485i \(0.378888\pi\)
\(240\) −101376. −0.113608
\(241\) −889474. −0.986485 −0.493243 0.869892i \(-0.664189\pi\)
−0.493243 + 0.869892i \(0.664189\pi\)
\(242\) −239396. −0.262772
\(243\) −59049.0 −0.0641500
\(244\) 312672. 0.336213
\(245\) 105644. 0.112442
\(246\) 102816. 0.108324
\(247\) 3.06175e6 3.19321
\(248\) −359424. −0.371089
\(249\) 242532. 0.247897
\(250\) 759264. 0.768321
\(251\) 131832. 0.132080 0.0660399 0.997817i \(-0.478964\pi\)
0.0660399 + 0.997817i \(0.478964\pi\)
\(252\) −63504.0 −0.0629941
\(253\) 559300. 0.549343
\(254\) 670608. 0.652205
\(255\) −476784. −0.459168
\(256\) 65536.0 0.0625000
\(257\) −1.46482e6 −1.38341 −0.691704 0.722181i \(-0.743140\pi\)
−0.691704 + 0.722181i \(0.743140\pi\)
\(258\) −485712. −0.454286
\(259\) 317422. 0.294027
\(260\) −815232. −0.747907
\(261\) 292734. 0.265994
\(262\) 332272. 0.299048
\(263\) 1.47969e6 1.31911 0.659556 0.751656i \(-0.270745\pi\)
0.659556 + 0.751656i \(0.270745\pi\)
\(264\) −270720. −0.239062
\(265\) −192456. −0.168351
\(266\) −518224. −0.449069
\(267\) −906984. −0.778613
\(268\) 869248. 0.739276
\(269\) −187852. −0.158283 −0.0791417 0.996863i \(-0.525218\pi\)
−0.0791417 + 0.996863i \(0.525218\pi\)
\(270\) 128304. 0.107110
\(271\) 193800. 0.160299 0.0801495 0.996783i \(-0.474460\pi\)
0.0801495 + 0.996783i \(0.474460\pi\)
\(272\) 308224. 0.252606
\(273\) −510678. −0.414706
\(274\) −649016. −0.522251
\(275\) 558830. 0.445603
\(276\) 171360. 0.135406
\(277\) −617062. −0.483203 −0.241601 0.970376i \(-0.577673\pi\)
−0.241601 + 0.970376i \(0.577673\pi\)
\(278\) 235376. 0.182663
\(279\) 454896. 0.349866
\(280\) 137984. 0.105180
\(281\) −1.73129e6 −1.30799 −0.653994 0.756499i \(-0.726908\pi\)
−0.653994 + 0.756499i \(0.726908\pi\)
\(282\) −661392. −0.495263
\(283\) 356020. 0.264246 0.132123 0.991233i \(-0.457821\pi\)
0.132123 + 0.991233i \(0.457821\pi\)
\(284\) −171680. −0.126306
\(285\) 1.04702e6 0.763562
\(286\) −2.17704e6 −1.57381
\(287\) −139944. −0.100288
\(288\) −82944.0 −0.0589256
\(289\) 29759.0 0.0209592
\(290\) −636064. −0.444126
\(291\) −694206. −0.480569
\(292\) 565984. 0.388461
\(293\) 536664. 0.365202 0.182601 0.983187i \(-0.441548\pi\)
0.182601 + 0.983187i \(0.441548\pi\)
\(294\) 86436.0 0.0583212
\(295\) 1.33091e6 0.890419
\(296\) 414592. 0.275037
\(297\) 342630. 0.225390
\(298\) −1.72279e6 −1.12381
\(299\) 1.37802e6 0.891410
\(300\) 171216. 0.109835
\(301\) 661108. 0.420587
\(302\) 2.00374e6 1.26423
\(303\) −895176. −0.560147
\(304\) −676864. −0.420066
\(305\) 859848. 0.529264
\(306\) −390096. −0.238160
\(307\) −2.88398e6 −1.74641 −0.873205 0.487353i \(-0.837963\pi\)
−0.873205 + 0.487353i \(0.837963\pi\)
\(308\) 368480. 0.221328
\(309\) −602496. −0.358970
\(310\) −988416. −0.584165
\(311\) −1.02958e6 −0.603614 −0.301807 0.953369i \(-0.597590\pi\)
−0.301807 + 0.953369i \(0.597590\pi\)
\(312\) −667008. −0.387922
\(313\) 1.39297e6 0.803676 0.401838 0.915711i \(-0.368372\pi\)
0.401838 + 0.915711i \(0.368372\pi\)
\(314\) 1.12103e6 0.641644
\(315\) −174636. −0.0991648
\(316\) −799296. −0.450288
\(317\) −780030. −0.435977 −0.217988 0.975951i \(-0.569949\pi\)
−0.217988 + 0.975951i \(0.569949\pi\)
\(318\) −157464. −0.0873200
\(319\) −1.69858e6 −0.934565
\(320\) 180224. 0.0983870
\(321\) 2.05378e6 1.11248
\(322\) −233240. −0.125361
\(323\) −3.18338e6 −1.69778
\(324\) 104976. 0.0555556
\(325\) 1.37686e6 0.723073
\(326\) 480064. 0.250181
\(327\) 856674. 0.443043
\(328\) −182784. −0.0938110
\(329\) 900228. 0.458525
\(330\) −744480. −0.376329
\(331\) −1.41204e6 −0.708399 −0.354200 0.935170i \(-0.615247\pi\)
−0.354200 + 0.935170i \(0.615247\pi\)
\(332\) −431168. −0.214685
\(333\) −524718. −0.259308
\(334\) −2.18773e6 −1.07307
\(335\) 2.39043e6 1.16376
\(336\) 112896. 0.0545545
\(337\) −634662. −0.304416 −0.152208 0.988348i \(-0.548638\pi\)
−0.152208 + 0.988348i \(0.548638\pi\)
\(338\) −3.87868e6 −1.84668
\(339\) 2.35028e6 1.11076
\(340\) 847616. 0.397651
\(341\) −2.63952e6 −1.22925
\(342\) 856656. 0.396042
\(343\) −117649. −0.0539949
\(344\) 863488. 0.393423
\(345\) 471240. 0.213154
\(346\) 1.46838e6 0.659401
\(347\) 3.07942e6 1.37292 0.686460 0.727167i \(-0.259163\pi\)
0.686460 + 0.727167i \(0.259163\pi\)
\(348\) −520416. −0.230358
\(349\) −2.60671e6 −1.14559 −0.572796 0.819698i \(-0.694141\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(350\) −233044. −0.101688
\(351\) 844182. 0.365736
\(352\) 481280. 0.207034
\(353\) −63132.0 −0.0269658 −0.0134829 0.999909i \(-0.504292\pi\)
−0.0134829 + 0.999909i \(0.504292\pi\)
\(354\) 1.08893e6 0.461839
\(355\) −472120. −0.198830
\(356\) 1.61242e6 0.674298
\(357\) 530964. 0.220493
\(358\) 355560. 0.146624
\(359\) 479270. 0.196266 0.0981328 0.995173i \(-0.468713\pi\)
0.0981328 + 0.995173i \(0.468713\pi\)
\(360\) −228096. −0.0927601
\(361\) 4.51464e6 1.82329
\(362\) 3.12847e6 1.25476
\(363\) −538641. −0.214552
\(364\) 907872. 0.359146
\(365\) 1.55646e6 0.611512
\(366\) 703512. 0.274517
\(367\) −1.33451e6 −0.517199 −0.258599 0.965985i \(-0.583261\pi\)
−0.258599 + 0.965985i \(0.583261\pi\)
\(368\) −304640. −0.117265
\(369\) 231336. 0.0884458
\(370\) 1.14013e6 0.432962
\(371\) 214326. 0.0808426
\(372\) −808704. −0.302993
\(373\) −1.69759e6 −0.631774 −0.315887 0.948797i \(-0.602302\pi\)
−0.315887 + 0.948797i \(0.602302\pi\)
\(374\) 2.26352e6 0.836769
\(375\) 1.70834e6 0.627332
\(376\) 1.17581e6 0.428911
\(377\) −4.18501e6 −1.51650
\(378\) −142884. −0.0514344
\(379\) 2.51074e6 0.897850 0.448925 0.893569i \(-0.351807\pi\)
0.448925 + 0.893569i \(0.351807\pi\)
\(380\) −1.86138e6 −0.661264
\(381\) 1.50887e6 0.532524
\(382\) −3.05340e6 −1.07060
\(383\) 559144. 0.194772 0.0973860 0.995247i \(-0.468952\pi\)
0.0973860 + 0.995247i \(0.468952\pi\)
\(384\) 147456. 0.0510310
\(385\) 1.01332e6 0.348413
\(386\) 1.50801e6 0.515152
\(387\) −1.09285e6 −0.370923
\(388\) 1.23414e6 0.416185
\(389\) 4.51055e6 1.51132 0.755658 0.654966i \(-0.227317\pi\)
0.755658 + 0.654966i \(0.227317\pi\)
\(390\) −1.83427e6 −0.610664
\(391\) −1.43276e6 −0.473949
\(392\) −153664. −0.0505076
\(393\) 747612. 0.244171
\(394\) 274712. 0.0891532
\(395\) −2.19806e6 −0.708839
\(396\) −609120. −0.195193
\(397\) 5.19862e6 1.65543 0.827717 0.561145i \(-0.189639\pi\)
0.827717 + 0.561145i \(0.189639\pi\)
\(398\) −730304. −0.231098
\(399\) −1.16600e6 −0.366664
\(400\) −304384. −0.0951200
\(401\) −6.34816e6 −1.97146 −0.985728 0.168346i \(-0.946157\pi\)
−0.985728 + 0.168346i \(0.946157\pi\)
\(402\) 1.95581e6 0.603616
\(403\) −6.50333e6 −1.99468
\(404\) 1.59142e6 0.485101
\(405\) 288684. 0.0874551
\(406\) 708344. 0.213270
\(407\) 3.04466e6 0.911072
\(408\) 693504. 0.206252
\(409\) −181642. −0.0536918 −0.0268459 0.999640i \(-0.508546\pi\)
−0.0268459 + 0.999640i \(0.508546\pi\)
\(410\) −502656. −0.147676
\(411\) −1.46029e6 −0.426416
\(412\) 1.07110e6 0.310877
\(413\) −1.48215e6 −0.427580
\(414\) 385560. 0.110558
\(415\) −1.18571e6 −0.337955
\(416\) 1.18579e6 0.335950
\(417\) 529596. 0.149144
\(418\) −4.97072e6 −1.39149
\(419\) −5.62699e6 −1.56582 −0.782909 0.622136i \(-0.786265\pi\)
−0.782909 + 0.622136i \(0.786265\pi\)
\(420\) 310464. 0.0858792
\(421\) −4.42671e6 −1.21724 −0.608619 0.793462i \(-0.708276\pi\)
−0.608619 + 0.793462i \(0.708276\pi\)
\(422\) −930608. −0.254382
\(423\) −1.48813e6 −0.404381
\(424\) 279936. 0.0756213
\(425\) −1.43156e6 −0.384447
\(426\) −386280. −0.103128
\(427\) −957558. −0.254153
\(428\) −3.65117e6 −0.963435
\(429\) −4.89834e6 −1.28501
\(430\) 2.37459e6 0.619324
\(431\) −1.44163e6 −0.373817 −0.186909 0.982377i \(-0.559847\pi\)
−0.186909 + 0.982377i \(0.559847\pi\)
\(432\) −186624. −0.0481125
\(433\) −3.89661e6 −0.998775 −0.499387 0.866379i \(-0.666442\pi\)
−0.499387 + 0.866379i \(0.666442\pi\)
\(434\) 1.10074e6 0.280517
\(435\) −1.43114e6 −0.362627
\(436\) −1.52298e6 −0.383687
\(437\) 3.14636e6 0.788143
\(438\) 1.27346e6 0.317177
\(439\) 5.11207e6 1.26601 0.633003 0.774149i \(-0.281822\pi\)
0.633003 + 0.774149i \(0.281822\pi\)
\(440\) 1.32352e6 0.325911
\(441\) 194481. 0.0476190
\(442\) 5.57693e6 1.35781
\(443\) 5.44070e6 1.31718 0.658591 0.752501i \(-0.271153\pi\)
0.658591 + 0.752501i \(0.271153\pi\)
\(444\) 932832. 0.224567
\(445\) 4.43414e6 1.06147
\(446\) −668576. −0.159153
\(447\) −3.87628e6 −0.917586
\(448\) −200704. −0.0472456
\(449\) −1.31525e6 −0.307887 −0.153943 0.988080i \(-0.549197\pi\)
−0.153943 + 0.988080i \(0.549197\pi\)
\(450\) 385236. 0.0896800
\(451\) −1.34232e6 −0.310753
\(452\) −4.17827e6 −0.961946
\(453\) 4.50842e6 1.03224
\(454\) −1.66291e6 −0.378643
\(455\) 2.49665e6 0.565365
\(456\) −1.52294e6 −0.342982
\(457\) 2.77604e6 0.621778 0.310889 0.950446i \(-0.399373\pi\)
0.310889 + 0.950446i \(0.399373\pi\)
\(458\) −1.89393e6 −0.421891
\(459\) −877716. −0.194456
\(460\) −837760. −0.184597
\(461\) 138080. 0.0302607 0.0151303 0.999886i \(-0.495184\pi\)
0.0151303 + 0.999886i \(0.495184\pi\)
\(462\) 829080. 0.180714
\(463\) −364076. −0.0789295 −0.0394648 0.999221i \(-0.512565\pi\)
−0.0394648 + 0.999221i \(0.512565\pi\)
\(464\) 925184. 0.199496
\(465\) −2.22394e6 −0.476969
\(466\) 6.22618e6 1.32818
\(467\) −5.73897e6 −1.21770 −0.608852 0.793284i \(-0.708370\pi\)
−0.608852 + 0.793284i \(0.708370\pi\)
\(468\) −1.50077e6 −0.316737
\(469\) −2.66207e6 −0.558840
\(470\) 3.23347e6 0.675188
\(471\) 2.52232e6 0.523900
\(472\) −1.93587e6 −0.399965
\(473\) 6.34124e6 1.30323
\(474\) −1.79842e6 −0.367658
\(475\) 3.14372e6 0.639307
\(476\) −943936. −0.190952
\(477\) −354294. −0.0712964
\(478\) −2.62356e6 −0.525196
\(479\) 5.51996e6 1.09925 0.549625 0.835411i \(-0.314770\pi\)
0.549625 + 0.835411i \(0.314770\pi\)
\(480\) 405504. 0.0803326
\(481\) 7.50152e6 1.47838
\(482\) 3.55790e6 0.697550
\(483\) −524790. −0.102357
\(484\) 957584. 0.185808
\(485\) 3.39390e6 0.655155
\(486\) 236196. 0.0453609
\(487\) 4.23022e6 0.808241 0.404121 0.914706i \(-0.367578\pi\)
0.404121 + 0.914706i \(0.367578\pi\)
\(488\) −1.25069e6 −0.237738
\(489\) 1.08014e6 0.204272
\(490\) −422576. −0.0795087
\(491\) −7.21423e6 −1.35047 −0.675237 0.737601i \(-0.735959\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(492\) −411264. −0.0765963
\(493\) 4.35126e6 0.806301
\(494\) −1.22470e7 −2.25794
\(495\) −1.67508e6 −0.307272
\(496\) 1.43770e6 0.262399
\(497\) 525770. 0.0954783
\(498\) −970128. −0.175289
\(499\) −224804. −0.0404159 −0.0202080 0.999796i \(-0.506433\pi\)
−0.0202080 + 0.999796i \(0.506433\pi\)
\(500\) −3.03706e6 −0.543285
\(501\) −4.92239e6 −0.876156
\(502\) −527328. −0.0933946
\(503\) 5.06983e6 0.893457 0.446728 0.894670i \(-0.352589\pi\)
0.446728 + 0.894670i \(0.352589\pi\)
\(504\) 254016. 0.0445435
\(505\) 4.37642e6 0.763643
\(506\) −2.23720e6 −0.388444
\(507\) −8.72704e6 −1.50781
\(508\) −2.68243e6 −0.461179
\(509\) 5.48135e6 0.937763 0.468881 0.883261i \(-0.344657\pi\)
0.468881 + 0.883261i \(0.344657\pi\)
\(510\) 1.90714e6 0.324681
\(511\) −1.73333e6 −0.293649
\(512\) −262144. −0.0441942
\(513\) 1.92748e6 0.323367
\(514\) 5.85926e6 0.978217
\(515\) 2.94554e6 0.489380
\(516\) 1.94285e6 0.321229
\(517\) 8.63484e6 1.42078
\(518\) −1.26969e6 −0.207909
\(519\) 3.30386e6 0.538398
\(520\) 3.26093e6 0.528850
\(521\) 7.88932e6 1.27334 0.636671 0.771136i \(-0.280311\pi\)
0.636671 + 0.771136i \(0.280311\pi\)
\(522\) −1.17094e6 −0.188086
\(523\) −9.74950e6 −1.55858 −0.779288 0.626666i \(-0.784419\pi\)
−0.779288 + 0.626666i \(0.784419\pi\)
\(524\) −1.32909e6 −0.211459
\(525\) −524349. −0.0830275
\(526\) −5.91876e6 −0.932752
\(527\) 6.76166e6 1.06054
\(528\) 1.08288e6 0.169042
\(529\) −5.02024e6 −0.779984
\(530\) 769824. 0.119042
\(531\) 2.45009e6 0.377090
\(532\) 2.07290e6 0.317540
\(533\) −3.30725e6 −0.504253
\(534\) 3.62794e6 0.550562
\(535\) −1.00407e7 −1.51663
\(536\) −3.47699e6 −0.522747
\(537\) 800010. 0.119718
\(538\) 751408. 0.111923
\(539\) −1.12847e6 −0.167309
\(540\) −513216. −0.0757383
\(541\) −4.17454e6 −0.613219 −0.306610 0.951835i \(-0.599195\pi\)
−0.306610 + 0.951835i \(0.599195\pi\)
\(542\) −775200. −0.113348
\(543\) 7.03906e6 1.02451
\(544\) −1.23290e6 −0.178620
\(545\) −4.18818e6 −0.603997
\(546\) 2.04271e6 0.293242
\(547\) −2.72887e6 −0.389955 −0.194978 0.980808i \(-0.562463\pi\)
−0.194978 + 0.980808i \(0.562463\pi\)
\(548\) 2.59606e6 0.369287
\(549\) 1.58290e6 0.224142
\(550\) −2.23532e6 −0.315089
\(551\) −9.55542e6 −1.34082
\(552\) −685440. −0.0957462
\(553\) 2.44784e6 0.340385
\(554\) 2.46825e6 0.341676
\(555\) 2.56529e6 0.353512
\(556\) −941504. −0.129162
\(557\) −7.35103e6 −1.00395 −0.501973 0.864883i \(-0.667392\pi\)
−0.501973 + 0.864883i \(0.667392\pi\)
\(558\) −1.81958e6 −0.247393
\(559\) 1.56237e7 2.11473
\(560\) −551936. −0.0743736
\(561\) 5.09292e6 0.683219
\(562\) 6.92516e6 0.924888
\(563\) −1.37821e7 −1.83250 −0.916248 0.400612i \(-0.868798\pi\)
−0.916248 + 0.400612i \(0.868798\pi\)
\(564\) 2.64557e6 0.350204
\(565\) −1.14902e7 −1.51429
\(566\) −1.42408e6 −0.186850
\(567\) −321489. −0.0419961
\(568\) 686720. 0.0893118
\(569\) 2.71217e6 0.351186 0.175593 0.984463i \(-0.443816\pi\)
0.175593 + 0.984463i \(0.443816\pi\)
\(570\) −4.18810e6 −0.539920
\(571\) 4.94398e6 0.634580 0.317290 0.948329i \(-0.397227\pi\)
0.317290 + 0.948329i \(0.397227\pi\)
\(572\) 8.70816e6 1.11285
\(573\) −6.87015e6 −0.874137
\(574\) 559776. 0.0709144
\(575\) 1.41491e6 0.178468
\(576\) 331776. 0.0416667
\(577\) −1.32683e7 −1.65911 −0.829556 0.558424i \(-0.811406\pi\)
−0.829556 + 0.558424i \(0.811406\pi\)
\(578\) −119036. −0.0148204
\(579\) 3.39302e6 0.420620
\(580\) 2.54426e6 0.314044
\(581\) 1.32045e6 0.162286
\(582\) 2.77682e6 0.339814
\(583\) 2.05578e6 0.250499
\(584\) −2.26394e6 −0.274683
\(585\) −4.12711e6 −0.498605
\(586\) −2.14666e6 −0.258237
\(587\) 1.67205e6 0.200287 0.100144 0.994973i \(-0.468070\pi\)
0.100144 + 0.994973i \(0.468070\pi\)
\(588\) −345744. −0.0412393
\(589\) −1.48487e7 −1.76360
\(590\) −5.32365e6 −0.629621
\(591\) 618102. 0.0727933
\(592\) −1.65837e6 −0.194481
\(593\) 5.11693e6 0.597548 0.298774 0.954324i \(-0.403422\pi\)
0.298774 + 0.954324i \(0.403422\pi\)
\(594\) −1.37052e6 −0.159375
\(595\) −2.59582e6 −0.300596
\(596\) 6.89117e6 0.794652
\(597\) −1.64318e6 −0.188691
\(598\) −5.51208e6 −0.630322
\(599\) −7.15931e6 −0.815275 −0.407638 0.913144i \(-0.633647\pi\)
−0.407638 + 0.913144i \(0.633647\pi\)
\(600\) −684864. −0.0776652
\(601\) −9.63384e6 −1.08796 −0.543980 0.839098i \(-0.683083\pi\)
−0.543980 + 0.839098i \(0.683083\pi\)
\(602\) −2.64443e6 −0.297400
\(603\) 4.40057e6 0.492851
\(604\) −8.01498e6 −0.893943
\(605\) 2.63336e6 0.292497
\(606\) 3.58070e6 0.396084
\(607\) 5.52115e6 0.608216 0.304108 0.952638i \(-0.401642\pi\)
0.304108 + 0.952638i \(0.401642\pi\)
\(608\) 2.70746e6 0.297031
\(609\) 1.59377e6 0.174134
\(610\) −3.43939e6 −0.374246
\(611\) 2.12748e7 2.30548
\(612\) 1.56038e6 0.168404
\(613\) 4.79890e6 0.515811 0.257906 0.966170i \(-0.416968\pi\)
0.257906 + 0.966170i \(0.416968\pi\)
\(614\) 1.15359e7 1.23490
\(615\) −1.13098e6 −0.120577
\(616\) −1.47392e6 −0.156503
\(617\) 2.71826e6 0.287461 0.143730 0.989617i \(-0.454090\pi\)
0.143730 + 0.989617i \(0.454090\pi\)
\(618\) 2.40998e6 0.253830
\(619\) −4.34335e6 −0.455615 −0.227807 0.973706i \(-0.573156\pi\)
−0.227807 + 0.973706i \(0.573156\pi\)
\(620\) 3.95366e6 0.413067
\(621\) 867510. 0.0902704
\(622\) 4.11832e6 0.426819
\(623\) −4.93802e6 −0.509722
\(624\) 2.66803e6 0.274302
\(625\) −4.63628e6 −0.474755
\(626\) −5.57188e6 −0.568285
\(627\) −1.11841e7 −1.13614
\(628\) −4.48413e6 −0.453711
\(629\) −7.79951e6 −0.786033
\(630\) 698544. 0.0701201
\(631\) 1.11952e6 0.111933 0.0559667 0.998433i \(-0.482176\pi\)
0.0559667 + 0.998433i \(0.482176\pi\)
\(632\) 3.19718e6 0.318401
\(633\) −2.09387e6 −0.207702
\(634\) 3.12012e6 0.308282
\(635\) −7.37669e6 −0.725984
\(636\) 629856. 0.0617445
\(637\) −2.78036e6 −0.271489
\(638\) 6.79432e6 0.660837
\(639\) −869130. −0.0842040
\(640\) −720896. −0.0695701
\(641\) −3.96588e6 −0.381237 −0.190618 0.981664i \(-0.561049\pi\)
−0.190618 + 0.981664i \(0.561049\pi\)
\(642\) −8.21513e6 −0.786641
\(643\) 1.92086e7 1.83218 0.916092 0.400968i \(-0.131326\pi\)
0.916092 + 0.400968i \(0.131326\pi\)
\(644\) 932960. 0.0886438
\(645\) 5.34283e6 0.505676
\(646\) 1.27335e7 1.20051
\(647\) 4.72739e6 0.443977 0.221989 0.975049i \(-0.428745\pi\)
0.221989 + 0.975049i \(0.428745\pi\)
\(648\) −419904. −0.0392837
\(649\) −1.42166e7 −1.32490
\(650\) −5.50745e6 −0.511290
\(651\) 2.47666e6 0.229041
\(652\) −1.92026e6 −0.176905
\(653\) 1.21159e7 1.11192 0.555958 0.831210i \(-0.312352\pi\)
0.555958 + 0.831210i \(0.312352\pi\)
\(654\) −3.42670e6 −0.313279
\(655\) −3.65499e6 −0.332877
\(656\) 731136. 0.0663344
\(657\) 2.86529e6 0.258974
\(658\) −3.60091e6 −0.324226
\(659\) 5.91457e6 0.530530 0.265265 0.964176i \(-0.414541\pi\)
0.265265 + 0.964176i \(0.414541\pi\)
\(660\) 2.97792e6 0.266105
\(661\) 1.41779e7 1.26214 0.631072 0.775724i \(-0.282615\pi\)
0.631072 + 0.775724i \(0.282615\pi\)
\(662\) 5.64818e6 0.500914
\(663\) 1.25481e7 1.10865
\(664\) 1.72467e6 0.151805
\(665\) 5.70046e6 0.499869
\(666\) 2.09887e6 0.183358
\(667\) −4.30066e6 −0.374301
\(668\) 8.75091e6 0.758774
\(669\) −1.50430e6 −0.129948
\(670\) −9.56173e6 −0.822904
\(671\) −9.18474e6 −0.787518
\(672\) −451584. −0.0385758
\(673\) 1.34245e7 1.14251 0.571256 0.820772i \(-0.306456\pi\)
0.571256 + 0.820772i \(0.306456\pi\)
\(674\) 2.53865e6 0.215255
\(675\) 866781. 0.0732234
\(676\) 1.55147e7 1.30580
\(677\) −8.67312e6 −0.727283 −0.363642 0.931539i \(-0.618467\pi\)
−0.363642 + 0.931539i \(0.618467\pi\)
\(678\) −9.40111e6 −0.785425
\(679\) −3.77957e6 −0.314606
\(680\) −3.39046e6 −0.281182
\(681\) −3.74155e6 −0.309161
\(682\) 1.05581e7 0.869209
\(683\) 1.49777e7 1.22855 0.614275 0.789092i \(-0.289448\pi\)
0.614275 + 0.789092i \(0.289448\pi\)
\(684\) −3.42662e6 −0.280044
\(685\) 7.13918e6 0.581329
\(686\) 470596. 0.0381802
\(687\) −4.26134e6 −0.344472
\(688\) −3.45395e6 −0.278192
\(689\) 5.06509e6 0.406480
\(690\) −1.88496e6 −0.150723
\(691\) −8.76742e6 −0.698517 −0.349258 0.937026i \(-0.613566\pi\)
−0.349258 + 0.937026i \(0.613566\pi\)
\(692\) −5.87354e6 −0.466267
\(693\) 1.86543e6 0.147552
\(694\) −1.23177e7 −0.970802
\(695\) −2.58914e6 −0.203326
\(696\) 2.08166e6 0.162887
\(697\) 3.43862e6 0.268104
\(698\) 1.04269e7 0.810056
\(699\) 1.40089e7 1.08445
\(700\) 932176. 0.0719040
\(701\) −1.99459e7 −1.53306 −0.766529 0.642209i \(-0.778018\pi\)
−0.766529 + 0.642209i \(0.778018\pi\)
\(702\) −3.37673e6 −0.258615
\(703\) 1.71278e7 1.30712
\(704\) −1.92512e6 −0.146395
\(705\) 7.27531e6 0.551288
\(706\) 252528. 0.0190677
\(707\) −4.87374e6 −0.366702
\(708\) −4.35571e6 −0.326570
\(709\) −2.66387e7 −1.99020 −0.995100 0.0988699i \(-0.968477\pi\)
−0.995100 + 0.0988699i \(0.968477\pi\)
\(710\) 1.88848e6 0.140594
\(711\) −4.04644e6 −0.300192
\(712\) −6.44966e6 −0.476801
\(713\) −6.68304e6 −0.492323
\(714\) −2.12386e6 −0.155912
\(715\) 2.39474e7 1.75184
\(716\) −1.42224e6 −0.103679
\(717\) −5.90301e6 −0.428821
\(718\) −1.91708e6 −0.138781
\(719\) −1.17408e6 −0.0846985 −0.0423492 0.999103i \(-0.513484\pi\)
−0.0423492 + 0.999103i \(0.513484\pi\)
\(720\) 912384. 0.0655913
\(721\) −3.28026e6 −0.235001
\(722\) −1.80585e7 −1.28926
\(723\) 8.00527e6 0.569548
\(724\) −1.25139e7 −0.887250
\(725\) −4.29705e6 −0.303616
\(726\) 2.15456e6 0.151711
\(727\) 1.05734e7 0.741957 0.370979 0.928641i \(-0.379022\pi\)
0.370979 + 0.928641i \(0.379022\pi\)
\(728\) −3.63149e6 −0.253955
\(729\) 531441. 0.0370370
\(730\) −6.22582e6 −0.432404
\(731\) −1.62444e7 −1.12437
\(732\) −2.81405e6 −0.194113
\(733\) 2.31670e7 1.59261 0.796306 0.604894i \(-0.206785\pi\)
0.796306 + 0.604894i \(0.206785\pi\)
\(734\) 5.33805e6 0.365715
\(735\) −950796. −0.0649186
\(736\) 1.21856e6 0.0829187
\(737\) −2.55342e7 −1.73162
\(738\) −925344. −0.0625406
\(739\) −1.55334e7 −1.04630 −0.523148 0.852242i \(-0.675243\pi\)
−0.523148 + 0.852242i \(0.675243\pi\)
\(740\) −4.56051e6 −0.306150
\(741\) −2.75558e7 −1.84360
\(742\) −857304. −0.0571643
\(743\) 2.54630e7 1.69215 0.846074 0.533066i \(-0.178960\pi\)
0.846074 + 0.533066i \(0.178960\pi\)
\(744\) 3.23482e6 0.214248
\(745\) 1.89507e7 1.25094
\(746\) 6.79038e6 0.446732
\(747\) −2.18279e6 −0.143123
\(748\) −9.05408e6 −0.591685
\(749\) 1.11817e7 0.728288
\(750\) −6.83338e6 −0.443590
\(751\) 9.88512e6 0.639561 0.319781 0.947492i \(-0.396391\pi\)
0.319781 + 0.947492i \(0.396391\pi\)
\(752\) −4.70323e6 −0.303286
\(753\) −1.18649e6 −0.0762563
\(754\) 1.67400e7 1.07233
\(755\) −2.20412e7 −1.40724
\(756\) 571536. 0.0363696
\(757\) −6.41980e6 −0.407176 −0.203588 0.979057i \(-0.565260\pi\)
−0.203588 + 0.979057i \(0.565260\pi\)
\(758\) −1.00430e7 −0.634876
\(759\) −5.03370e6 −0.317163
\(760\) 7.44550e6 0.467585
\(761\) −5.05052e6 −0.316136 −0.158068 0.987428i \(-0.550527\pi\)
−0.158068 + 0.987428i \(0.550527\pi\)
\(762\) −6.03547e6 −0.376551
\(763\) 4.66411e6 0.290040
\(764\) 1.22136e7 0.757025
\(765\) 4.29106e6 0.265101
\(766\) −2.23658e6 −0.137725
\(767\) −3.50272e7 −2.14989
\(768\) −589824. −0.0360844
\(769\) 2.28169e6 0.139136 0.0695682 0.997577i \(-0.477838\pi\)
0.0695682 + 0.997577i \(0.477838\pi\)
\(770\) −4.05328e6 −0.246365
\(771\) 1.31833e7 0.798711
\(772\) −6.03203e6 −0.364267
\(773\) 2.73777e7 1.64797 0.823984 0.566613i \(-0.191746\pi\)
0.823984 + 0.566613i \(0.191746\pi\)
\(774\) 4.37141e6 0.262282
\(775\) −6.67742e6 −0.399351
\(776\) −4.93658e6 −0.294287
\(777\) −2.85680e6 −0.169757
\(778\) −1.80422e7 −1.06866
\(779\) −7.55126e6 −0.445837
\(780\) 7.33709e6 0.431805
\(781\) 5.04310e6 0.295849
\(782\) 5.73104e6 0.335133
\(783\) −2.63461e6 −0.153572
\(784\) 614656. 0.0357143
\(785\) −1.23314e7 −0.714227
\(786\) −2.99045e6 −0.172655
\(787\) 2.04263e7 1.17558 0.587791 0.809013i \(-0.299998\pi\)
0.587791 + 0.809013i \(0.299998\pi\)
\(788\) −1.09885e6 −0.0630409
\(789\) −1.33172e7 −0.761589
\(790\) 8.79226e6 0.501225
\(791\) 1.27960e7 0.727163
\(792\) 2.43648e6 0.138023
\(793\) −2.26296e7 −1.27789
\(794\) −2.07945e7 −1.17057
\(795\) 1.73210e6 0.0971977
\(796\) 2.92122e6 0.163411
\(797\) 2.31557e7 1.29126 0.645628 0.763652i \(-0.276596\pi\)
0.645628 + 0.763652i \(0.276596\pi\)
\(798\) 4.66402e6 0.259270
\(799\) −2.21199e7 −1.22579
\(800\) 1.21754e6 0.0672600
\(801\) 8.16286e6 0.449532
\(802\) 2.53926e7 1.39403
\(803\) −1.66258e7 −0.909899
\(804\) −7.82323e6 −0.426821
\(805\) 2.56564e6 0.139542
\(806\) 2.60133e7 1.41045
\(807\) 1.69067e6 0.0913849
\(808\) −6.36570e6 −0.343018
\(809\) 1.14894e7 0.617203 0.308601 0.951191i \(-0.400139\pi\)
0.308601 + 0.951191i \(0.400139\pi\)
\(810\) −1.15474e6 −0.0618401
\(811\) 1.72443e7 0.920648 0.460324 0.887751i \(-0.347733\pi\)
0.460324 + 0.887751i \(0.347733\pi\)
\(812\) −2.83338e6 −0.150804
\(813\) −1.74420e6 −0.0925486
\(814\) −1.21786e7 −0.644225
\(815\) −5.28070e6 −0.278482
\(816\) −2.77402e6 −0.145842
\(817\) 3.56728e7 1.86975
\(818\) 726568. 0.0379658
\(819\) 4.59610e6 0.239431
\(820\) 2.01062e6 0.104423
\(821\) 1.37077e6 0.0709752 0.0354876 0.999370i \(-0.488702\pi\)
0.0354876 + 0.999370i \(0.488702\pi\)
\(822\) 5.84114e6 0.301522
\(823\) 8.56851e6 0.440967 0.220483 0.975391i \(-0.429237\pi\)
0.220483 + 0.975391i \(0.429237\pi\)
\(824\) −4.28442e6 −0.219823
\(825\) −5.02947e6 −0.257269
\(826\) 5.92861e6 0.302345
\(827\) −1.33258e6 −0.0677533 −0.0338766 0.999426i \(-0.510785\pi\)
−0.0338766 + 0.999426i \(0.510785\pi\)
\(828\) −1.54224e6 −0.0781765
\(829\) 6.25659e6 0.316193 0.158096 0.987424i \(-0.449464\pi\)
0.158096 + 0.987424i \(0.449464\pi\)
\(830\) 4.74285e6 0.238970
\(831\) 5.55356e6 0.278977
\(832\) −4.74317e6 −0.237553
\(833\) 2.89080e6 0.144346
\(834\) −2.11838e6 −0.105460
\(835\) 2.40650e7 1.19446
\(836\) 1.98829e7 0.983929
\(837\) −4.09406e6 −0.201995
\(838\) 2.25080e7 1.10720
\(839\) −1.61258e6 −0.0790891 −0.0395445 0.999218i \(-0.512591\pi\)
−0.0395445 + 0.999218i \(0.512591\pi\)
\(840\) −1.24186e6 −0.0607258
\(841\) −7.45015e6 −0.363225
\(842\) 1.77068e7 0.860718
\(843\) 1.55816e7 0.755168
\(844\) 3.72243e6 0.179875
\(845\) 4.26655e7 2.05558
\(846\) 5.95253e6 0.285940
\(847\) −2.93260e6 −0.140457
\(848\) −1.11974e6 −0.0534723
\(849\) −3.20418e6 −0.152562
\(850\) 5.72622e6 0.271845
\(851\) 7.70882e6 0.364892
\(852\) 1.54512e6 0.0729228
\(853\) −3.44919e7 −1.62310 −0.811548 0.584286i \(-0.801375\pi\)
−0.811548 + 0.584286i \(0.801375\pi\)
\(854\) 3.83023e6 0.179713
\(855\) −9.42322e6 −0.440843
\(856\) 1.46047e7 0.681251
\(857\) −1.85487e7 −0.862704 −0.431352 0.902184i \(-0.641963\pi\)
−0.431352 + 0.902184i \(0.641963\pi\)
\(858\) 1.95934e7 0.908638
\(859\) −2.56435e7 −1.18575 −0.592877 0.805293i \(-0.702008\pi\)
−0.592877 + 0.805293i \(0.702008\pi\)
\(860\) −9.49837e6 −0.437928
\(861\) 1.25950e6 0.0579014
\(862\) 5.76650e6 0.264329
\(863\) −2.49899e7 −1.14219 −0.571093 0.820885i \(-0.693481\pi\)
−0.571093 + 0.820885i \(0.693481\pi\)
\(864\) 746496. 0.0340207
\(865\) −1.61522e7 −0.733993
\(866\) 1.55865e7 0.706241
\(867\) −267831. −0.0121008
\(868\) −4.40294e6 −0.198355
\(869\) 2.34793e7 1.05472
\(870\) 5.72458e6 0.256416
\(871\) −6.29118e7 −2.80987
\(872\) 6.09190e6 0.271308
\(873\) 6.24785e6 0.277457
\(874\) −1.25854e7 −0.557301
\(875\) 9.30098e6 0.410685
\(876\) −5.09386e6 −0.224278
\(877\) −3.46337e7 −1.52055 −0.760274 0.649602i \(-0.774935\pi\)
−0.760274 + 0.649602i \(0.774935\pi\)
\(878\) −2.04483e7 −0.895201
\(879\) −4.82998e6 −0.210850
\(880\) −5.29408e6 −0.230454
\(881\) 2.92434e7 1.26937 0.634685 0.772771i \(-0.281130\pi\)
0.634685 + 0.772771i \(0.281130\pi\)
\(882\) −777924. −0.0336718
\(883\) −3.76532e7 −1.62518 −0.812588 0.582839i \(-0.801942\pi\)
−0.812588 + 0.582839i \(0.801942\pi\)
\(884\) −2.23077e7 −0.960117
\(885\) −1.19782e7 −0.514084
\(886\) −2.17628e7 −0.931388
\(887\) −2.08201e6 −0.0888534 −0.0444267 0.999013i \(-0.514146\pi\)
−0.0444267 + 0.999013i \(0.514146\pi\)
\(888\) −3.73133e6 −0.158793
\(889\) 8.21495e6 0.348618
\(890\) −1.77366e7 −0.750576
\(891\) −3.08367e6 −0.130129
\(892\) 2.67430e6 0.112538
\(893\) 4.85756e7 2.03840
\(894\) 1.55051e7 0.648831
\(895\) −3.91116e6 −0.163210
\(896\) 802816. 0.0334077
\(897\) −1.24022e7 −0.514656
\(898\) 5.26098e6 0.217709
\(899\) 2.02962e7 0.837560
\(900\) −1.54094e6 −0.0634133
\(901\) −5.26630e6 −0.216119
\(902\) 5.36928e6 0.219735
\(903\) −5.94997e6 −0.242826
\(904\) 1.67131e7 0.680198
\(905\) −3.44132e7 −1.39670
\(906\) −1.80337e7 −0.729901
\(907\) 1.62350e7 0.655291 0.327645 0.944801i \(-0.393745\pi\)
0.327645 + 0.944801i \(0.393745\pi\)
\(908\) 6.65165e6 0.267741
\(909\) 8.05658e6 0.323401
\(910\) −9.98659e6 −0.399773
\(911\) −2.58656e7 −1.03259 −0.516294 0.856412i \(-0.672689\pi\)
−0.516294 + 0.856412i \(0.672689\pi\)
\(912\) 6.09178e6 0.242525
\(913\) 1.26656e7 0.502860
\(914\) −1.11042e7 −0.439664
\(915\) −7.73863e6 −0.305571
\(916\) 7.57571e6 0.298322
\(917\) 4.07033e6 0.159848
\(918\) 3.51086e6 0.137501
\(919\) −1.23266e7 −0.481453 −0.240726 0.970593i \(-0.577386\pi\)
−0.240726 + 0.970593i \(0.577386\pi\)
\(920\) 3.35104e6 0.130530
\(921\) 2.59558e7 1.00829
\(922\) −552320. −0.0213975
\(923\) 1.24253e7 0.480069
\(924\) −3.31632e6 −0.127784
\(925\) 7.70234e6 0.295984
\(926\) 1.45630e6 0.0558116
\(927\) 5.42246e6 0.207251
\(928\) −3.70074e6 −0.141065
\(929\) −4.15128e7 −1.57813 −0.789064 0.614310i \(-0.789434\pi\)
−0.789064 + 0.614310i \(0.789434\pi\)
\(930\) 8.89574e6 0.337268
\(931\) −6.34824e6 −0.240038
\(932\) −2.49047e7 −0.939166
\(933\) 9.26622e6 0.348497
\(934\) 2.29559e7 0.861046
\(935\) −2.48987e7 −0.931425
\(936\) 6.00307e6 0.223967
\(937\) 2.26895e7 0.844260 0.422130 0.906535i \(-0.361283\pi\)
0.422130 + 0.906535i \(0.361283\pi\)
\(938\) 1.06483e7 0.395160
\(939\) −1.25367e7 −0.464002
\(940\) −1.29339e7 −0.477430
\(941\) 1.58213e7 0.582464 0.291232 0.956652i \(-0.405935\pi\)
0.291232 + 0.956652i \(0.405935\pi\)
\(942\) −1.00893e7 −0.370453
\(943\) −3.39864e6 −0.124459
\(944\) 7.74349e6 0.282818
\(945\) 1.57172e6 0.0572528
\(946\) −2.53650e7 −0.921523
\(947\) 5.17579e7 1.87543 0.937716 0.347402i \(-0.112936\pi\)
0.937716 + 0.347402i \(0.112936\pi\)
\(948\) 7.19366e6 0.259974
\(949\) −4.09631e7 −1.47648
\(950\) −1.25749e7 −0.452058
\(951\) 7.02027e6 0.251711
\(952\) 3.77574e6 0.135024
\(953\) 2.29818e7 0.819695 0.409848 0.912154i \(-0.365582\pi\)
0.409848 + 0.912154i \(0.365582\pi\)
\(954\) 1.41718e6 0.0504142
\(955\) 3.35874e7 1.19170
\(956\) 1.04942e7 0.371370
\(957\) 1.52872e7 0.539571
\(958\) −2.20798e7 −0.777288
\(959\) −7.95045e6 −0.279155
\(960\) −1.62202e6 −0.0568038
\(961\) 2.91030e6 0.101655
\(962\) −3.00061e7 −1.04537
\(963\) −1.84840e7 −0.642290
\(964\) −1.42316e7 −0.493243
\(965\) −1.65881e7 −0.573427
\(966\) 2.09916e6 0.0723774
\(967\) 3.20783e7 1.10318 0.551588 0.834117i \(-0.314022\pi\)
0.551588 + 0.834117i \(0.314022\pi\)
\(968\) −3.83034e6 −0.131386
\(969\) 2.86504e7 0.980214
\(970\) −1.35756e7 −0.463265
\(971\) 7.31101e6 0.248845 0.124423 0.992229i \(-0.460292\pi\)
0.124423 + 0.992229i \(0.460292\pi\)
\(972\) −944784. −0.0320750
\(973\) 2.88336e6 0.0976374
\(974\) −1.69209e7 −0.571513
\(975\) −1.23918e7 −0.417466
\(976\) 5.00275e6 0.168106
\(977\) 7.58600e6 0.254259 0.127129 0.991886i \(-0.459424\pi\)
0.127129 + 0.991886i \(0.459424\pi\)
\(978\) −4.32058e6 −0.144442
\(979\) −4.73647e7 −1.57942
\(980\) 1.69030e6 0.0562211
\(981\) −7.71007e6 −0.255791
\(982\) 2.88569e7 0.954929
\(983\) −2.47823e7 −0.818007 −0.409004 0.912533i \(-0.634124\pi\)
−0.409004 + 0.912533i \(0.634124\pi\)
\(984\) 1.64506e6 0.0541618
\(985\) −3.02183e6 −0.0992384
\(986\) −1.74050e7 −0.570141
\(987\) −8.10205e6 −0.264729
\(988\) 4.89880e7 1.59661
\(989\) 1.60555e7 0.521954
\(990\) 6.70032e6 0.217274
\(991\) −7.63530e6 −0.246969 −0.123484 0.992347i \(-0.539407\pi\)
−0.123484 + 0.992347i \(0.539407\pi\)
\(992\) −5.75078e6 −0.185544
\(993\) 1.27084e7 0.408995
\(994\) −2.10308e6 −0.0675134
\(995\) 8.03334e6 0.257240
\(996\) 3.88051e6 0.123948
\(997\) −2.89785e7 −0.923289 −0.461644 0.887065i \(-0.652740\pi\)
−0.461644 + 0.887065i \(0.652740\pi\)
\(998\) 899216. 0.0285784
\(999\) 4.72246e6 0.149711
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.6.a.b.1.1 1
3.2 odd 2 126.6.a.h.1.1 1
4.3 odd 2 336.6.a.o.1.1 1
5.2 odd 4 1050.6.g.l.799.1 2
5.3 odd 4 1050.6.g.l.799.2 2
5.4 even 2 1050.6.a.o.1.1 1
7.2 even 3 294.6.e.o.67.1 2
7.3 odd 6 294.6.e.k.79.1 2
7.4 even 3 294.6.e.o.79.1 2
7.5 odd 6 294.6.e.k.67.1 2
7.6 odd 2 294.6.a.f.1.1 1
12.11 even 2 1008.6.a.g.1.1 1
21.20 even 2 882.6.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.b.1.1 1 1.1 even 1 trivial
126.6.a.h.1.1 1 3.2 odd 2
294.6.a.f.1.1 1 7.6 odd 2
294.6.e.k.67.1 2 7.5 odd 6
294.6.e.k.79.1 2 7.3 odd 6
294.6.e.o.67.1 2 7.2 even 3
294.6.e.o.79.1 2 7.4 even 3
336.6.a.o.1.1 1 4.3 odd 2
882.6.a.v.1.1 1 21.20 even 2
1008.6.a.g.1.1 1 12.11 even 2
1050.6.a.o.1.1 1 5.4 even 2
1050.6.g.l.799.1 2 5.2 odd 4
1050.6.g.l.799.2 2 5.3 odd 4