Properties

Label 2940.2.q.g.361.1
Level $2940$
Weight $2$
Character 2940.361
Analytic conductor $23.476$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2940,2,Mod(361,2940)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2940, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2940.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2940.361
Dual form 2940.2.q.g.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{9} +(1.00000 - 1.73205i) q^{11} -4.00000 q^{13} -1.00000 q^{15} +(1.00000 - 1.73205i) q^{17} +(1.00000 + 1.73205i) q^{19} +(-2.00000 - 3.46410i) q^{23} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} +6.00000 q^{29} +(-1.00000 + 1.73205i) q^{31} +(1.00000 + 1.73205i) q^{33} +(-5.00000 - 8.66025i) q^{37} +(2.00000 - 3.46410i) q^{39} +10.0000 q^{41} +12.0000 q^{43} +(0.500000 - 0.866025i) q^{45} +(-4.00000 - 6.92820i) q^{47} +(1.00000 + 1.73205i) q^{51} +2.00000 q^{55} -2.00000 q^{57} +(-4.00000 + 6.92820i) q^{59} +(-1.00000 - 1.73205i) q^{61} +(-2.00000 - 3.46410i) q^{65} +(6.00000 - 10.3923i) q^{67} +4.00000 q^{69} -10.0000 q^{71} +(2.00000 - 3.46410i) q^{73} +(-0.500000 - 0.866025i) q^{75} +(-0.500000 + 0.866025i) q^{81} +12.0000 q^{83} +2.00000 q^{85} +(-3.00000 + 5.19615i) q^{87} +(1.00000 + 1.73205i) q^{89} +(-1.00000 - 1.73205i) q^{93} +(-1.00000 + 1.73205i) q^{95} +8.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + q^{5} - q^{9} + 2 q^{11} - 8 q^{13} - 2 q^{15} + 2 q^{17} + 2 q^{19} - 4 q^{23} - q^{25} + 2 q^{27} + 12 q^{29} - 2 q^{31} + 2 q^{33} - 10 q^{37} + 4 q^{39} + 20 q^{41} + 24 q^{43} + q^{45} - 8 q^{47} + 2 q^{51} + 4 q^{55} - 4 q^{57} - 8 q^{59} - 2 q^{61} - 4 q^{65} + 12 q^{67} + 8 q^{69} - 20 q^{71} + 4 q^{73} - q^{75} - q^{81} + 24 q^{83} + 4 q^{85} - 6 q^{87} + 2 q^{89} - 2 q^{93} - 2 q^{95} + 16 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 0 0
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 8.66025i −0.821995 1.42374i −0.904194 0.427121i \(-0.859528\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) 0 0
\(39\) 2.00000 3.46410i 0.320256 0.554700i
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.00000 + 1.73205i 0.140028 + 0.242536i
\(52\) 0 0
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) −4.00000 + 6.92820i −0.520756 + 0.901975i 0.478953 + 0.877841i \(0.341016\pi\)
−0.999709 + 0.0241347i \(0.992317\pi\)
\(60\) 0 0
\(61\) −1.00000 1.73205i −0.128037 0.221766i 0.794879 0.606768i \(-0.207534\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 6.00000 10.3923i 0.733017 1.26962i −0.222571 0.974916i \(-0.571445\pi\)
0.955588 0.294706i \(-0.0952216\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) 2.00000 3.46410i 0.234082 0.405442i −0.724923 0.688830i \(-0.758125\pi\)
0.959006 + 0.283387i \(0.0914581\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) −3.00000 + 5.19615i −0.321634 + 0.557086i
\(88\) 0 0
\(89\) 1.00000 + 1.73205i 0.106000 + 0.183597i 0.914146 0.405385i \(-0.132862\pi\)
−0.808146 + 0.588982i \(0.799529\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.00000 1.73205i −0.103695 0.179605i
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.00000 3.46410i −0.193347 0.334887i 0.753010 0.658009i \(-0.228601\pi\)
−0.946357 + 0.323122i \(0.895268\pi\)
\(108\) 0 0
\(109\) 7.00000 12.1244i 0.670478 1.16130i −0.307290 0.951616i \(-0.599422\pi\)
0.977769 0.209687i \(-0.0672444\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) 2.00000 3.46410i 0.186501 0.323029i
\(116\) 0 0
\(117\) 2.00000 + 3.46410i 0.184900 + 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) −5.00000 + 8.66025i −0.450835 + 0.780869i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −6.00000 + 10.3923i −0.528271 + 0.914991i
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.500000 + 0.866025i 0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) 4.00000 6.92820i 0.341743 0.591916i −0.643013 0.765855i \(-0.722316\pi\)
0.984757 + 0.173939i \(0.0556494\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) −4.00000 + 6.92820i −0.334497 + 0.579365i
\(144\) 0 0
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) 0 0
\(151\) 2.00000 3.46410i 0.162758 0.281905i −0.773099 0.634285i \(-0.781294\pi\)
0.935857 + 0.352381i \(0.114628\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 4.00000 6.92820i 0.319235 0.552931i −0.661094 0.750303i \(-0.729907\pi\)
0.980329 + 0.197372i \(0.0632408\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 10.3923i −0.469956 0.813988i 0.529454 0.848339i \(-0.322397\pi\)
−0.999410 + 0.0343508i \(0.989064\pi\)
\(164\) 0 0
\(165\) −1.00000 + 1.73205i −0.0778499 + 0.134840i
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 1.00000 1.73205i 0.0764719 0.132453i
\(172\) 0 0
\(173\) 1.00000 + 1.73205i 0.0760286 + 0.131685i 0.901533 0.432710i \(-0.142443\pi\)
−0.825505 + 0.564396i \(0.809109\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.00000 6.92820i −0.300658 0.520756i
\(178\) 0 0
\(179\) −11.0000 + 19.0526i −0.822179 + 1.42406i 0.0818780 + 0.996642i \(0.473908\pi\)
−0.904057 + 0.427413i \(0.859425\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 5.00000 8.66025i 0.367607 0.636715i
\(186\) 0 0
\(187\) −2.00000 3.46410i −0.146254 0.253320i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.0000 + 19.0526i 0.795932 + 1.37859i 0.922246 + 0.386604i \(0.126352\pi\)
−0.126314 + 0.991990i \(0.540315\pi\)
\(192\) 0 0
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −5.00000 + 8.66025i −0.354441 + 0.613909i −0.987022 0.160585i \(-0.948662\pi\)
0.632581 + 0.774494i \(0.281995\pi\)
\(200\) 0 0
\(201\) 6.00000 + 10.3923i 0.423207 + 0.733017i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.00000 + 8.66025i 0.349215 + 0.604858i
\(206\) 0 0
\(207\) −2.00000 + 3.46410i −0.139010 + 0.240772i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 5.00000 8.66025i 0.342594 0.593391i
\(214\) 0 0
\(215\) 6.00000 + 10.3923i 0.409197 + 0.708749i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 + 3.46410i 0.135147 + 0.234082i
\(220\) 0 0
\(221\) −4.00000 + 6.92820i −0.269069 + 0.466041i
\(222\) 0 0
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) −13.0000 22.5167i −0.859064 1.48794i −0.872823 0.488037i \(-0.837713\pi\)
0.0137585 0.999905i \(-0.495620\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 3.46410i −0.131024 0.226941i 0.793047 0.609160i \(-0.208493\pi\)
−0.924072 + 0.382219i \(0.875160\pi\)
\(234\) 0 0
\(235\) 4.00000 6.92820i 0.260931 0.451946i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.0000 0.905585 0.452792 0.891616i \(-0.350428\pi\)
0.452792 + 0.891616i \(0.350428\pi\)
\(240\) 0 0
\(241\) 15.0000 25.9808i 0.966235 1.67357i 0.259975 0.965615i \(-0.416286\pi\)
0.706260 0.707953i \(-0.250381\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 6.92820i −0.254514 0.440831i
\(248\) 0 0
\(249\) −6.00000 + 10.3923i −0.380235 + 0.658586i
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) −1.00000 + 1.73205i −0.0626224 + 0.108465i
\(256\) 0 0
\(257\) 7.00000 + 12.1244i 0.436648 + 0.756297i 0.997429 0.0716680i \(-0.0228322\pi\)
−0.560781 + 0.827964i \(0.689499\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.00000 5.19615i −0.185695 0.321634i
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) 0 0
\(269\) 9.00000 15.5885i 0.548740 0.950445i −0.449622 0.893219i \(-0.648441\pi\)
0.998361 0.0572259i \(-0.0182255\pi\)
\(270\) 0 0
\(271\) −3.00000 5.19615i −0.182237 0.315644i 0.760405 0.649449i \(-0.225000\pi\)
−0.942642 + 0.333805i \(0.891667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 + 1.73205i 0.0603023 + 0.104447i
\(276\) 0 0
\(277\) 11.0000 19.0526i 0.660926 1.14476i −0.319447 0.947604i \(-0.603497\pi\)
0.980373 0.197153i \(-0.0631696\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −26.0000 −1.55103 −0.775515 0.631329i \(-0.782510\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) −1.00000 1.73205i −0.0592349 0.102598i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) −4.00000 + 6.92820i −0.234484 + 0.406138i
\(292\) 0 0
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) 0 0
\(299\) 8.00000 + 13.8564i 0.462652 + 0.801337i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.00000 5.19615i −0.172345 0.298511i
\(304\) 0 0
\(305\) 1.00000 1.73205i 0.0572598 0.0991769i
\(306\) 0 0
\(307\) −32.0000 −1.82634 −0.913168 0.407583i \(-0.866372\pi\)
−0.913168 + 0.407583i \(0.866372\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 4.00000 6.92820i 0.226819 0.392862i −0.730044 0.683400i \(-0.760501\pi\)
0.956864 + 0.290537i \(0.0938340\pi\)
\(312\) 0 0
\(313\) −4.00000 6.92820i −0.226093 0.391605i 0.730554 0.682855i \(-0.239262\pi\)
−0.956647 + 0.291250i \(0.905929\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.0000 27.7128i −0.898650 1.55651i −0.829222 0.558920i \(-0.811216\pi\)
−0.0694277 0.997587i \(-0.522117\pi\)
\(318\) 0 0
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 0 0
\(327\) 7.00000 + 12.1244i 0.387101 + 0.670478i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) −5.00000 + 8.66025i −0.273998 + 0.474579i
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −2.00000 + 3.46410i −0.108625 + 0.188144i
\(340\) 0 0
\(341\) 2.00000 + 3.46410i 0.108306 + 0.187592i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.00000 + 3.46410i 0.107676 + 0.186501i
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −15.0000 + 25.9808i −0.798369 + 1.38282i 0.122308 + 0.992492i \(0.460970\pi\)
−0.920677 + 0.390324i \(0.872363\pi\)
\(354\) 0 0
\(355\) −5.00000 8.66025i −0.265372 0.459639i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.00000 8.66025i −0.263890 0.457071i 0.703382 0.710812i \(-0.251672\pi\)
−0.967272 + 0.253741i \(0.918339\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −10.0000 + 17.3205i −0.521996 + 0.904123i 0.477677 + 0.878536i \(0.341479\pi\)
−0.999673 + 0.0255875i \(0.991854\pi\)
\(368\) 0 0
\(369\) −5.00000 8.66025i −0.260290 0.450835i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 17.0000 + 29.4449i 0.880227 + 1.52460i 0.851089 + 0.525022i \(0.175943\pi\)
0.0291379 + 0.999575i \(0.490724\pi\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.0000 20.7846i −0.613171 1.06204i −0.990702 0.136047i \(-0.956560\pi\)
0.377531 0.925997i \(-0.376773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) 0 0
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −10.0000 17.3205i −0.501886 0.869291i −0.999998 0.00217869i \(-0.999307\pi\)
0.498112 0.867113i \(-0.334027\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000 + 25.9808i 0.749064 + 1.29742i 0.948272 + 0.317460i \(0.102830\pi\)
−0.199207 + 0.979957i \(0.563837\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) −7.00000 + 12.1244i −0.346128 + 0.599511i −0.985558 0.169338i \(-0.945837\pi\)
0.639430 + 0.768849i \(0.279170\pi\)
\(410\) 0 0
\(411\) 4.00000 + 6.92820i 0.197305 + 0.341743i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 + 10.3923i 0.294528 + 0.510138i
\(416\) 0 0
\(417\) 1.00000 1.73205i 0.0489702 0.0848189i
\(418\) 0 0
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) 0 0
\(423\) −4.00000 + 6.92820i −0.194487 + 0.336861i
\(424\) 0 0
\(425\) 1.00000 + 1.73205i 0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.00000 6.92820i −0.193122 0.334497i
\(430\) 0 0
\(431\) −15.0000 + 25.9808i −0.722525 + 1.25145i 0.237460 + 0.971397i \(0.423685\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) −6.00000 −0.287678
\(436\) 0 0
\(437\) 4.00000 6.92820i 0.191346 0.331421i
\(438\) 0 0
\(439\) −5.00000 8.66025i −0.238637 0.413331i 0.721686 0.692220i \(-0.243367\pi\)
−0.960323 + 0.278889i \(0.910034\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.00000 + 13.8564i 0.380091 + 0.658338i 0.991075 0.133306i \(-0.0425592\pi\)
−0.610984 + 0.791643i \(0.709226\pi\)
\(444\) 0 0
\(445\) −1.00000 + 1.73205i −0.0474045 + 0.0821071i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 10.0000 17.3205i 0.470882 0.815591i
\(452\) 0 0
\(453\) 2.00000 + 3.46410i 0.0939682 + 0.162758i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 19.0526i −0.514558 0.891241i −0.999857 0.0168929i \(-0.994623\pi\)
0.485299 0.874348i \(-0.338711\pi\)
\(458\) 0 0
\(459\) 1.00000 1.73205i 0.0466760 0.0808452i
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 1.00000 1.73205i 0.0463739 0.0803219i
\(466\) 0 0
\(467\) −10.0000 17.3205i −0.462745 0.801498i 0.536352 0.843995i \(-0.319802\pi\)
−0.999097 + 0.0424970i \(0.986469\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 + 6.92820i 0.184310 + 0.319235i
\(472\) 0 0
\(473\) 12.0000 20.7846i 0.551761 0.955677i
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) 20.0000 + 34.6410i 0.911922 + 1.57949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.00000 + 6.92820i 0.181631 + 0.314594i
\(486\) 0 0
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0 0
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) 0 0
\(493\) 6.00000 10.3923i 0.270226 0.468046i
\(494\) 0 0
\(495\) −1.00000 1.73205i −0.0449467 0.0778499i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.0000 34.6410i −0.895323 1.55074i −0.833404 0.552664i \(-0.813611\pi\)
−0.0619186 0.998081i \(-0.519722\pi\)
\(500\) 0 0
\(501\) −8.00000 + 13.8564i −0.357414 + 0.619059i
\(502\) 0 0
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −1.50000 + 2.59808i −0.0666173 + 0.115385i
\(508\) 0 0
\(509\) −11.0000 19.0526i −0.487566 0.844490i 0.512331 0.858788i \(-0.328782\pi\)
−0.999898 + 0.0142980i \(0.995449\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.00000 + 1.73205i 0.0441511 + 0.0764719i
\(514\) 0 0
\(515\) −4.00000 + 6.92820i −0.176261 + 0.305293i
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) 15.0000 25.9808i 0.657162 1.13824i −0.324185 0.945994i \(-0.605090\pi\)
0.981347 0.192244i \(-0.0615766\pi\)
\(522\) 0 0
\(523\) −20.0000 34.6410i −0.874539 1.51475i −0.857253 0.514895i \(-0.827831\pi\)
−0.0172859 0.999851i \(-0.505503\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.00000 + 3.46410i 0.0871214 + 0.150899i
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) −40.0000 −1.73259
\(534\) 0 0
\(535\) 2.00000 3.46410i 0.0864675 0.149766i
\(536\) 0 0
\(537\) −11.0000 19.0526i −0.474685 0.822179i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) 0 0
\(543\) −11.0000 + 19.0526i −0.472055 + 0.817624i
\(544\) 0 0
\(545\) 14.0000 0.599694
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) 0 0
\(551\) 6.00000 + 10.3923i 0.255609 + 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.00000 + 8.66025i 0.212238 + 0.367607i
\(556\) 0 0
\(557\) −20.0000 + 34.6410i −0.847427 + 1.46779i 0.0360693 + 0.999349i \(0.488516\pi\)
−0.883497 + 0.468438i \(0.844817\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −6.00000 + 10.3923i −0.252870 + 0.437983i −0.964315 0.264758i \(-0.914708\pi\)
0.711445 + 0.702742i \(0.248041\pi\)
\(564\) 0 0
\(565\) 2.00000 + 3.46410i 0.0841406 + 0.145736i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −8.00000 + 13.8564i −0.334790 + 0.579873i −0.983444 0.181210i \(-0.941999\pi\)
0.648655 + 0.761083i \(0.275332\pi\)
\(572\) 0 0
\(573\) −22.0000 −0.919063
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 16.0000 27.7128i 0.666089 1.15370i −0.312900 0.949786i \(-0.601301\pi\)
0.978989 0.203913i \(-0.0653661\pi\)
\(578\) 0 0
\(579\) 7.00000 + 12.1244i 0.290910 + 0.503871i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.00000 + 3.46410i −0.0826898 + 0.143223i
\(586\) 0 0
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) −6.00000 + 10.3923i −0.246807 + 0.427482i
\(592\) 0 0
\(593\) 21.0000 + 36.3731i 0.862367 + 1.49366i 0.869638 + 0.493689i \(0.164352\pi\)
−0.00727173 + 0.999974i \(0.502315\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.00000 8.66025i −0.204636 0.354441i
\(598\) 0 0
\(599\) −13.0000 + 22.5167i −0.531166 + 0.920006i 0.468173 + 0.883637i \(0.344912\pi\)
−0.999338 + 0.0363689i \(0.988421\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) 0 0
\(605\) −3.50000 + 6.06218i −0.142295 + 0.246463i
\(606\) 0 0
\(607\) −18.0000 31.1769i −0.730597 1.26543i −0.956628 0.291312i \(-0.905908\pi\)
0.226031 0.974120i \(-0.427425\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000 + 27.7128i 0.647291 + 1.12114i
\(612\) 0 0
\(613\) −1.00000 + 1.73205i −0.0403896 + 0.0699569i −0.885514 0.464614i \(-0.846193\pi\)
0.845124 + 0.534570i \(0.179527\pi\)
\(614\) 0 0
\(615\) −10.0000 −0.403239
\(616\) 0 0
\(617\) −20.0000 −0.805170 −0.402585 0.915383i \(-0.631888\pi\)
−0.402585 + 0.915383i \(0.631888\pi\)
\(618\) 0 0
\(619\) 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i \(-0.768925\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(620\) 0 0
\(621\) −2.00000 3.46410i −0.0802572 0.139010i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −2.00000 + 3.46410i −0.0798723 + 0.138343i
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −10.0000 + 17.3205i −0.397464 + 0.688428i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.00000 + 8.66025i 0.197797 + 0.342594i
\(640\) 0 0
\(641\) −15.0000 + 25.9808i −0.592464 + 1.02618i 0.401435 + 0.915888i \(0.368512\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) −16.0000 + 27.7128i −0.629025 + 1.08950i 0.358723 + 0.933444i \(0.383212\pi\)
−0.987748 + 0.156059i \(0.950121\pi\)
\(648\) 0 0
\(649\) 8.00000 + 13.8564i 0.314027 + 0.543912i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.0000 38.1051i −0.860927 1.49117i −0.871036 0.491220i \(-0.836551\pi\)
0.0101092 0.999949i \(-0.496782\pi\)
\(654\) 0 0
\(655\) −6.00000 + 10.3923i −0.234439 + 0.406061i
\(656\) 0 0
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) −38.0000 −1.48027 −0.740135 0.672458i \(-0.765238\pi\)
−0.740135 + 0.672458i \(0.765238\pi\)
\(660\) 0 0
\(661\) 19.0000 32.9090i 0.739014 1.28001i −0.213925 0.976850i \(-0.568625\pi\)
0.952940 0.303160i \(-0.0980418\pi\)
\(662\) 0 0
\(663\) −4.00000 6.92820i −0.155347 0.269069i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 20.7846i −0.464642 0.804783i
\(668\) 0 0
\(669\) 6.00000 10.3923i 0.231973 0.401790i
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −15.0000 25.9808i −0.576497 0.998522i −0.995877 0.0907112i \(-0.971086\pi\)
0.419380 0.907811i \(-0.362247\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.00000 10.3923i −0.229920 0.398234i
\(682\) 0 0
\(683\) 8.00000 13.8564i 0.306111 0.530201i −0.671397 0.741098i \(-0.734305\pi\)
0.977508 + 0.210898i \(0.0676386\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 0 0
\(687\) 26.0000 0.991962
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 11.0000 + 19.0526i 0.418460 + 0.724793i 0.995785 0.0917209i \(-0.0292368\pi\)
−0.577325 + 0.816514i \(0.695903\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.00000 1.73205i −0.0379322 0.0657004i
\(696\) 0 0
\(697\) 10.0000 17.3205i 0.378777 0.656061i
\(698\) 0 0
\(699\) 4.00000 0.151294
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 10.0000 17.3205i 0.377157 0.653255i
\(704\) 0 0
\(705\) 4.00000 + 6.92820i 0.150649 + 0.260931i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.0000 + 22.5167i 0.488225 + 0.845631i 0.999908 0.0135434i \(-0.00431112\pi\)
−0.511683 + 0.859174i \(0.670978\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) −7.00000 + 12.1244i −0.261420 + 0.452792i
\(718\) 0 0
\(719\) 6.00000 + 10.3923i 0.223762 + 0.387568i 0.955947 0.293538i \(-0.0948328\pi\)
−0.732185 + 0.681106i \(0.761499\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 15.0000 + 25.9808i 0.557856 + 0.966235i
\(724\) 0 0
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 0 0
\(733\) 6.00000 + 10.3923i 0.221615 + 0.383849i 0.955299 0.295643i \(-0.0955338\pi\)
−0.733683 + 0.679491i \(0.762200\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0000 20.7846i −0.442026 0.765611i
\(738\) 0 0
\(739\) 12.0000 20.7846i 0.441427 0.764574i −0.556369 0.830936i \(-0.687806\pi\)
0.997796 + 0.0663614i \(0.0211390\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 0 0
\(745\) 9.00000 15.5885i 0.329734 0.571117i
\(746\) 0 0
\(747\) −6.00000 10.3923i −0.219529 0.380235i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16.0000 + 27.7128i 0.583848 + 1.01125i 0.995018 + 0.0996961i \(0.0317870\pi\)
−0.411170 + 0.911559i \(0.634880\pi\)
\(752\) 0 0
\(753\) 8.00000 13.8564i 0.291536 0.504956i
\(754\) 0 0
\(755\) 4.00000 0.145575
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 0 0
\(759\) 4.00000 6.92820i 0.145191 0.251478i
\(760\) 0 0
\(761\) −11.0000 19.0526i −0.398750 0.690655i 0.594822 0.803857i \(-0.297222\pi\)
−0.993572 + 0.113203i \(0.963889\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.00000 1.73205i −0.0361551 0.0626224i
\(766\) 0 0
\(767\) 16.0000 27.7128i 0.577727 1.00065i
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) 5.00000 8.66025i 0.179838 0.311488i −0.761987 0.647592i \(-0.775776\pi\)
0.941825 + 0.336104i \(0.109109\pi\)
\(774\) 0 0
\(775\) −1.00000 1.73205i −0.0359211 0.0622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.0000 + 17.3205i 0.358287 + 0.620572i
\(780\) 0 0
\(781\) −10.0000 + 17.3205i −0.357828 + 0.619777i
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 8.00000 0.285532
\(786\) 0 0
\(787\) −20.0000 + 34.6410i −0.712923 + 1.23482i 0.250832 + 0.968031i \(0.419296\pi\)
−0.963755 + 0.266788i \(0.914038\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.00000 + 6.92820i 0.142044 + 0.246028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 1.00000 1.73205i 0.0353333 0.0611990i
\(802\) 0 0
\(803\) −4.00000 6.92820i −0.141157 0.244491i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.00000 + 15.5885i 0.316815 + 0.548740i
\(808\) 0 0
\(809\) 13.0000 22.5167i 0.457056 0.791644i −0.541748 0.840541i \(-0.682237\pi\)
0.998804 + 0.0488972i \(0.0155707\pi\)
\(810\) 0 0
\(811\) 54.0000 1.89620 0.948098 0.317978i \(-0.103004\pi\)
0.948098 + 0.317978i \(0.103004\pi\)
\(812\) 0 0
\(813\) 6.00000 0.210429
\(814\) 0 0
\(815\) 6.00000 10.3923i 0.210171 0.364027i
\(816\) 0 0
\(817\) 12.0000 + 20.7846i 0.419827 + 0.727161i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 + 43.3013i 0.872506 + 1.51122i 0.859396 + 0.511311i \(0.170840\pi\)
0.0131101 + 0.999914i \(0.495827\pi\)
\(822\) 0 0
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 25.0000 43.3013i 0.868286 1.50392i 0.00453881 0.999990i \(-0.498555\pi\)
0.863747 0.503926i \(-0.168111\pi\)
\(830\) 0 0
\(831\) 11.0000 + 19.0526i 0.381586 + 0.660926i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 + 13.8564i 0.276851 + 0.479521i
\(836\) 0 0
\(837\) −1.00000 + 1.73205i −0.0345651 + 0.0598684i
\(838\) 0 0
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 13.0000 22.5167i 0.447744 0.775515i
\(844\) 0 0
\(845\) 1.50000 + 2.59808i 0.0516016 + 0.0893765i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.00000 3.46410i −0.0686398 0.118888i
\(850\) 0 0
\(851\) −20.0000 + 34.6410i −0.685591 + 1.18748i
\(852\) 0 0
\(853\) −28.0000 −0.958702 −0.479351 0.877623i \(-0.659128\pi\)
−0.479351 + 0.877623i \(0.659128\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) −17.0000 + 29.4449i −0.580709 + 1.00582i 0.414687 + 0.909964i \(0.363891\pi\)
−0.995395 + 0.0958531i \(0.969442\pi\)
\(858\) 0 0
\(859\) −17.0000 29.4449i −0.580033 1.00465i −0.995475 0.0950262i \(-0.969707\pi\)
0.415442 0.909620i \(-0.363627\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.00000 10.3923i −0.204242 0.353758i 0.745649 0.666339i \(-0.232140\pi\)
−0.949891 + 0.312581i \(0.898806\pi\)
\(864\) 0 0
\(865\) −1.00000 + 1.73205i −0.0340010 + 0.0588915i
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 + 41.5692i −0.813209 + 1.40852i
\(872\) 0 0
\(873\) −4.00000 6.92820i −0.135379 0.234484i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 11.0000 + 19.0526i 0.371444 + 0.643359i 0.989788 0.142548i \(-0.0455296\pi\)
−0.618344 + 0.785907i \(0.712196\pi\)
\(878\) 0 0
\(879\) −15.0000 + 25.9808i −0.505937 + 0.876309i
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 4.00000 6.92820i 0.134459 0.232889i
\(886\) 0 0
\(887\) −4.00000 6.92820i −0.134307 0.232626i 0.791026 0.611783i \(-0.209547\pi\)
−0.925332 + 0.379157i \(0.876214\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.00000 + 1.73205i 0.0335013 + 0.0580259i
\(892\) 0 0
\(893\) 8.00000 13.8564i 0.267710 0.463687i
\(894\) 0 0
\(895\) −22.0000 −0.735379
\(896\) 0 0
\(897\) −16.0000 −0.534224
\(898\) 0 0
\(899\) −6.00000 + 10.3923i −0.200111 + 0.346603i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.0000 + 19.0526i 0.365652 + 0.633328i
\(906\) 0 0
\(907\) 6.00000 10.3923i 0.199227 0.345071i −0.749051 0.662512i \(-0.769490\pi\)
0.948278 + 0.317441i \(0.102824\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 0 0
\(913\) 12.0000 20.7846i 0.397142 0.687870i
\(914\) 0 0
\(915\) 1.00000 + 1.73205i 0.0330590 + 0.0572598i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) 0 0
\(921\) 16.0000 27.7128i 0.527218 0.913168i
\(922\) 0 0
\(923\) 40.0000 1.31662
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 0 0
\(929\) −7.00000 12.1244i −0.229663 0.397787i 0.728046 0.685529i \(-0.240429\pi\)
−0.957708 + 0.287742i \(0.907096\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 4.00000 + 6.92820i 0.130954 + 0.226819i
\(934\) 0 0
\(935\) 2.00000 3.46410i 0.0654070 0.113288i
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 8.00000 0.261070
\(940\) 0 0
\(941\) 15.0000 25.9808i 0.488986 0.846949i −0.510934 0.859620i \(-0.670700\pi\)
0.999920 + 0.0126715i \(0.00403357\pi\)
\(942\) 0 0
\(943\) −20.0000 34.6410i −0.651290 1.12807i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 + 20.7846i 0.389948 + 0.675409i 0.992442 0.122714i \(-0.0391598\pi\)
−0.602494 + 0.798123i \(0.705826\pi\)
\(948\) 0 0
\(949\) −8.00000 + 13.8564i −0.259691 + 0.449798i
\(950\) 0 0
\(951\) 32.0000 1.03767
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) −11.0000 + 19.0526i −0.355952 + 0.616526i
\(956\) 0 0
\(957\) 6.00000 + 10.3923i 0.193952 + 0.335936i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) −2.00000 + 3.46410i −0.0644491 + 0.111629i
\(964\) 0 0
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) 16.0000 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(968\) 0 0
\(969\) −2.00000 + 3.46410i −0.0642493 + 0.111283i
\(970\) 0 0
\(971\) −12.0000 20.7846i −0.385098 0.667010i 0.606685 0.794943i \(-0.292499\pi\)
−0.991783 + 0.127933i \(0.959166\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.00000 + 3.46410i 0.0640513 + 0.110940i
\(976\) 0 0
\(977\) −6.00000 + 10.3923i −0.191957 + 0.332479i −0.945899 0.324462i \(-0.894817\pi\)
0.753942 + 0.656941i \(0.228150\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) 16.0000 27.7128i 0.510321 0.883901i −0.489608 0.871943i \(-0.662860\pi\)
0.999928 0.0119587i \(-0.00380665\pi\)
\(984\) 0 0
\(985\) 6.00000 + 10.3923i 0.191176 + 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 41.5692i −0.763156 1.32182i
\(990\) 0 0
\(991\) 28.0000 48.4974i 0.889449 1.54057i 0.0489218 0.998803i \(-0.484422\pi\)
0.840528 0.541769i \(-0.182245\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) −14.0000 + 24.2487i −0.443384 + 0.767964i −0.997938 0.0641836i \(-0.979556\pi\)
0.554554 + 0.832148i \(0.312889\pi\)
\(998\) 0 0
\(999\) −5.00000 8.66025i −0.158193 0.273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.q.g.361.1 2
7.2 even 3 inner 2940.2.q.g.961.1 2
7.3 odd 6 420.2.a.b.1.1 1
7.4 even 3 2940.2.a.g.1.1 1
7.5 odd 6 2940.2.q.k.961.1 2
7.6 odd 2 2940.2.q.k.361.1 2
21.11 odd 6 8820.2.a.x.1.1 1
21.17 even 6 1260.2.a.e.1.1 1
28.3 even 6 1680.2.a.r.1.1 1
35.3 even 12 2100.2.k.c.1849.1 2
35.17 even 12 2100.2.k.c.1849.2 2
35.24 odd 6 2100.2.a.k.1.1 1
56.3 even 6 6720.2.a.d.1.1 1
56.45 odd 6 6720.2.a.bt.1.1 1
84.59 odd 6 5040.2.a.c.1.1 1
105.17 odd 12 6300.2.k.m.6049.2 2
105.38 odd 12 6300.2.k.m.6049.1 2
105.59 even 6 6300.2.a.l.1.1 1
140.59 even 6 8400.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.a.b.1.1 1 7.3 odd 6
1260.2.a.e.1.1 1 21.17 even 6
1680.2.a.r.1.1 1 28.3 even 6
2100.2.a.k.1.1 1 35.24 odd 6
2100.2.k.c.1849.1 2 35.3 even 12
2100.2.k.c.1849.2 2 35.17 even 12
2940.2.a.g.1.1 1 7.4 even 3
2940.2.q.g.361.1 2 1.1 even 1 trivial
2940.2.q.g.961.1 2 7.2 even 3 inner
2940.2.q.k.361.1 2 7.6 odd 2
2940.2.q.k.961.1 2 7.5 odd 6
5040.2.a.c.1.1 1 84.59 odd 6
6300.2.a.l.1.1 1 105.59 even 6
6300.2.k.m.6049.1 2 105.38 odd 12
6300.2.k.m.6049.2 2 105.17 odd 12
6720.2.a.d.1.1 1 56.3 even 6
6720.2.a.bt.1.1 1 56.45 odd 6
8400.2.a.bc.1.1 1 140.59 even 6
8820.2.a.x.1.1 1 21.11 odd 6