Properties

Label 296.2.q.a.101.14
Level $296$
Weight $2$
Character 296.101
Analytic conductor $2.364$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [296,2,Mod(85,296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(296, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("296.85");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.36357189983\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.14
Character \(\chi\) \(=\) 296.101
Dual form 296.2.q.a.85.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.484093 - 1.32878i) q^{2} +(0.0574215 - 0.0331523i) q^{3} +(-1.53131 + 1.28651i) q^{4} +(0.0588225 + 0.101884i) q^{5} +(-0.0718494 - 0.0602516i) q^{6} +(1.40284 + 2.42979i) q^{7} +(2.45078 + 1.41198i) q^{8} +(-1.49780 + 2.59427i) q^{9} +O(q^{10})\) \(q+(-0.484093 - 1.32878i) q^{2} +(0.0574215 - 0.0331523i) q^{3} +(-1.53131 + 1.28651i) q^{4} +(0.0588225 + 0.101884i) q^{5} +(-0.0718494 - 0.0602516i) q^{6} +(1.40284 + 2.42979i) q^{7} +(2.45078 + 1.41198i) q^{8} +(-1.49780 + 2.59427i) q^{9} +(0.106905 - 0.127483i) q^{10} +1.77206i q^{11} +(-0.0452793 + 0.124639i) q^{12} +(0.666698 + 1.15475i) q^{13} +(2.54954 - 3.04030i) q^{14} +(0.00675535 + 0.00390021i) q^{15} +(0.689805 - 3.94007i) q^{16} +(3.86149 + 2.22943i) q^{17} +(4.17229 + 0.734380i) q^{18} +(-3.11573 - 5.39660i) q^{19} +(-0.221149 - 0.0803396i) q^{20} +(0.161106 + 0.0930146i) q^{21} +(2.35468 - 0.857844i) q^{22} +6.03806i q^{23} +(0.187538 - 0.000170922i) q^{24} +(2.49308 - 4.31814i) q^{25} +(1.21167 - 1.44490i) q^{26} +0.397536i q^{27} +(-5.27411 - 1.91599i) q^{28} +8.43088 q^{29} +(0.00191229 - 0.0108644i) q^{30} +7.13978i q^{31} +(-5.56942 + 0.990764i) q^{32} +(0.0587480 + 0.101754i) q^{33} +(1.09310 - 6.21032i) q^{34} +(-0.165037 + 0.285852i) q^{35} +(-1.04395 - 5.89955i) q^{36} +(-2.72190 - 5.43979i) q^{37} +(-5.66258 + 6.75257i) q^{38} +(0.0765655 + 0.0442051i) q^{39} +(0.000303269 + 0.332750i) q^{40} +(-2.42678 - 4.20331i) q^{41} +(0.0456055 - 0.259102i) q^{42} -11.6336 q^{43} +(-2.27977 - 2.71357i) q^{44} -0.352418 q^{45} +(8.02324 - 2.92298i) q^{46} +6.45491 q^{47} +(-0.0910128 - 0.249113i) q^{48} +(-0.435906 + 0.755012i) q^{49} +(-6.94474 - 1.22237i) q^{50} +0.295643 q^{51} +(-2.50652 - 0.910574i) q^{52} +(2.82675 + 1.63202i) q^{53} +(0.528238 - 0.192445i) q^{54} +(-0.180544 + 0.104237i) q^{55} +(0.00723256 + 7.93564i) q^{56} +(-0.357819 - 0.206587i) q^{57} +(-4.08133 - 11.2028i) q^{58} +(-5.06132 + 8.76647i) q^{59} +(-0.0153622 + 0.00271839i) q^{60} +(4.77411 + 8.26900i) q^{61} +(9.48719 - 3.45632i) q^{62} -8.40469 q^{63} +(4.01262 + 6.92090i) q^{64} +(-0.0784337 + 0.135851i) q^{65} +(0.106770 - 0.127322i) q^{66} +(6.61343 - 3.81827i) q^{67} +(-8.78131 + 1.55388i) q^{68} +(0.200175 + 0.346714i) q^{69} +(0.459728 + 0.0809184i) q^{70} +(-4.84512 - 8.39199i) q^{71} +(-7.33384 + 4.24311i) q^{72} -5.41038 q^{73} +(-5.91062 + 6.25016i) q^{74} -0.330605i q^{75} +(11.7139 + 4.25545i) q^{76} +(-4.30573 + 2.48592i) q^{77} +(0.0216740 - 0.123138i) q^{78} +(-5.20265 + 3.00375i) q^{79} +(0.442005 - 0.161485i) q^{80} +(-4.48023 - 7.75998i) q^{81} +(-4.41048 + 5.25945i) q^{82} +(-0.309739 - 0.178828i) q^{83} +(-0.366367 + 0.0648299i) q^{84} +0.524564i q^{85} +(5.63173 + 15.4584i) q^{86} +(0.484113 - 0.279503i) q^{87} +(-2.50212 + 4.34293i) q^{88} +(3.23848 + 1.86974i) q^{89} +(0.170603 + 0.468286i) q^{90} +(-1.87054 + 3.23987i) q^{91} +(-7.76800 - 9.24612i) q^{92} +(0.236700 + 0.409977i) q^{93} +(-3.12478 - 8.57715i) q^{94} +(0.366550 - 0.634883i) q^{95} +(-0.286958 + 0.241530i) q^{96} -15.7030i q^{97} +(1.21426 + 0.213727i) q^{98} +(-4.59721 - 2.65420i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 6 q^{2} - 2 q^{4} + 2 q^{7} + 30 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 6 q^{2} - 2 q^{4} + 2 q^{7} + 30 q^{9} - 12 q^{12} - 6 q^{15} - 6 q^{16} - 12 q^{17} - 48 q^{18} + 18 q^{20} - 12 q^{22} - 6 q^{24} - 32 q^{25} - 16 q^{26} + 10 q^{28} - 14 q^{30} - 6 q^{32} + 4 q^{33} + 8 q^{34} + 4 q^{36} - 24 q^{38} - 6 q^{39} - 18 q^{40} + 6 q^{42} - 10 q^{44} - 8 q^{46} + 32 q^{47} + 20 q^{48} - 18 q^{49} + 12 q^{50} + 42 q^{52} + 30 q^{54} + 24 q^{55} - 24 q^{56} - 6 q^{57} - 8 q^{58} + 32 q^{62} + 8 q^{63} - 68 q^{64} + 6 q^{65} + 20 q^{70} + 18 q^{71} + 18 q^{72} - 64 q^{73} - 12 q^{74} - 72 q^{76} + 54 q^{78} + 54 q^{79} - 16 q^{81} - 12 q^{84} + 48 q^{86} - 108 q^{87} - 36 q^{89} + 24 q^{90} - 120 q^{92} - 72 q^{94} + 50 q^{95} + 36 q^{96} + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/296\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.484093 1.32878i −0.342306 0.939589i
\(3\) 0.0574215 0.0331523i 0.0331523 0.0191405i −0.483332 0.875437i \(-0.660574\pi\)
0.516485 + 0.856297i \(0.327240\pi\)
\(4\) −1.53131 + 1.28651i −0.765654 + 0.643253i
\(5\) 0.0588225 + 0.101884i 0.0263062 + 0.0455638i 0.878879 0.477045i \(-0.158292\pi\)
−0.852573 + 0.522609i \(0.824959\pi\)
\(6\) −0.0718494 0.0602516i −0.0293324 0.0245976i
\(7\) 1.40284 + 2.42979i 0.530223 + 0.918373i 0.999378 + 0.0352572i \(0.0112250\pi\)
−0.469156 + 0.883116i \(0.655442\pi\)
\(8\) 2.45078 + 1.41198i 0.866481 + 0.499210i
\(9\) −1.49780 + 2.59427i −0.499267 + 0.864756i
\(10\) 0.106905 0.127483i 0.0338064 0.0403138i
\(11\) 1.77206i 0.534297i 0.963655 + 0.267149i \(0.0860815\pi\)
−0.963655 + 0.267149i \(0.913919\pi\)
\(12\) −0.0452793 + 0.124639i −0.0130710 + 0.0359803i
\(13\) 0.666698 + 1.15475i 0.184909 + 0.320271i 0.943546 0.331242i \(-0.107468\pi\)
−0.758637 + 0.651513i \(0.774134\pi\)
\(14\) 2.54954 3.04030i 0.681394 0.812555i
\(15\) 0.00675535 + 0.00390021i 0.00174422 + 0.00100703i
\(16\) 0.689805 3.94007i 0.172451 0.985018i
\(17\) 3.86149 + 2.22943i 0.936549 + 0.540717i 0.888877 0.458146i \(-0.151486\pi\)
0.0476722 + 0.998863i \(0.484820\pi\)
\(18\) 4.17229 + 0.734380i 0.983417 + 0.173095i
\(19\) −3.11573 5.39660i −0.714797 1.23806i −0.963038 0.269366i \(-0.913186\pi\)
0.248241 0.968698i \(-0.420147\pi\)
\(20\) −0.221149 0.0803396i −0.0494505 0.0179645i
\(21\) 0.161106 + 0.0930146i 0.0351562 + 0.0202974i
\(22\) 2.35468 0.857844i 0.502020 0.182893i
\(23\) 6.03806i 1.25902i 0.776992 + 0.629511i \(0.216745\pi\)
−0.776992 + 0.629511i \(0.783255\pi\)
\(24\) 0.187538 0.000170922i 0.0382810 3.48894e-5i
\(25\) 2.49308 4.31814i 0.498616 0.863628i
\(26\) 1.21167 1.44490i 0.237628 0.283369i
\(27\) 0.397536i 0.0765059i
\(28\) −5.27411 1.91599i −0.996713 0.362088i
\(29\) 8.43088 1.56558 0.782788 0.622289i \(-0.213797\pi\)
0.782788 + 0.622289i \(0.213797\pi\)
\(30\) 0.00191229 0.0108644i 0.000349135 0.00198357i
\(31\) 7.13978i 1.28234i 0.767398 + 0.641171i \(0.221551\pi\)
−0.767398 + 0.641171i \(0.778449\pi\)
\(32\) −5.56942 + 0.990764i −0.984543 + 0.175144i
\(33\) 0.0587480 + 0.101754i 0.0102267 + 0.0177132i
\(34\) 1.09310 6.21032i 0.187465 1.06506i
\(35\) −0.165037 + 0.285852i −0.0278963 + 0.0483179i
\(36\) −1.04395 5.89955i −0.173991 0.983259i
\(37\) −2.72190 5.43979i −0.447477 0.894295i
\(38\) −5.66258 + 6.75257i −0.918592 + 1.09541i
\(39\) 0.0765655 + 0.0442051i 0.0122603 + 0.00707849i
\(40\) 0.000303269 0.332750i 4.79511e−5 0.0526125i
\(41\) −2.42678 4.20331i −0.379000 0.656447i 0.611917 0.790922i \(-0.290399\pi\)
−0.990917 + 0.134475i \(0.957065\pi\)
\(42\) 0.0456055 0.259102i 0.00703708 0.0399803i
\(43\) −11.6336 −1.77410 −0.887051 0.461671i \(-0.847250\pi\)
−0.887051 + 0.461671i \(0.847250\pi\)
\(44\) −2.27977 2.71357i −0.343688 0.409087i
\(45\) −0.352418 −0.0525354
\(46\) 8.02324 2.92298i 1.18296 0.430970i
\(47\) 6.45491 0.941546 0.470773 0.882254i \(-0.343975\pi\)
0.470773 + 0.882254i \(0.343975\pi\)
\(48\) −0.0910128 0.249113i −0.0131366 0.0359564i
\(49\) −0.435906 + 0.755012i −0.0622723 + 0.107859i
\(50\) −6.94474 1.22237i −0.982134 0.172869i
\(51\) 0.295643 0.0413983
\(52\) −2.50652 0.910574i −0.347591 0.126274i
\(53\) 2.82675 + 1.63202i 0.388284 + 0.224176i 0.681416 0.731896i \(-0.261364\pi\)
−0.293133 + 0.956072i \(0.594698\pi\)
\(54\) 0.528238 0.192445i 0.0718840 0.0261884i
\(55\) −0.180544 + 0.104237i −0.0243446 + 0.0140554i
\(56\) 0.00723256 + 7.93564i 0.000966492 + 1.06045i
\(57\) −0.357819 0.206587i −0.0473943 0.0273631i
\(58\) −4.08133 11.2028i −0.535905 1.47100i
\(59\) −5.06132 + 8.76647i −0.658928 + 1.14130i 0.321965 + 0.946751i \(0.395657\pi\)
−0.980894 + 0.194545i \(0.937677\pi\)
\(60\) −0.0153622 + 0.00271839i −0.00198325 + 0.000350942i
\(61\) 4.77411 + 8.26900i 0.611262 + 1.05874i 0.991028 + 0.133654i \(0.0426711\pi\)
−0.379766 + 0.925082i \(0.623996\pi\)
\(62\) 9.48719 3.45632i 1.20487 0.438953i
\(63\) −8.40469 −1.05889
\(64\) 4.01262 + 6.92090i 0.501578 + 0.865113i
\(65\) −0.0784337 + 0.135851i −0.00972851 + 0.0168503i
\(66\) 0.106770 0.127322i 0.0131424 0.0156722i
\(67\) 6.61343 3.81827i 0.807959 0.466475i −0.0382876 0.999267i \(-0.512190\pi\)
0.846247 + 0.532791i \(0.178857\pi\)
\(68\) −8.78131 + 1.55388i −1.06489 + 0.188436i
\(69\) 0.200175 + 0.346714i 0.0240983 + 0.0417395i
\(70\) 0.459728 + 0.0809184i 0.0549480 + 0.00967160i
\(71\) −4.84512 8.39199i −0.575010 0.995946i −0.996041 0.0888995i \(-0.971665\pi\)
0.421031 0.907046i \(-0.361668\pi\)
\(72\) −7.33384 + 4.24311i −0.864301 + 0.500055i
\(73\) −5.41038 −0.633237 −0.316619 0.948553i \(-0.602548\pi\)
−0.316619 + 0.948553i \(0.602548\pi\)
\(74\) −5.91062 + 6.25016i −0.687096 + 0.726567i
\(75\) 0.330605i 0.0381750i
\(76\) 11.7139 + 4.25545i 1.34368 + 0.488133i
\(77\) −4.30573 + 2.48592i −0.490684 + 0.283297i
\(78\) 0.0216740 0.123138i 0.00245410 0.0139426i
\(79\) −5.20265 + 3.00375i −0.585344 + 0.337948i −0.763254 0.646098i \(-0.776400\pi\)
0.177910 + 0.984047i \(0.443066\pi\)
\(80\) 0.442005 0.161485i 0.0494177 0.0180546i
\(81\) −4.48023 7.75998i −0.497803 0.862220i
\(82\) −4.41048 + 5.25945i −0.487056 + 0.580809i
\(83\) −0.309739 0.178828i −0.0339983 0.0196289i 0.482905 0.875673i \(-0.339582\pi\)
−0.516903 + 0.856044i \(0.672915\pi\)
\(84\) −0.366367 + 0.0648299i −0.0399739 + 0.00707352i
\(85\) 0.524564i 0.0568969i
\(86\) 5.63173 + 15.4584i 0.607285 + 1.66693i
\(87\) 0.484113 0.279503i 0.0519024 0.0299659i
\(88\) −2.50212 + 4.34293i −0.266727 + 0.462958i
\(89\) 3.23848 + 1.86974i 0.343279 + 0.198192i 0.661721 0.749750i \(-0.269826\pi\)
−0.318442 + 0.947942i \(0.603160\pi\)
\(90\) 0.170603 + 0.468286i 0.0179832 + 0.0493617i
\(91\) −1.87054 + 3.23987i −0.196086 + 0.339630i
\(92\) −7.76800 9.24612i −0.809870 0.963975i
\(93\) 0.236700 + 0.409977i 0.0245447 + 0.0425126i
\(94\) −3.12478 8.57715i −0.322296 0.884666i
\(95\) 0.366550 0.634883i 0.0376072 0.0651376i
\(96\) −0.286958 + 0.241530i −0.0292875 + 0.0246511i
\(97\) 15.7030i 1.59440i −0.603718 0.797198i \(-0.706315\pi\)
0.603718 0.797198i \(-0.293685\pi\)
\(98\) 1.21426 + 0.213727i 0.122659 + 0.0215897i
\(99\) −4.59721 2.65420i −0.462037 0.266757i
\(100\) 1.73764 + 9.81976i 0.173764 + 0.981976i
\(101\) 4.24740i 0.422632i 0.977418 + 0.211316i \(0.0677749\pi\)
−0.977418 + 0.211316i \(0.932225\pi\)
\(102\) −0.143119 0.392845i −0.0141709 0.0388974i
\(103\) 6.89690i 0.679571i −0.940503 0.339786i \(-0.889645\pi\)
0.940503 0.339786i \(-0.110355\pi\)
\(104\) 0.00343727 + 3.77141i 0.000337052 + 0.369817i
\(105\) 0.0218854i 0.00213580i
\(106\) 0.800189 4.54617i 0.0777212 0.441563i
\(107\) 3.95844 2.28541i 0.382677 0.220939i −0.296305 0.955093i \(-0.595755\pi\)
0.678982 + 0.734155i \(0.262421\pi\)
\(108\) −0.511433 0.608750i −0.0492126 0.0585770i
\(109\) 4.71964 8.17466i 0.452060 0.782991i −0.546454 0.837489i \(-0.684023\pi\)
0.998514 + 0.0544985i \(0.0173560\pi\)
\(110\) 0.225909 + 0.189443i 0.0215395 + 0.0180627i
\(111\) −0.336637 0.222123i −0.0319521 0.0210830i
\(112\) 10.5412 3.85120i 0.996051 0.363904i
\(113\) 0.495059 + 0.285823i 0.0465713 + 0.0268879i 0.523105 0.852268i \(-0.324774\pi\)
−0.476534 + 0.879156i \(0.658107\pi\)
\(114\) −0.101291 + 0.575470i −0.00948674 + 0.0538977i
\(115\) −0.615179 + 0.355174i −0.0573658 + 0.0331201i
\(116\) −12.9103 + 10.8464i −1.19869 + 1.00706i
\(117\) −3.99432 −0.369275
\(118\) 14.0989 + 2.48159i 1.29790 + 0.228449i
\(119\) 12.5101i 1.14680i
\(120\) 0.0110489 + 0.0190970i 0.00100862 + 0.00174331i
\(121\) 7.85979 0.714526
\(122\) 8.67656 10.3467i 0.785539 0.936746i
\(123\) −0.278699 0.160907i −0.0251294 0.0145085i
\(124\) −9.18537 10.9332i −0.824870 0.981830i
\(125\) 1.17482 0.105079
\(126\) 4.06865 + 11.1680i 0.362464 + 0.994922i
\(127\) 7.13838 12.3640i 0.633429 1.09713i −0.353416 0.935466i \(-0.614980\pi\)
0.986846 0.161665i \(-0.0516865\pi\)
\(128\) 7.25386 8.68225i 0.641157 0.767410i
\(129\) −0.668016 + 0.385679i −0.0588156 + 0.0339572i
\(130\) 0.218485 + 0.0384564i 0.0191624 + 0.00337285i
\(131\) 7.99319 13.8446i 0.698368 1.20961i −0.270664 0.962674i \(-0.587243\pi\)
0.969032 0.246935i \(-0.0794236\pi\)
\(132\) −0.220869 0.0802378i −0.0192242 0.00698380i
\(133\) 8.74172 15.1411i 0.758003 1.31290i
\(134\) −8.27515 6.93939i −0.714864 0.599472i
\(135\) −0.0405024 + 0.0233841i −0.00348589 + 0.00201258i
\(136\) 6.31574 + 10.9162i 0.541570 + 0.936056i
\(137\) 12.4630 1.06478 0.532392 0.846498i \(-0.321293\pi\)
0.532392 + 0.846498i \(0.321293\pi\)
\(138\) 0.363803 0.433831i 0.0309690 0.0369301i
\(139\) −2.35322 1.35863i −0.199597 0.115238i 0.396870 0.917875i \(-0.370096\pi\)
−0.596468 + 0.802637i \(0.703430\pi\)
\(140\) −0.115028 0.650049i −0.00972168 0.0549392i
\(141\) 0.370651 0.213995i 0.0312144 0.0180216i
\(142\) −8.80561 + 10.5006i −0.738950 + 0.881190i
\(143\) −2.04630 + 1.18143i −0.171120 + 0.0987962i
\(144\) 9.18842 + 7.69099i 0.765701 + 0.640916i
\(145\) 0.495926 + 0.858969i 0.0411844 + 0.0713335i
\(146\) 2.61913 + 7.18920i 0.216761 + 0.594982i
\(147\) 0.0578052i 0.00476769i
\(148\) 11.1664 + 4.82825i 0.917871 + 0.396880i
\(149\) 14.1276i 1.15738i 0.815549 + 0.578688i \(0.196435\pi\)
−0.815549 + 0.578688i \(0.803565\pi\)
\(150\) −0.439301 + 0.160044i −0.0358688 + 0.0130675i
\(151\) −2.99047 5.17964i −0.243361 0.421513i 0.718309 0.695725i \(-0.244917\pi\)
−0.961669 + 0.274211i \(0.911583\pi\)
\(152\) −0.0160636 17.6252i −0.00130293 1.42959i
\(153\) −11.5675 + 6.67850i −0.935177 + 0.539924i
\(154\) 5.38761 + 4.51795i 0.434146 + 0.364067i
\(155\) −0.727427 + 0.419980i −0.0584283 + 0.0337336i
\(156\) −0.174116 + 0.0308104i −0.0139404 + 0.00246680i
\(157\) 0.353494 + 0.204090i 0.0282119 + 0.0162882i 0.514040 0.857766i \(-0.328148\pi\)
−0.485828 + 0.874055i \(0.661482\pi\)
\(158\) 6.50989 + 5.45908i 0.517899 + 0.434301i
\(159\) 0.216421 0.0171633
\(160\) −0.428550 0.509153i −0.0338798 0.0402521i
\(161\) −14.6712 + 8.47041i −1.15625 + 0.667562i
\(162\) −8.14245 + 9.70978i −0.639731 + 0.762873i
\(163\) −2.69163 + 4.66203i −0.210824 + 0.365159i −0.951973 0.306183i \(-0.900948\pi\)
0.741148 + 0.671341i \(0.234282\pi\)
\(164\) 9.12374 + 3.31449i 0.712444 + 0.258818i
\(165\) −0.00691141 + 0.0119709i −0.000538053 + 0.000931935i
\(166\) −0.0876802 + 0.498144i −0.00680531 + 0.0386635i
\(167\) 5.60294 3.23486i 0.433569 0.250321i −0.267297 0.963614i \(-0.586130\pi\)
0.700866 + 0.713293i \(0.252797\pi\)
\(168\) 0.263500 + 0.455437i 0.0203295 + 0.0351377i
\(169\) 5.61103 9.71859i 0.431618 0.747584i
\(170\) 0.697029 0.253938i 0.0534597 0.0194761i
\(171\) 18.6670 1.42750
\(172\) 17.8146 14.9666i 1.35835 1.14120i
\(173\) −16.5631 9.56268i −1.25927 0.727037i −0.286334 0.958130i \(-0.592437\pi\)
−0.972932 + 0.231093i \(0.925770\pi\)
\(174\) −0.605754 0.507974i −0.0459221 0.0385094i
\(175\) 13.9895 1.05751
\(176\) 6.98206 + 1.22238i 0.526292 + 0.0921403i
\(177\) 0.671178i 0.0504488i
\(178\) 0.916743 5.20836i 0.0687128 0.390383i
\(179\) 4.06143 0.303565 0.151783 0.988414i \(-0.451499\pi\)
0.151783 + 0.988414i \(0.451499\pi\)
\(180\) 0.539660 0.453388i 0.0402239 0.0337935i
\(181\) 15.7641 9.10138i 1.17173 0.676500i 0.217645 0.976028i \(-0.430162\pi\)
0.954088 + 0.299528i \(0.0968291\pi\)
\(182\) 5.21058 + 0.917134i 0.386234 + 0.0679825i
\(183\) 0.548272 + 0.316545i 0.0405295 + 0.0233997i
\(184\) −8.52562 + 14.7979i −0.628517 + 1.09092i
\(185\) 0.394116 0.597299i 0.0289760 0.0439143i
\(186\) 0.430183 0.512989i 0.0315426 0.0376142i
\(187\) −3.95070 + 6.84281i −0.288904 + 0.500396i
\(188\) −9.88446 + 8.30428i −0.720898 + 0.605652i
\(189\) −0.965928 + 0.557679i −0.0702609 + 0.0405651i
\(190\) −1.02106 0.179721i −0.0740758 0.0130384i
\(191\) 6.17125i 0.446536i −0.974757 0.223268i \(-0.928327\pi\)
0.974757 0.223268i \(-0.0716725\pi\)
\(192\) 0.459854 + 0.264381i 0.0331871 + 0.0190800i
\(193\) 2.30955i 0.166245i 0.996539 + 0.0831225i \(0.0264893\pi\)
−0.996539 + 0.0831225i \(0.973511\pi\)
\(194\) −20.8658 + 7.60170i −1.49808 + 0.545770i
\(195\) 0.0104010i 0.000744833i
\(196\) −0.303821 1.71695i −0.0217015 0.122639i
\(197\) −14.5131 8.37915i −1.03402 0.596990i −0.115884 0.993263i \(-0.536970\pi\)
−0.918133 + 0.396273i \(0.870303\pi\)
\(198\) −1.30137 + 7.39356i −0.0924842 + 0.525437i
\(199\) 1.85153i 0.131251i 0.997844 + 0.0656257i \(0.0209043\pi\)
−0.997844 + 0.0656257i \(0.979096\pi\)
\(200\) 12.2071 7.06262i 0.863173 0.499403i
\(201\) 0.253169 0.438501i 0.0178571 0.0309295i
\(202\) 5.64385 2.05614i 0.397100 0.144669i
\(203\) 11.8272 + 20.4852i 0.830103 + 1.43778i
\(204\) −0.452721 + 0.380347i −0.0316968 + 0.0266296i
\(205\) 0.285499 0.494499i 0.0199401 0.0345373i
\(206\) −9.16445 + 3.33874i −0.638517 + 0.232621i
\(207\) −15.6643 9.04381i −1.08875 0.628589i
\(208\) 5.00971 1.83028i 0.347361 0.126907i
\(209\) 9.56311 5.52127i 0.661494 0.381914i
\(210\) 0.0290809 0.0105946i 0.00200677 0.000731096i
\(211\) 5.19026i 0.357312i 0.983912 + 0.178656i \(0.0571749\pi\)
−0.983912 + 0.178656i \(0.942825\pi\)
\(212\) −6.42823 + 1.13750i −0.441492 + 0.0781236i
\(213\) −0.556427 0.321253i −0.0381258 0.0220119i
\(214\) −4.95305 4.15354i −0.338584 0.283930i
\(215\) −0.684316 1.18527i −0.0466700 0.0808347i
\(216\) −0.561313 + 0.974273i −0.0381925 + 0.0662909i
\(217\) −17.3481 + 10.0160i −1.17767 + 0.679927i
\(218\) −13.1471 2.31406i −0.890432 0.156728i
\(219\) −0.310672 + 0.179367i −0.0209933 + 0.0121205i
\(220\) 0.142367 0.391891i 0.00959838 0.0264213i
\(221\) 5.94543i 0.399933i
\(222\) −0.132189 + 0.554844i −0.00887197 + 0.0372387i
\(223\) 4.24585 0.284323 0.142162 0.989843i \(-0.454595\pi\)
0.142162 + 0.989843i \(0.454595\pi\)
\(224\) −10.2203 12.1426i −0.682874 0.811312i
\(225\) 7.46828 + 12.9354i 0.497885 + 0.862363i
\(226\) 0.140140 0.796189i 0.00932199 0.0529617i
\(227\) −12.0135 20.8081i −0.797366 1.38108i −0.921326 0.388792i \(-0.872893\pi\)
0.123959 0.992287i \(-0.460441\pi\)
\(228\) 0.813707 0.143988i 0.0538890 0.00953585i
\(229\) −21.9615 + 12.6795i −1.45126 + 0.837883i −0.998553 0.0537776i \(-0.982874\pi\)
−0.452704 + 0.891661i \(0.649540\pi\)
\(230\) 0.769752 + 0.645500i 0.0507559 + 0.0425630i
\(231\) −0.164828 + 0.285490i −0.0108449 + 0.0187839i
\(232\) 20.6622 + 11.9042i 1.35654 + 0.781551i
\(233\) −6.80335 −0.445702 −0.222851 0.974853i \(-0.571536\pi\)
−0.222851 + 0.974853i \(0.571536\pi\)
\(234\) 1.93363 + 5.30758i 0.126405 + 0.346967i
\(235\) 0.379694 + 0.657650i 0.0247685 + 0.0429004i
\(236\) −3.52767 19.9356i −0.229632 1.29770i
\(237\) −0.199162 + 0.344960i −0.0129370 + 0.0224075i
\(238\) 16.6232 6.05607i 1.07752 0.392557i
\(239\) 5.66461 + 3.27046i 0.366413 + 0.211549i 0.671890 0.740651i \(-0.265483\pi\)
−0.305477 + 0.952199i \(0.598816\pi\)
\(240\) 0.0200270 0.0239262i 0.00129274 0.00154443i
\(241\) −18.6710 + 10.7797i −1.20271 + 0.694383i −0.961156 0.276006i \(-0.910989\pi\)
−0.241550 + 0.970388i \(0.577656\pi\)
\(242\) −3.80487 10.4439i −0.244586 0.671361i
\(243\) −1.54735 0.893364i −0.0992626 0.0573093i
\(244\) −17.9487 6.52046i −1.14905 0.417430i
\(245\) −0.102564 −0.00655260
\(246\) −0.0788934 + 0.448223i −0.00503006 + 0.0285777i
\(247\) 4.15450 7.19580i 0.264344 0.457858i
\(248\) −10.0812 + 17.4980i −0.640159 + 1.11112i
\(249\) −0.0237142 −0.00150283
\(250\) −0.568724 1.56108i −0.0359692 0.0987314i
\(251\) 12.9386 0.816679 0.408340 0.912830i \(-0.366108\pi\)
0.408340 + 0.912830i \(0.366108\pi\)
\(252\) 12.8702 10.8127i 0.810744 0.681135i
\(253\) −10.6998 −0.672692
\(254\) −19.8847 3.49999i −1.24768 0.219609i
\(255\) 0.0173905 + 0.0301212i 0.00108903 + 0.00188626i
\(256\) −15.0483 5.43576i −0.940521 0.339735i
\(257\) 22.7103 + 13.1118i 1.41663 + 0.817893i 0.996001 0.0893384i \(-0.0284753\pi\)
0.420631 + 0.907232i \(0.361809\pi\)
\(258\) 0.835865 + 0.700941i 0.0520387 + 0.0436387i
\(259\) 9.39914 14.2448i 0.584034 0.885126i
\(260\) −0.0546672 0.308935i −0.00339032 0.0191594i
\(261\) −12.6278 + 21.8720i −0.781640 + 1.35384i
\(262\) −22.2659 3.91910i −1.37559 0.242123i
\(263\) −1.44551 2.50369i −0.0891338 0.154384i 0.818011 0.575202i \(-0.195077\pi\)
−0.907145 + 0.420818i \(0.861743\pi\)
\(264\) 0.000302885 0.332329i 1.86413e−5 0.0204534i
\(265\) 0.383999i 0.0235889i
\(266\) −24.3510 4.28611i −1.49305 0.262798i
\(267\) 0.247945 0.0151740
\(268\) −5.21497 + 14.3552i −0.318555 + 0.876881i
\(269\) 14.0116i 0.854305i 0.904180 + 0.427153i \(0.140483\pi\)
−0.904180 + 0.427153i \(0.859517\pi\)
\(270\) 0.0506792 + 0.0424987i 0.00308424 + 0.00258639i
\(271\) −9.06115 + 15.6944i −0.550426 + 0.953365i 0.447818 + 0.894125i \(0.352201\pi\)
−0.998244 + 0.0592405i \(0.981132\pi\)
\(272\) 11.4478 13.6767i 0.694125 0.829270i
\(273\) 0.248050i 0.0150127i
\(274\) −6.03324 16.5605i −0.364482 1.00046i
\(275\) 7.65202 + 4.41790i 0.461434 + 0.266409i
\(276\) −0.752580 0.273399i −0.0453000 0.0164567i
\(277\) 0.722938 + 1.25217i 0.0434372 + 0.0752354i 0.886927 0.461910i \(-0.152836\pi\)
−0.843489 + 0.537146i \(0.819503\pi\)
\(278\) −0.666144 + 3.78461i −0.0399527 + 0.226986i
\(279\) −18.5225 10.6940i −1.10891 0.640232i
\(280\) −0.808087 + 0.467532i −0.0482924 + 0.0279404i
\(281\) 25.7216 + 14.8504i 1.53442 + 0.885901i 0.999150 + 0.0412228i \(0.0131254\pi\)
0.535275 + 0.844678i \(0.320208\pi\)
\(282\) −0.463782 0.388919i −0.0276178 0.0231598i
\(283\) 14.9986 + 25.9783i 0.891575 + 1.54425i 0.837988 + 0.545689i \(0.183732\pi\)
0.0535871 + 0.998563i \(0.482935\pi\)
\(284\) 18.2157 + 6.61744i 1.08090 + 0.392673i
\(285\) 0.0486079i 0.00287928i
\(286\) 2.56046 + 2.14716i 0.151403 + 0.126964i
\(287\) 6.80877 11.7931i 0.401909 0.696126i
\(288\) 5.77157 15.9325i 0.340093 0.938833i
\(289\) 1.44074 + 2.49544i 0.0847495 + 0.146790i
\(290\) 0.901305 1.07480i 0.0529265 0.0631142i
\(291\) −0.520590 0.901688i −0.0305175 0.0528579i
\(292\) 8.28496 6.96049i 0.484840 0.407332i
\(293\) 7.96315 4.59753i 0.465212 0.268591i −0.249021 0.968498i \(-0.580109\pi\)
0.714233 + 0.699908i \(0.246775\pi\)
\(294\) 0.0768103 0.0279831i 0.00447967 0.00163201i
\(295\) −1.19088 −0.0693357
\(296\) 1.01011 17.1750i 0.0587114 0.998275i
\(297\) −0.704459 −0.0408769
\(298\) 18.7724 6.83906i 1.08746 0.396176i
\(299\) −6.97247 + 4.02556i −0.403229 + 0.232804i
\(300\) 0.425326 + 0.506258i 0.0245562 + 0.0292288i
\(301\) −16.3200 28.2671i −0.940669 1.62929i
\(302\) −5.43493 + 6.48110i −0.312745 + 0.372945i
\(303\) 0.140811 + 0.243892i 0.00808938 + 0.0140112i
\(304\) −23.4122 + 8.55359i −1.34278 + 0.490582i
\(305\) −0.561650 + 0.972807i −0.0321600 + 0.0557028i
\(306\) 14.4740 + 12.1376i 0.827423 + 0.693862i
\(307\) 5.95372i 0.339797i −0.985462 0.169898i \(-0.945656\pi\)
0.985462 0.169898i \(-0.0543440\pi\)
\(308\) 3.39526 9.34606i 0.193463 0.532541i
\(309\) −0.228648 0.396030i −0.0130073 0.0225293i
\(310\) 0.910203 + 0.763280i 0.0516961 + 0.0433514i
\(311\) 2.22987 + 1.28742i 0.126444 + 0.0730027i 0.561888 0.827213i \(-0.310075\pi\)
−0.435444 + 0.900216i \(0.643408\pi\)
\(312\) 0.125228 + 0.216446i 0.00708966 + 0.0122538i
\(313\) −27.5687 15.9168i −1.55828 0.899671i −0.997422 0.0717560i \(-0.977140\pi\)
−0.560854 0.827915i \(-0.689527\pi\)
\(314\) 0.100066 0.568514i 0.00564707 0.0320831i
\(315\) −0.494385 0.856300i −0.0278555 0.0482471i
\(316\) 4.10251 11.2929i 0.230784 0.635276i
\(317\) −11.0688 6.39059i −0.621687 0.358931i 0.155838 0.987783i \(-0.450192\pi\)
−0.777526 + 0.628851i \(0.783525\pi\)
\(318\) −0.104768 0.287576i −0.00587510 0.0161265i
\(319\) 14.9401i 0.836482i
\(320\) −0.469094 + 0.815926i −0.0262231 + 0.0456116i
\(321\) 0.151533 0.262463i 0.00845774 0.0146492i
\(322\) 18.3575 + 15.3943i 1.02303 + 0.857891i
\(323\) 27.7852i 1.54601i
\(324\) 16.8439 + 6.11908i 0.935770 + 0.339949i
\(325\) 6.64852 0.368794
\(326\) 7.49781 + 1.31972i 0.415265 + 0.0730924i
\(327\) 0.625868i 0.0346106i
\(328\) −0.0125117 13.7280i −0.000690842 0.757999i
\(329\) 9.05520 + 15.6841i 0.499229 + 0.864690i
\(330\) 0.0192525 + 0.00338870i 0.00105981 + 0.000186542i
\(331\) −11.3265 + 19.6180i −0.622558 + 1.07830i 0.366450 + 0.930438i \(0.380573\pi\)
−0.989008 + 0.147864i \(0.952760\pi\)
\(332\) 0.704369 0.124641i 0.0386573 0.00684054i
\(333\) 18.1891 + 1.08639i 0.996758 + 0.0595339i
\(334\) −7.01076 5.87910i −0.383612 0.321690i
\(335\) 0.778038 + 0.449200i 0.0425087 + 0.0245424i
\(336\) 0.477616 0.570607i 0.0260561 0.0311292i
\(337\) 1.51804 + 2.62932i 0.0826928 + 0.143228i 0.904406 0.426674i \(-0.140315\pi\)
−0.821713 + 0.569902i \(0.806981\pi\)
\(338\) −15.6301 2.75111i −0.850166 0.149641i
\(339\) 0.0379027 0.00205859
\(340\) −0.674854 0.803268i −0.0365991 0.0435633i
\(341\) −12.6521 −0.685152
\(342\) −9.03655 24.8043i −0.488641 1.34126i
\(343\) 17.1937 0.928373
\(344\) −28.5113 16.4264i −1.53723 0.885650i
\(345\) −0.0235497 + 0.0407892i −0.00126787 + 0.00219602i
\(346\) −4.68863 + 26.6379i −0.252062 + 1.43206i
\(347\) −24.7590 −1.32913 −0.664566 0.747229i \(-0.731384\pi\)
−0.664566 + 0.747229i \(0.731384\pi\)
\(348\) −0.381744 + 1.05082i −0.0204636 + 0.0563299i
\(349\) −7.68820 4.43878i −0.411540 0.237603i 0.279911 0.960026i \(-0.409695\pi\)
−0.691451 + 0.722423i \(0.743028\pi\)
\(350\) −6.77224 18.5890i −0.361992 0.993625i
\(351\) −0.459057 + 0.265036i −0.0245026 + 0.0141466i
\(352\) −1.75570 9.86936i −0.0935789 0.526039i
\(353\) −21.5013 12.4138i −1.14440 0.660718i −0.196881 0.980427i \(-0.563081\pi\)
−0.947516 + 0.319710i \(0.896415\pi\)
\(354\) 0.891847 0.324913i 0.0474011 0.0172689i
\(355\) 0.570004 0.987276i 0.0302527 0.0523992i
\(356\) −7.36455 + 1.30318i −0.390320 + 0.0690685i
\(357\) 0.414739 + 0.718350i 0.0219503 + 0.0380191i
\(358\) −1.96611 5.39674i −0.103912 0.285227i
\(359\) 29.8646 1.57619 0.788095 0.615553i \(-0.211067\pi\)
0.788095 + 0.615553i \(0.211067\pi\)
\(360\) −0.863698 0.497607i −0.0455209 0.0262262i
\(361\) −9.91550 + 17.1742i −0.521869 + 0.903903i
\(362\) −19.7250 16.5410i −1.03672 0.869377i
\(363\) 0.451321 0.260570i 0.0236882 0.0136764i
\(364\) −1.30374 7.36769i −0.0683345 0.386172i
\(365\) −0.318252 0.551229i −0.0166581 0.0288527i
\(366\) 0.155204 0.881770i 0.00811263 0.0460909i
\(367\) −2.35547 4.07979i −0.122954 0.212963i 0.797977 0.602688i \(-0.205904\pi\)
−0.920931 + 0.389724i \(0.872570\pi\)
\(368\) 23.7904 + 4.16508i 1.24016 + 0.217120i
\(369\) 14.5394 0.756889
\(370\) −0.984467 0.234545i −0.0511800 0.0121934i
\(371\) 9.15785i 0.475452i
\(372\) −0.889898 0.323284i −0.0461391 0.0167615i
\(373\) 30.0078 17.3250i 1.55375 0.897056i 0.555915 0.831239i \(-0.312368\pi\)
0.997832 0.0658166i \(-0.0209652\pi\)
\(374\) 11.0051 + 1.93705i 0.569059 + 0.100162i
\(375\) 0.0674600 0.0389481i 0.00348362 0.00201127i
\(376\) 15.8196 + 9.11421i 0.815831 + 0.470030i
\(377\) 5.62085 + 9.73560i 0.289488 + 0.501409i
\(378\) 1.20863 + 1.01354i 0.0621652 + 0.0521307i
\(379\) 24.0330 + 13.8755i 1.23449 + 0.712735i 0.967963 0.251091i \(-0.0807893\pi\)
0.266531 + 0.963826i \(0.414123\pi\)
\(380\) 0.255480 + 1.44377i 0.0131059 + 0.0740638i
\(381\) 0.946615i 0.0484966i
\(382\) −8.20023 + 2.98746i −0.419560 + 0.152852i
\(383\) −11.9736 + 6.91297i −0.611823 + 0.353236i −0.773679 0.633578i \(-0.781585\pi\)
0.161856 + 0.986814i \(0.448252\pi\)
\(384\) 0.128691 0.739030i 0.00656724 0.0377135i
\(385\) −0.506549 0.292456i −0.0258161 0.0149049i
\(386\) 3.06888 1.11804i 0.156202 0.0569066i
\(387\) 17.4248 30.1806i 0.885751 1.53417i
\(388\) 20.2020 + 24.0461i 1.02560 + 1.22075i
\(389\) 12.4342 + 21.5366i 0.630438 + 1.09195i 0.987462 + 0.157855i \(0.0504579\pi\)
−0.357025 + 0.934095i \(0.616209\pi\)
\(390\) 0.0138207 0.00503507i 0.000699837 0.000254961i
\(391\) −13.4614 + 23.3159i −0.680774 + 1.17914i
\(392\) −2.13437 + 1.23487i −0.107802 + 0.0623706i
\(393\) 1.05997i 0.0534684i
\(394\) −4.10834 + 23.3410i −0.206975 + 1.17590i
\(395\) −0.612066 0.353377i −0.0307964 0.0177803i
\(396\) 10.4544 1.84994i 0.525353 0.0929630i
\(397\) 5.96597i 0.299423i −0.988730 0.149712i \(-0.952165\pi\)
0.988730 0.149712i \(-0.0478345\pi\)
\(398\) 2.46027 0.896312i 0.123322 0.0449281i
\(399\) 1.15923i 0.0580342i
\(400\) −15.2940 12.8016i −0.764702 0.640080i
\(401\) 14.3923i 0.718718i 0.933199 + 0.359359i \(0.117005\pi\)
−0.933199 + 0.359359i \(0.882995\pi\)
\(402\) −0.705228 0.124130i −0.0351736 0.00619103i
\(403\) −8.24469 + 4.76008i −0.410697 + 0.237116i
\(404\) −5.46430 6.50407i −0.271859 0.323590i
\(405\) 0.527077 0.912924i 0.0261906 0.0453635i
\(406\) 21.4949 25.6324i 1.06677 1.27212i
\(407\) 9.63965 4.82337i 0.477820 0.239086i
\(408\) 0.724556 + 0.417443i 0.0358709 + 0.0206665i
\(409\) 0.418816 + 0.241804i 0.0207091 + 0.0119564i 0.510319 0.859985i \(-0.329527\pi\)
−0.489610 + 0.871942i \(0.662861\pi\)
\(410\) −0.795288 0.139982i −0.0392765 0.00691320i
\(411\) 0.715643 0.413176i 0.0353000 0.0203805i
\(412\) 8.87290 + 10.5613i 0.437136 + 0.520316i
\(413\) −28.4009 −1.39751
\(414\) −4.43423 + 25.1925i −0.217930 + 1.23814i
\(415\) 0.0420765i 0.00206545i
\(416\) −4.85721 5.77077i −0.238144 0.282935i
\(417\) −0.180167 −0.00882282
\(418\) −11.9660 10.0345i −0.585275 0.490801i
\(419\) −6.21203 3.58652i −0.303478 0.175213i 0.340527 0.940235i \(-0.389395\pi\)
−0.644004 + 0.765022i \(0.722728\pi\)
\(420\) −0.0281557 0.0335133i −0.00137386 0.00163528i
\(421\) −28.9608 −1.41146 −0.705732 0.708479i \(-0.749382\pi\)
−0.705732 + 0.708479i \(0.749382\pi\)
\(422\) 6.89670 2.51257i 0.335726 0.122310i
\(423\) −9.66818 + 16.7458i −0.470083 + 0.814208i
\(424\) 4.62334 + 7.99104i 0.224529 + 0.388079i
\(425\) 19.2540 11.1163i 0.933957 0.539220i
\(426\) −0.157512 + 0.894886i −0.00763149 + 0.0433574i
\(427\) −13.3946 + 23.2001i −0.648210 + 1.12273i
\(428\) −3.12140 + 8.59222i −0.150879 + 0.415320i
\(429\) −0.0783343 + 0.135679i −0.00378202 + 0.00655064i
\(430\) −1.24369 + 1.48309i −0.0599760 + 0.0715208i
\(431\) 24.5328 14.1640i 1.18170 0.682257i 0.225296 0.974290i \(-0.427665\pi\)
0.956408 + 0.292034i \(0.0943319\pi\)
\(432\) 1.56632 + 0.274222i 0.0753596 + 0.0131935i
\(433\) −9.60818 −0.461740 −0.230870 0.972985i \(-0.574157\pi\)
−0.230870 + 0.972985i \(0.574157\pi\)
\(434\) 21.7071 + 18.2032i 1.04197 + 0.873781i
\(435\) 0.0569536 + 0.0328822i 0.00273071 + 0.00157658i
\(436\) 3.28953 + 18.5898i 0.157540 + 0.890289i
\(437\) 32.5850 18.8129i 1.55875 0.899945i
\(438\) 0.388733 + 0.325984i 0.0185744 + 0.0155761i
\(439\) 4.93381 2.84854i 0.235478 0.135953i −0.377619 0.925961i \(-0.623257\pi\)
0.613097 + 0.790008i \(0.289924\pi\)
\(440\) −0.589655 0.000537413i −0.0281107 2.56201e-5i
\(441\) −1.30580 2.26172i −0.0621811 0.107701i
\(442\) 7.90017 2.87814i 0.375773 0.136899i
\(443\) 17.5297i 0.832863i 0.909167 + 0.416432i \(0.136719\pi\)
−0.909167 + 0.416432i \(0.863281\pi\)
\(444\) 0.801257 0.0929459i 0.0380260 0.00441102i
\(445\) 0.439931i 0.0208547i
\(446\) −2.05539 5.64179i −0.0973254 0.267147i
\(447\) 0.468361 + 0.811226i 0.0221527 + 0.0383697i
\(448\) −11.1872 + 19.4587i −0.528548 + 0.919338i
\(449\) 12.7067 7.33619i 0.599664 0.346216i −0.169245 0.985574i \(-0.554133\pi\)
0.768910 + 0.639358i \(0.220800\pi\)
\(450\) 13.5730 16.1857i 0.639837 0.762999i
\(451\) 7.44854 4.30041i 0.350738 0.202499i
\(452\) −1.12580 + 0.199214i −0.0529532 + 0.00937026i
\(453\) −0.343434 0.198282i −0.0161359 0.00931609i
\(454\) −21.8336 + 26.0364i −1.02470 + 1.22195i
\(455\) −0.440119 −0.0206331
\(456\) −0.585238 1.01153i −0.0274063 0.0473693i
\(457\) 3.35122 1.93483i 0.156764 0.0905075i −0.419566 0.907725i \(-0.637818\pi\)
0.576330 + 0.817217i \(0.304484\pi\)
\(458\) 27.4796 + 23.0439i 1.28404 + 1.07677i
\(459\) −0.886280 + 1.53508i −0.0413680 + 0.0716515i
\(460\) 0.485095 1.33531i 0.0226177 0.0622593i
\(461\) −7.09406 + 12.2873i −0.330403 + 0.572275i −0.982591 0.185782i \(-0.940518\pi\)
0.652188 + 0.758058i \(0.273851\pi\)
\(462\) 0.459145 + 0.0808159i 0.0213614 + 0.00375989i
\(463\) 10.3602 5.98146i 0.481479 0.277982i −0.239554 0.970883i \(-0.577001\pi\)
0.721033 + 0.692901i \(0.243668\pi\)
\(464\) 5.81566 33.2183i 0.269985 1.54212i
\(465\) −0.0278466 + 0.0482317i −0.00129136 + 0.00223669i
\(466\) 3.29345 + 9.04015i 0.152566 + 0.418777i
\(467\) 40.6459 1.88087 0.940433 0.339979i \(-0.110420\pi\)
0.940433 + 0.339979i \(0.110420\pi\)
\(468\) 6.11654 5.13872i 0.282737 0.237538i
\(469\) 18.5551 + 10.7128i 0.856797 + 0.494672i
\(470\) 0.690064 0.822894i 0.0318303 0.0379573i
\(471\) 0.0270642 0.00124705
\(472\) −24.7823 + 14.3382i −1.14070 + 0.659968i
\(473\) 20.6154i 0.947898i
\(474\) 0.554788 + 0.0976504i 0.0254823 + 0.00448523i
\(475\) −31.0710 −1.42564
\(476\) −16.0944 19.1569i −0.737683 0.878053i
\(477\) −8.46781 + 4.88889i −0.387715 + 0.223847i
\(478\) 1.60352 9.11022i 0.0733435 0.416692i
\(479\) −25.1217 14.5040i −1.14784 0.662705i −0.199479 0.979902i \(-0.563925\pi\)
−0.948360 + 0.317197i \(0.897258\pi\)
\(480\) −0.0414876 0.0150289i −0.00189364 0.000685973i
\(481\) 4.46694 6.76982i 0.203675 0.308677i
\(482\) 23.3624 + 19.5913i 1.06413 + 0.892358i
\(483\) −0.561627 + 0.972767i −0.0255549 + 0.0442624i
\(484\) −12.0358 + 10.1117i −0.547080 + 0.459621i
\(485\) 1.59988 0.923689i 0.0726466 0.0419426i
\(486\) −0.438021 + 2.48856i −0.0198690 + 0.112883i
\(487\) 35.6137i 1.61381i 0.590679 + 0.806906i \(0.298860\pi\)
−0.590679 + 0.806906i \(0.701140\pi\)
\(488\) 0.0246137 + 27.0064i 0.00111421 + 1.22252i
\(489\) 0.356934i 0.0161411i
\(490\) 0.0496508 + 0.136286i 0.00224299 + 0.00615675i
\(491\) 21.5105i 0.970754i −0.874305 0.485377i \(-0.838682\pi\)
0.874305 0.485377i \(-0.161318\pi\)
\(492\) 0.633781 0.112150i 0.0285731 0.00505611i
\(493\) 32.5558 + 18.7961i 1.46624 + 0.846533i
\(494\) −11.5728 2.03697i −0.520684 0.0916476i
\(495\) 0.624507i 0.0280695i
\(496\) 28.1312 + 4.92506i 1.26313 + 0.221142i
\(497\) 13.5938 23.5452i 0.609766 1.05615i
\(498\) 0.0114799 + 0.0315110i 0.000514427 + 0.00141204i
\(499\) −6.38910 11.0662i −0.286015 0.495393i 0.686840 0.726809i \(-0.258998\pi\)
−0.972855 + 0.231416i \(0.925664\pi\)
\(500\) −1.79901 + 1.51142i −0.0804544 + 0.0675926i
\(501\) 0.214486 0.371501i 0.00958253 0.0165974i
\(502\) −6.26350 17.1926i −0.279554 0.767342i
\(503\) −19.4096 11.2061i −0.865430 0.499656i 0.000396621 1.00000i \(-0.499874\pi\)
−0.865827 + 0.500343i \(0.833207\pi\)
\(504\) −20.5980 11.8673i −0.917509 0.528610i
\(505\) −0.432740 + 0.249843i −0.0192567 + 0.0111179i
\(506\) 5.17971 + 14.2177i 0.230266 + 0.632054i
\(507\) 0.744074i 0.0330455i
\(508\) 4.97535 + 28.1167i 0.220746 + 1.24748i
\(509\) 4.18109 + 2.41396i 0.185324 + 0.106997i 0.589792 0.807556i \(-0.299210\pi\)
−0.404468 + 0.914552i \(0.632543\pi\)
\(510\) 0.0316058 0.0376896i 0.00139953 0.00166892i
\(511\) −7.58988 13.1461i −0.335757 0.581548i
\(512\) 0.0618679 + 22.6273i 0.00273420 + 0.999996i
\(513\) 2.14534 1.23861i 0.0947192 0.0546861i
\(514\) 6.42879 36.5244i 0.283562 1.61102i
\(515\) 0.702681 0.405693i 0.0309638 0.0178770i
\(516\) 0.526760 1.45000i 0.0231893 0.0638327i
\(517\) 11.4385i 0.503065i
\(518\) −23.4782 5.59358i −1.03157 0.245768i
\(519\) −1.26810 −0.0556634
\(520\) −0.384043 + 0.222194i −0.0168414 + 0.00974386i
\(521\) −4.23916 7.34245i −0.185721 0.321678i 0.758098 0.652140i \(-0.226129\pi\)
−0.943819 + 0.330462i \(0.892795\pi\)
\(522\) 35.1760 + 6.19147i 1.53961 + 0.270993i
\(523\) −13.5054 23.3921i −0.590550 1.02286i −0.994158 0.107931i \(-0.965577\pi\)
0.403608 0.914932i \(-0.367756\pi\)
\(524\) 5.57114 + 31.4836i 0.243377 + 1.37537i
\(525\) 0.803300 0.463786i 0.0350589 0.0202413i
\(526\) −2.62709 + 3.13278i −0.114547 + 0.136596i
\(527\) −15.9177 + 27.5702i −0.693384 + 1.20098i
\(528\) 0.441445 0.161280i 0.0192114 0.00701883i
\(529\) −13.4581 −0.585136
\(530\) 0.510250 0.185891i 0.0221638 0.00807460i
\(531\) −15.1617 26.2609i −0.657962 1.13962i
\(532\) 6.09285 + 34.4319i 0.264159 + 1.49281i
\(533\) 3.23586 5.60468i 0.140161 0.242766i
\(534\) −0.120028 0.329464i −0.00519413 0.0142573i
\(535\) 0.465691 + 0.268867i 0.0201336 + 0.0116241i
\(536\) 21.5994 0.0196857i 0.932950 0.000850293i
\(537\) 0.233213 0.134646i 0.0100639 0.00581039i
\(538\) 18.6184 6.78294i 0.802696 0.292433i
\(539\) −1.33793 0.772453i −0.0576287 0.0332719i
\(540\) 0.0319379 0.0879148i 0.00137439 0.00378325i
\(541\) 39.0532 1.67903 0.839514 0.543338i \(-0.182840\pi\)
0.839514 + 0.543338i \(0.182840\pi\)
\(542\) 25.2408 + 4.44273i 1.08418 + 0.190831i
\(543\) 0.603463 1.04523i 0.0258971 0.0448551i
\(544\) −23.7151 8.59081i −1.01678 0.368328i
\(545\) 1.11049 0.0475680
\(546\) 0.329604 0.120080i 0.0141058 0.00513893i
\(547\) −0.788689 −0.0337219 −0.0168610 0.999858i \(-0.505367\pi\)
−0.0168610 + 0.999858i \(0.505367\pi\)
\(548\) −19.0847 + 16.0337i −0.815256 + 0.684926i
\(549\) −28.6027 −1.22073
\(550\) 2.16612 12.3065i 0.0923635 0.524752i
\(551\) −26.2683 45.4981i −1.11907 1.93828i
\(552\) 0.00103204 + 1.13236i 4.39265e−5 + 0.0481966i
\(553\) −14.5969 8.42755i −0.620725 0.358376i
\(554\) 1.31388 1.56679i 0.0558215 0.0665665i
\(555\) 0.00282891 0.0473636i 0.000120081 0.00201047i
\(556\) 5.35139 0.946948i 0.226950 0.0401595i
\(557\) 3.62812 6.28408i 0.153728 0.266265i −0.778867 0.627189i \(-0.784205\pi\)
0.932595 + 0.360924i \(0.117539\pi\)
\(558\) −5.24331 + 29.7892i −0.221967 + 1.26108i
\(559\) −7.75607 13.4339i −0.328047 0.568194i
\(560\) 1.01244 + 0.847440i 0.0427832 + 0.0358109i
\(561\) 0.523899i 0.0221190i
\(562\) 7.28123 41.3674i 0.307140 1.74498i
\(563\) −14.9236 −0.628954 −0.314477 0.949265i \(-0.601829\pi\)
−0.314477 + 0.949265i \(0.601829\pi\)
\(564\) −0.292274 + 0.804537i −0.0123070 + 0.0338771i
\(565\) 0.0672513i 0.00282928i
\(566\) 27.2588 32.5058i 1.14577 1.36632i
\(567\) 12.5701 21.7720i 0.527893 0.914337i
\(568\) −0.0249798 27.4081i −0.00104813 1.15002i
\(569\) 5.07491i 0.212751i 0.994326 + 0.106376i \(0.0339246\pi\)
−0.994326 + 0.106376i \(0.966075\pi\)
\(570\) −0.0645891 + 0.0235308i −0.00270534 + 0.000985595i
\(571\) −12.2321 7.06218i −0.511896 0.295543i 0.221717 0.975111i \(-0.428834\pi\)
−0.733612 + 0.679568i \(0.762167\pi\)
\(572\) 1.61359 4.44171i 0.0674678 0.185717i
\(573\) −0.204591 0.354362i −0.00854692 0.0148037i
\(574\) −18.9665 3.33837i −0.791648 0.139341i
\(575\) 26.0732 + 15.0534i 1.08733 + 0.627768i
\(576\) −23.9648 + 0.0436832i −0.998533 + 0.00182013i
\(577\) −23.9337 13.8181i −0.996374 0.575257i −0.0892008 0.996014i \(-0.528431\pi\)
−0.907174 + 0.420757i \(0.861765\pi\)
\(578\) 2.61843 3.12245i 0.108912 0.129877i
\(579\) 0.0765669 + 0.132618i 0.00318201 + 0.00551140i
\(580\) −1.86448 0.677334i −0.0774185 0.0281248i
\(581\) 1.00347i 0.0416308i
\(582\) −0.946130 + 1.12825i −0.0392183 + 0.0467674i
\(583\) −2.89205 + 5.00917i −0.119776 + 0.207459i
\(584\) −13.2596 7.63935i −0.548688 0.316119i
\(585\) −0.234956 0.406956i −0.00971425 0.0168256i
\(586\) −9.96401 8.35564i −0.411609 0.345168i
\(587\) −7.50930 13.0065i −0.309942 0.536835i 0.668407 0.743795i \(-0.266976\pi\)
−0.978349 + 0.206960i \(0.933643\pi\)
\(588\) −0.0743667 0.0885175i −0.00306683 0.00365040i
\(589\) 38.5305 22.2456i 1.58762 0.916614i
\(590\) 0.576497 + 1.58242i 0.0237340 + 0.0651470i
\(591\) −1.11115 −0.0457067
\(592\) −23.3107 + 6.97208i −0.958065 + 0.286551i
\(593\) −2.62264 −0.107699 −0.0538494 0.998549i \(-0.517149\pi\)
−0.0538494 + 0.998549i \(0.517149\pi\)
\(594\) 0.341024 + 0.936071i 0.0139924 + 0.0384074i
\(595\) −1.27458 + 0.735878i −0.0522526 + 0.0301680i
\(596\) −18.1752 21.6336i −0.744485 0.886149i
\(597\) 0.0613824 + 0.106317i 0.00251222 + 0.00435128i
\(598\) 8.72441 + 7.31613i 0.356768 + 0.299179i
\(599\) 15.0486 + 26.0650i 0.614870 + 1.06499i 0.990407 + 0.138179i \(0.0441250\pi\)
−0.375537 + 0.926807i \(0.622542\pi\)
\(600\) 0.466808 0.810240i 0.0190574 0.0330779i
\(601\) 20.5049 35.5155i 0.836413 1.44871i −0.0564625 0.998405i \(-0.517982\pi\)
0.892875 0.450304i \(-0.148685\pi\)
\(602\) −29.6603 + 35.3696i −1.20886 + 1.44156i
\(603\) 22.8760i 0.931584i
\(604\) 11.2430 + 4.08437i 0.457470 + 0.166191i
\(605\) 0.462333 + 0.800784i 0.0187965 + 0.0325565i
\(606\) 0.255913 0.305173i 0.0103957 0.0123968i
\(607\) −1.23016 0.710232i −0.0499306 0.0288274i 0.474827 0.880079i \(-0.342511\pi\)
−0.524757 + 0.851252i \(0.675844\pi\)
\(608\) 22.6995 + 26.9689i 0.920587 + 1.09373i
\(609\) 1.35827 + 0.784195i 0.0550397 + 0.0317772i
\(610\) 1.56454 + 0.275380i 0.0633462 + 0.0111498i
\(611\) 4.30348 + 7.45384i 0.174100 + 0.301550i
\(612\) 9.12147 25.1085i 0.368713 1.01495i
\(613\) −22.8358 13.1843i −0.922331 0.532508i −0.0379529 0.999280i \(-0.512084\pi\)
−0.884378 + 0.466772i \(0.845417\pi\)
\(614\) −7.91118 + 2.88216i −0.319269 + 0.116314i
\(615\) 0.0378598i 0.00152665i
\(616\) −14.0625 + 0.0128166i −0.566593 + 0.000516394i
\(617\) −1.14008 + 1.97467i −0.0458978 + 0.0794973i −0.888062 0.459724i \(-0.847948\pi\)
0.842164 + 0.539222i \(0.181282\pi\)
\(618\) −0.415549 + 0.495538i −0.0167158 + 0.0199335i
\(619\) 35.7164i 1.43557i 0.696267 + 0.717783i \(0.254843\pi\)
−0.696267 + 0.717783i \(0.745157\pi\)
\(620\) 0.573607 1.57896i 0.0230366 0.0634125i
\(621\) −2.40035 −0.0963226
\(622\) 0.631227 3.58624i 0.0253099 0.143795i
\(623\) 10.4918i 0.420344i
\(624\) 0.226987 0.271181i 0.00908674 0.0108559i
\(625\) −12.3963 21.4710i −0.495852 0.858840i
\(626\) −7.80409 + 44.3379i −0.311914 + 1.77210i
\(627\) 0.366085 0.634078i 0.0146200 0.0253226i
\(628\) −0.803871 + 0.142248i −0.0320780 + 0.00567631i
\(629\) 1.61706 27.0740i 0.0644764 1.07951i
\(630\) −0.898506 + 1.07146i −0.0357973 + 0.0426879i
\(631\) −17.0288 9.83160i −0.677907 0.391390i 0.121159 0.992633i \(-0.461339\pi\)
−0.799066 + 0.601243i \(0.794672\pi\)
\(632\) −16.9918 + 0.0154863i −0.675896 + 0.000616013i
\(633\) 0.172069 + 0.298032i 0.00683913 + 0.0118457i
\(634\) −3.13334 + 17.8017i −0.124441 + 0.706995i
\(635\) 1.67959 0.0666526
\(636\) −0.331407 + 0.278427i −0.0131412 + 0.0110404i
\(637\) −1.16247 −0.0460588
\(638\) 19.8520 7.23238i 0.785949 0.286333i
\(639\) 29.0281 1.14833
\(640\) 1.31127 + 0.228338i 0.0518325 + 0.00902586i
\(641\) 5.10552 8.84303i 0.201656 0.349278i −0.747406 0.664367i \(-0.768701\pi\)
0.949062 + 0.315089i \(0.102034\pi\)
\(642\) −0.422111 0.0742973i −0.0166594 0.00293228i
\(643\) −14.5558 −0.574023 −0.287012 0.957927i \(-0.592662\pi\)
−0.287012 + 0.957927i \(0.592662\pi\)
\(644\) 11.5689 31.8454i 0.455877 1.25488i
\(645\) −0.0785888 0.0453733i −0.00309443 0.00178657i
\(646\) −36.9204 + 13.4506i −1.45261 + 0.529208i
\(647\) −35.7149 + 20.6200i −1.40410 + 0.810656i −0.994810 0.101750i \(-0.967556\pi\)
−0.409287 + 0.912406i \(0.634222\pi\)
\(648\) −0.0230986 25.3440i −0.000907397 0.995605i
\(649\) −15.5347 8.96898i −0.609792 0.352063i
\(650\) −3.21851 8.83442i −0.126240 0.346514i
\(651\) −0.664104 + 1.15026i −0.0260283 + 0.0450823i
\(652\) −1.87603 10.6018i −0.0734709 0.415199i
\(653\) 19.5700 + 33.8962i 0.765832 + 1.32646i 0.939806 + 0.341709i \(0.111006\pi\)
−0.173974 + 0.984750i \(0.555661\pi\)
\(654\) −0.831640 + 0.302979i −0.0325197 + 0.0118474i
\(655\) 1.88072 0.0734858
\(656\) −18.2354 + 6.66223i −0.711971 + 0.260117i
\(657\) 8.10368 14.0360i 0.316155 0.547596i
\(658\) 16.4571 19.6249i 0.641564 0.765058i
\(659\) 29.1716 16.8423i 1.13637 0.656081i 0.190838 0.981622i \(-0.438880\pi\)
0.945528 + 0.325540i \(0.105546\pi\)
\(660\) −0.00481716 0.0272227i −0.000187508 0.00105964i
\(661\) 10.0236 + 17.3614i 0.389874 + 0.675281i 0.992432 0.122794i \(-0.0391853\pi\)
−0.602559 + 0.798075i \(0.705852\pi\)
\(662\) 31.5510 + 5.55342i 1.22627 + 0.215840i
\(663\) 0.197105 + 0.341395i 0.00765491 + 0.0132587i
\(664\) −0.506600 0.875613i −0.0196599 0.0339804i
\(665\) 2.05684 0.0797608
\(666\) −7.36166 24.6953i −0.285259 0.956922i
\(667\) 50.9061i 1.97109i
\(668\) −4.41816 + 12.1618i −0.170944 + 0.470554i
\(669\) 0.243803 0.140760i 0.00942596 0.00544208i
\(670\) 0.220245 1.25129i 0.00850881 0.0483417i
\(671\) −14.6532 + 8.46002i −0.565680 + 0.326595i
\(672\) −0.989422 0.358419i −0.0381678 0.0138263i
\(673\) −9.91171 17.1676i −0.382068 0.661761i 0.609290 0.792948i \(-0.291455\pi\)
−0.991358 + 0.131186i \(0.958121\pi\)
\(674\) 2.75891 3.28997i 0.106269 0.126725i
\(675\) 1.71662 + 0.991089i 0.0660726 + 0.0381470i
\(676\) 3.91081 + 22.1008i 0.150416 + 0.850029i
\(677\) 34.6863i 1.33310i 0.745459 + 0.666551i \(0.232230\pi\)
−0.745459 + 0.666551i \(0.767770\pi\)
\(678\) −0.0183484 0.0503643i −0.000704668 0.00193423i
\(679\) 38.1549 22.0287i 1.46425 0.845385i
\(680\) −0.740674 + 1.28559i −0.0284035 + 0.0493001i
\(681\) −1.37967 0.796553i −0.0528691 0.0305240i
\(682\) 6.12482 + 16.8119i 0.234531 + 0.643761i
\(683\) −6.85996 + 11.8818i −0.262489 + 0.454645i −0.966903 0.255145i \(-0.917877\pi\)
0.704414 + 0.709790i \(0.251210\pi\)
\(684\) −28.5849 + 24.0152i −1.09297 + 0.918243i
\(685\) 0.733104 + 1.26977i 0.0280105 + 0.0485156i
\(686\) −8.32336 22.8466i −0.317787 0.872288i
\(687\) −0.840708 + 1.45615i −0.0320750 + 0.0555555i
\(688\) −8.02489 + 45.8371i −0.305946 + 1.74752i
\(689\) 4.35226i 0.165808i
\(690\) 0.0656001 + 0.0115465i 0.00249735 + 0.000439568i
\(691\) −33.1616 19.1458i −1.26153 0.728342i −0.288156 0.957584i \(-0.593042\pi\)
−0.973370 + 0.229241i \(0.926375\pi\)
\(692\) 37.6656 6.66506i 1.43183 0.253367i
\(693\) 14.8936i 0.565763i
\(694\) 11.9857 + 32.8992i 0.454970 + 1.24884i
\(695\) 0.319673i 0.0121259i
\(696\) 1.58111 0.00144102i 0.0599317 5.46219e-5i
\(697\) 21.6414i 0.819727i
\(698\) −2.17636 + 12.3647i −0.0823763 + 0.468011i
\(699\) −0.390658 + 0.225547i −0.0147760 + 0.00853096i
\(700\) −21.4223 + 17.9976i −0.809687 + 0.680246i
\(701\) −12.3847 + 21.4509i −0.467763 + 0.810188i −0.999321 0.0368329i \(-0.988273\pi\)
0.531559 + 0.847021i \(0.321606\pi\)
\(702\) 0.574401 + 0.481682i 0.0216794 + 0.0181799i
\(703\) −20.8756 + 31.6379i −0.787340 + 1.19324i
\(704\) −12.2643 + 7.11062i −0.462227 + 0.267992i
\(705\) 0.0436052 + 0.0251755i 0.00164227 + 0.000948164i
\(706\) −6.08653 + 34.5798i −0.229070 + 1.30143i
\(707\) −10.3203 + 5.95841i −0.388134 + 0.224089i
\(708\) −0.863474 1.02778i −0.0324514 0.0386263i
\(709\) −33.6022 −1.26196 −0.630979 0.775800i \(-0.717346\pi\)
−0.630979 + 0.775800i \(0.717346\pi\)
\(710\) −1.58781 0.279476i −0.0595893 0.0104885i
\(711\) 17.9961i 0.674906i
\(712\) 5.29677 + 9.15499i 0.198505 + 0.343098i
\(713\) −43.1104 −1.61450
\(714\) 0.753756 0.898845i 0.0282086 0.0336384i
\(715\) −0.240737 0.138990i −0.00900305 0.00519791i
\(716\) −6.21929 + 5.22505i −0.232426 + 0.195269i
\(717\) 0.433693 0.0161966
\(718\) −14.4572 39.6834i −0.539539 1.48097i
\(719\) 8.33594 14.4383i 0.310878 0.538456i −0.667675 0.744453i \(-0.732710\pi\)
0.978553 + 0.205997i \(0.0660436\pi\)
\(720\) −0.243100 + 1.38855i −0.00905980 + 0.0517483i
\(721\) 16.7580 9.67522i 0.624100 0.360324i
\(722\) 27.6207 + 4.86162i 1.02794 + 0.180931i
\(723\) −0.714745 + 1.23797i −0.0265816 + 0.0460408i
\(724\) −12.4306 + 34.2176i −0.461981 + 1.27169i
\(725\) 21.0189 36.4057i 0.780621 1.35207i
\(726\) −0.564721 0.473565i −0.0209588 0.0175757i
\(727\) −14.4106 + 8.31995i −0.534458 + 0.308570i −0.742830 0.669480i \(-0.766517\pi\)
0.208372 + 0.978050i \(0.433184\pi\)
\(728\) −9.15890 + 5.29903i −0.339451 + 0.196395i
\(729\) 26.7629 0.991218
\(730\) −0.578398 + 0.689733i −0.0214075 + 0.0255282i
\(731\) −44.9229 25.9363i −1.66153 0.959287i
\(732\) −1.24681 + 0.220628i −0.0460835 + 0.00815463i
\(733\) 37.0218 21.3745i 1.36743 0.789486i 0.376831 0.926282i \(-0.377014\pi\)
0.990599 + 0.136796i \(0.0436804\pi\)
\(734\) −4.28087 + 5.10490i −0.158010 + 0.188425i
\(735\) −0.00588940 + 0.00340025i −0.000217234 + 0.000125420i
\(736\) −5.98229 33.6285i −0.220510 1.23956i
\(737\) 6.76621 + 11.7194i 0.249236 + 0.431690i
\(738\) −7.03841 19.3196i −0.259087 0.711164i
\(739\) 9.95512i 0.366205i 0.983094 + 0.183103i \(0.0586140\pi\)
−0.983094 + 0.183103i \(0.941386\pi\)
\(740\) 0.164915 + 1.42168i 0.00606240 + 0.0522620i
\(741\) 0.550924i 0.0202387i
\(742\) 12.1688 4.43325i 0.446729 0.162750i
\(743\) 6.26254 + 10.8470i 0.229750 + 0.397939i 0.957734 0.287655i \(-0.0928757\pi\)
−0.727984 + 0.685594i \(0.759542\pi\)
\(744\) 0.00122035 + 1.33898i 4.47401e−5 + 0.0490893i
\(745\) −1.43937 + 0.831019i −0.0527344 + 0.0304462i
\(746\) −37.5477 31.4868i −1.37472 1.15282i
\(747\) 0.927856 0.535698i 0.0339485 0.0196002i
\(748\) −2.75358 15.5610i −0.100681 0.568968i
\(749\) 11.1061 + 6.41211i 0.405808 + 0.234293i
\(750\) −0.0844103 0.0707850i −0.00308223 0.00258470i
\(751\) −36.9461 −1.34818 −0.674092 0.738647i \(-0.735465\pi\)
−0.674092 + 0.738647i \(0.735465\pi\)
\(752\) 4.45263 25.4328i 0.162371 0.927440i
\(753\) 0.742955 0.428945i 0.0270748 0.0156316i
\(754\) 10.2154 12.1818i 0.372024 0.443635i
\(755\) 0.351814 0.609359i 0.0128038 0.0221769i
\(756\) 0.761675 2.09665i 0.0277019 0.0762544i
\(757\) −2.35067 + 4.07149i −0.0854367 + 0.147981i −0.905577 0.424181i \(-0.860562\pi\)
0.820141 + 0.572162i \(0.193895\pi\)
\(758\) 6.80322 38.6516i 0.247104 1.40389i
\(759\) −0.614399 + 0.354724i −0.0223013 + 0.0128757i
\(760\) 1.79478 1.03840i 0.0651033 0.0376666i
\(761\) −15.6146 + 27.0452i −0.566027 + 0.980388i 0.430926 + 0.902387i \(0.358187\pi\)
−0.996953 + 0.0780005i \(0.975146\pi\)
\(762\) −1.25784 + 0.458250i −0.0455668 + 0.0166006i
\(763\) 26.4836 0.958770
\(764\) 7.93935 + 9.45008i 0.287236 + 0.341892i
\(765\) −1.36086 0.785692i −0.0492020 0.0284068i
\(766\) 14.9821 + 12.5638i 0.541327 + 0.453947i
\(767\) −13.4975 −0.487366
\(768\) −1.04431 + 0.186757i −0.0376831 + 0.00673903i
\(769\) 29.9901i 1.08147i 0.841193 + 0.540735i \(0.181854\pi\)
−0.841193 + 0.540735i \(0.818146\pi\)
\(770\) −0.143393 + 0.814667i −0.00516751 + 0.0293586i
\(771\) 1.73875 0.0626195
\(772\) −2.97125 3.53663i −0.106938 0.127286i
\(773\) 0.804044 0.464215i 0.0289195 0.0166967i −0.485471 0.874253i \(-0.661352\pi\)
0.514390 + 0.857556i \(0.328018\pi\)
\(774\) −48.5386 8.54345i −1.74468 0.307088i
\(775\) 30.8306 + 17.8000i 1.10747 + 0.639396i
\(776\) 22.1723 38.4845i 0.795939 1.38151i
\(777\) 0.0674657 1.12956i 0.00242032 0.0405227i
\(778\) 22.5981 26.9480i 0.810182 0.966133i
\(779\) −15.1224 + 26.1927i −0.541816 + 0.938452i
\(780\) −0.0133810 0.0159272i −0.000479116 0.000570285i
\(781\) 14.8711 8.58585i 0.532131 0.307226i
\(782\) 37.4983 + 6.60021i 1.34094 + 0.236023i
\(783\) 3.35158i 0.119776i
\(784\) 2.67411 + 2.23831i 0.0955039 + 0.0799397i
\(785\) 0.0480204i 0.00171392i
\(786\) −1.40847 + 0.513125i −0.0502383 + 0.0183025i
\(787\) 34.1150i 1.21607i −0.793910 0.608035i \(-0.791958\pi\)
0.793910 0.608035i \(-0.208042\pi\)
\(788\) 33.0039 5.84015i 1.17571 0.208047i
\(789\) −0.166006 0.0958437i −0.00590998 0.00341213i
\(790\) −0.173262 + 0.984368i −0.00616440 + 0.0350222i
\(791\) 1.60385i 0.0570264i
\(792\) −7.51906 12.9960i −0.267178 0.461794i
\(793\) −6.36577 + 11.0258i −0.226055 + 0.391539i
\(794\) −7.92745 + 2.88808i −0.281335 + 0.102494i
\(795\) 0.0127304 + 0.0220498i 0.000451503 + 0.000782025i
\(796\) −2.38200 2.83526i −0.0844278 0.100493i
\(797\) −22.3658 + 38.7387i −0.792238 + 1.37220i 0.132340 + 0.991204i \(0.457751\pi\)
−0.924578 + 0.380992i \(0.875582\pi\)
\(798\) −1.54036 + 0.561176i −0.0545283 + 0.0198654i
\(799\) 24.9256 + 14.3908i 0.881804 + 0.509110i
\(800\) −9.60674 + 26.5196i −0.339650 + 0.937608i
\(801\) −9.70122 + 5.60100i −0.342776 + 0.197902i
\(802\) 19.1242 6.96723i 0.675300 0.246021i
\(803\) 9.58754i 0.338337i
\(804\) 0.176455 + 0.997182i 0.00622309 + 0.0351679i
\(805\) −1.72599 0.996503i −0.0608333 0.0351221i
\(806\) 10.3163 + 8.65105i 0.363376 + 0.304720i
\(807\) 0.464518 + 0.804569i 0.0163518 + 0.0283222i
\(808\) −5.99724 + 10.4094i −0.210982 + 0.366202i
\(809\) −4.23943 + 2.44764i −0.149050 + 0.0860543i −0.572670 0.819786i \(-0.694093\pi\)
0.423620 + 0.905840i \(0.360759\pi\)
\(810\) −1.46823 0.258428i −0.0515883 0.00908025i
\(811\) 28.7819 16.6172i 1.01067 0.583510i 0.0992810 0.995059i \(-0.468346\pi\)
0.911387 + 0.411550i \(0.135012\pi\)
\(812\) −44.4654 16.1535i −1.56043 0.566876i
\(813\) 1.20159i 0.0421417i
\(814\) −11.0757 10.4740i −0.388203 0.367113i
\(815\) −0.633313 −0.0221840
\(816\) 0.203936 1.16486i 0.00713920 0.0407781i
\(817\) 36.2470 + 62.7817i 1.26812 + 2.19645i
\(818\) 0.118558 0.673570i 0.00414527 0.0235508i
\(819\) −5.60339 9.70535i −0.195798 0.339133i
\(820\) 0.198989 + 1.12453i 0.00694900 + 0.0392702i
\(821\) −2.33361 + 1.34731i −0.0814437 + 0.0470215i −0.540169 0.841557i \(-0.681640\pi\)
0.458725 + 0.888578i \(0.348306\pi\)
\(822\) −0.895458 0.750915i −0.0312327 0.0261912i
\(823\) −9.16810 + 15.8796i −0.319580 + 0.553529i −0.980400 0.197015i \(-0.936875\pi\)
0.660821 + 0.750544i \(0.270208\pi\)
\(824\) 9.73828 16.9028i 0.339249 0.588835i
\(825\) 0.585854 0.0203968
\(826\) 13.7487 + 37.7385i 0.478377 + 1.31309i
\(827\) −5.76131 9.97889i −0.200341 0.347000i 0.748298 0.663363i \(-0.230872\pi\)
−0.948638 + 0.316363i \(0.897538\pi\)
\(828\) 35.6218 6.30341i 1.23794 0.219059i
\(829\) −23.7205 + 41.0851i −0.823847 + 1.42694i 0.0789503 + 0.996879i \(0.474843\pi\)
−0.902797 + 0.430066i \(0.858490\pi\)
\(830\) −0.0559103 + 0.0203689i −0.00194068 + 0.000707016i
\(831\) 0.0830244 + 0.0479341i 0.00288008 + 0.00166282i
\(832\) −5.31673 + 9.24774i −0.184325 + 0.320608i
\(833\) −3.36650 + 1.94365i −0.116642 + 0.0673434i
\(834\) 0.0872177 + 0.239402i 0.00302010 + 0.00828982i
\(835\) 0.659159 + 0.380566i 0.0228111 + 0.0131700i
\(836\) −7.54092 + 20.7578i −0.260808 + 0.717922i
\(837\) −2.83832 −0.0981067
\(838\) −1.75849 + 9.99062i −0.0607459 + 0.345120i
\(839\) −0.161050 + 0.278947i −0.00556007 + 0.00963033i −0.868792 0.495177i \(-0.835103\pi\)
0.863232 + 0.504807i \(0.168437\pi\)
\(840\) −0.0309018 + 0.0536363i −0.00106621 + 0.00185063i
\(841\) 42.0797 1.45103
\(842\) 14.0197 + 38.4825i 0.483152 + 1.32619i
\(843\) 1.96930 0.0678263
\(844\) −6.67730 7.94788i −0.229842 0.273577i
\(845\) 1.32022 0.0454169
\(846\) 26.9317 + 4.74036i 0.925933 + 0.162977i
\(847\) 11.0260 + 19.0976i 0.378858 + 0.656202i
\(848\) 8.38019 10.0118i 0.287777 0.343807i
\(849\) 1.72248 + 0.994477i 0.0591155 + 0.0341303i
\(850\) −24.0919 20.2030i −0.826344 0.692957i
\(851\) 32.8457 16.4350i 1.12594 0.563383i
\(852\) 1.26536 0.223909i 0.0433504 0.00767100i
\(853\) 0.939582 1.62740i 0.0321707 0.0557212i −0.849492 0.527602i \(-0.823091\pi\)
0.881662 + 0.471881i \(0.156425\pi\)
\(854\) 37.3121 + 6.56744i 1.27679 + 0.224733i
\(855\) 1.09804 + 1.90186i 0.0375521 + 0.0650422i
\(856\) 12.9282 0.0117828i 0.441877 0.000402728i
\(857\) 22.1967i 0.758225i −0.925351 0.379112i \(-0.876229\pi\)
0.925351 0.379112i \(-0.123771\pi\)
\(858\) 0.218208 + 0.0384077i 0.00744951 + 0.00131122i
\(859\) 6.66292 0.227336 0.113668 0.993519i \(-0.463740\pi\)
0.113668 + 0.993519i \(0.463740\pi\)
\(860\) 2.57275 + 0.934636i 0.0877302 + 0.0318708i
\(861\) 0.902905i 0.0307709i
\(862\) −30.6970 25.7420i −1.04554 0.876775i
\(863\) 19.1729 33.2084i 0.652652 1.13043i −0.329824 0.944042i \(-0.606990\pi\)
0.982477 0.186385i \(-0.0596771\pi\)
\(864\) −0.393864 2.21404i −0.0133995 0.0753233i
\(865\) 2.25001i 0.0765025i
\(866\) 4.65126 + 12.7672i 0.158056 + 0.433845i
\(867\) 0.165459 + 0.0955278i 0.00561928 + 0.00324429i
\(868\) 13.6797 37.6560i 0.464321 1.27813i
\(869\) −5.32284 9.21942i −0.180565 0.312748i
\(870\) 0.0161223 0.0915967i 0.000546597 0.00310542i
\(871\) 8.81832 + 5.09126i 0.298797 + 0.172511i
\(872\) 23.1093 13.3702i 0.782578 0.452773i
\(873\) 40.7377 + 23.5199i 1.37876 + 0.796029i
\(874\) −40.7724 34.1910i −1.37915 1.15653i
\(875\) 1.64809 + 2.85457i 0.0557155 + 0.0965020i
\(876\) 0.244978 0.674347i 0.00827705 0.0227841i
\(877\) 22.3937i 0.756182i −0.925768 0.378091i \(-0.876581\pi\)
0.925768 0.378091i \(-0.123419\pi\)
\(878\) −6.17350 5.17699i −0.208346 0.174715i
\(879\) 0.304837 0.527994i 0.0102819 0.0178088i
\(880\) 0.286162 + 0.783261i 0.00964652 + 0.0264037i
\(881\) 1.89824 + 3.28784i 0.0639532 + 0.110770i 0.896229 0.443591i \(-0.146296\pi\)
−0.832276 + 0.554362i \(0.812962\pi\)
\(882\) −2.37319 + 2.83000i −0.0799095 + 0.0952912i
\(883\) −16.6281 28.8007i −0.559581 0.969222i −0.997531 0.0702232i \(-0.977629\pi\)
0.437951 0.898999i \(-0.355704\pi\)
\(884\) −7.64883 9.10428i −0.257258 0.306210i
\(885\) −0.0683820 + 0.0394804i −0.00229864 + 0.00132712i
\(886\) 23.2932 8.48603i 0.782549 0.285094i
\(887\) −16.6114 −0.557756 −0.278878 0.960327i \(-0.589962\pi\)
−0.278878 + 0.960327i \(0.589962\pi\)
\(888\) −0.511388 1.01970i −0.0171611 0.0342189i
\(889\) 40.0560 1.34343
\(890\) 0.584572 0.212968i 0.0195949 0.00713870i
\(891\) 13.7512 7.93925i 0.460682 0.265975i
\(892\) −6.50170 + 5.46231i −0.217693 + 0.182892i
\(893\) −20.1117 34.8346i −0.673014 1.16569i
\(894\) 0.851209 1.01506i 0.0284687 0.0339486i
\(895\) 0.238903 + 0.413793i 0.00798566 + 0.0138316i
\(896\) 31.2720 + 5.44555i 1.04472 + 0.181923i
\(897\) −0.266913 + 0.462307i −0.00891197 + 0.0154360i
\(898\) −15.8994 13.3329i −0.530569 0.444926i
\(899\) 60.1946i 2.00760i
\(900\) −28.0777 10.2001i −0.935925 0.340005i
\(901\) 7.27697 + 12.6041i 0.242431 + 0.419903i
\(902\) −9.32009 7.81566i −0.310325 0.260233i
\(903\) −1.87424 1.08209i −0.0623707 0.0360097i
\(904\) 0.809705 + 1.39950i 0.0269304 + 0.0465468i
\(905\) 1.85456 + 1.07073i 0.0616478 + 0.0355924i
\(906\) −0.0972185 + 0.552335i −0.00322987 + 0.0183501i
\(907\) 6.18617 + 10.7148i 0.205409 + 0.355778i 0.950263 0.311449i \(-0.100814\pi\)
−0.744854 + 0.667227i \(0.767481\pi\)
\(908\) 45.1661 + 16.4080i 1.49889 + 0.544520i
\(909\) −11.0189 6.36176i −0.365474 0.211006i
\(910\) 0.213059 + 0.584821i 0.00706283 + 0.0193866i
\(911\) 7.60836i 0.252076i 0.992025 + 0.126038i \(0.0402262\pi\)
−0.992025 + 0.126038i \(0.959774\pi\)
\(912\) −1.06079 + 1.26733i −0.0351264 + 0.0419654i
\(913\) 0.316895 0.548877i 0.0104877 0.0181652i
\(914\) −4.19326 3.51640i −0.138701 0.116312i
\(915\) 0.0744800i 0.00246223i
\(916\) 17.3176 47.6698i 0.572189 1.57505i
\(917\) 44.8526 1.48116
\(918\) 2.46883 + 0.434547i 0.0814834 + 0.0143422i
\(919\) 28.8584i 0.951950i 0.879459 + 0.475975i \(0.157905\pi\)
−0.879459 + 0.475975i \(0.842095\pi\)
\(920\) −2.00917 + 0.00183116i −0.0662403 + 6.03715e-5i
\(921\) −0.197380 0.341871i −0.00650388 0.0112650i
\(922\) 19.7613 + 3.47825i 0.650802 + 0.114550i
\(923\) 6.46046 11.1898i 0.212649 0.368318i
\(924\) −0.114883 0.649225i −0.00377936 0.0213579i
\(925\) −30.2757 1.80829i −0.995458 0.0594562i
\(926\) −12.9633 10.8708i −0.426002 0.357237i
\(927\) 17.8924 + 10.3302i 0.587664 + 0.339288i
\(928\) −46.9551 + 8.35301i −1.54138 + 0.274201i
\(929\) 28.2239 + 48.8852i 0.925995 + 1.60387i 0.789953 + 0.613167i \(0.210105\pi\)
0.136042 + 0.990703i \(0.456562\pi\)
\(930\) 0.0775697 + 0.0136533i 0.00254361 + 0.000447710i
\(931\) 5.43266 0.178048
\(932\) 10.4180 8.75255i 0.341253 0.286699i
\(933\) 0.170723 0.00558923
\(934\) −19.6764 54.0094i −0.643831 1.76724i
\(935\) −0.929560 −0.0303999
\(936\) −9.78920 5.63991i −0.319970 0.184346i
\(937\) −19.8799 + 34.4331i −0.649449 + 1.12488i 0.333806 + 0.942642i \(0.391667\pi\)
−0.983255 + 0.182237i \(0.941666\pi\)
\(938\) 5.25254 29.8417i 0.171502 0.974365i
\(939\) −2.11071 −0.0688806
\(940\) −1.42750 0.518585i −0.0465599 0.0169144i
\(941\) −25.3211 14.6191i −0.825443 0.476570i 0.0268470 0.999640i \(-0.491453\pi\)
−0.852290 + 0.523070i \(0.824787\pi\)
\(942\) −0.0131016 0.0359623i −0.000426873 0.00117172i
\(943\) 25.3798 14.6531i 0.826481 0.477169i
\(944\) 31.0492 + 25.9891i 1.01057 + 0.845874i
\(945\) −0.113637 0.0656081i −0.00369660 0.00213423i
\(946\) −27.3933 + 9.97978i −0.890634 + 0.324471i
\(947\) 13.5486 23.4669i 0.440272 0.762573i −0.557438 0.830219i \(-0.688215\pi\)
0.997709 + 0.0676457i \(0.0215488\pi\)
\(948\) −0.138813 0.784463i −0.00450845 0.0254782i
\(949\) −3.60709 6.24766i −0.117091 0.202808i
\(950\) 15.0413 + 41.2865i 0.488003 + 1.33951i
\(951\) −0.847451 −0.0274805
\(952\) −17.6641 + 30.6595i −0.572495 + 0.993681i
\(953\) −4.67199 + 8.09212i −0.151341 + 0.262130i −0.931721 0.363176i \(-0.881692\pi\)
0.780380 + 0.625306i \(0.215026\pi\)
\(954\) 10.5955 + 8.88517i 0.343041 + 0.287668i
\(955\) 0.628750 0.363009i 0.0203459 0.0117467i
\(956\) −12.8817 + 2.27947i −0.416625 + 0.0737232i
\(957\) 0.495297 + 0.857880i 0.0160107 + 0.0277313i
\(958\) −7.11139 + 40.4025i −0.229759 + 1.30534i
\(959\) 17.4835 + 30.2824i 0.564573 + 0.977869i
\(960\) 0.000113749 0.0624032i 3.67123e−6 0.00201405i
\(961\) −19.9764 −0.644402
\(962\) −11.1580 2.65835i −0.359748 0.0857086i
\(963\) 13.6923i 0.441230i
\(964\) 14.7229 40.5274i 0.474193 1.30530i
\(965\) −0.235305 + 0.135854i −0.00757475 + 0.00437328i
\(966\) 1.56447 + 0.275369i 0.0503361 + 0.00885984i
\(967\) 48.6874 28.1097i 1.56568 0.903947i 0.569018 0.822325i \(-0.307323\pi\)
0.996663 0.0816217i \(-0.0260099\pi\)
\(968\) 19.2626 + 11.0979i 0.619123 + 0.356699i
\(969\) −0.921144 1.59547i −0.0295914 0.0512538i
\(970\) −2.00187 1.67873i −0.0642761 0.0539008i
\(971\) 46.6750 + 26.9478i 1.49787 + 0.864796i 0.999997 0.00245303i \(-0.000780824\pi\)
0.497874 + 0.867249i \(0.334114\pi\)
\(972\) 3.51879 0.622662i 0.112865 0.0199719i
\(973\) 7.62376i 0.244407i
\(974\) 47.3228 17.2404i 1.51632 0.552417i
\(975\) 0.381768 0.220414i 0.0122264 0.00705889i
\(976\) 35.8736 13.1063i 1.14829 0.419523i
\(977\) −41.6623 24.0537i −1.33289 0.769547i −0.347152 0.937809i \(-0.612851\pi\)
−0.985742 + 0.168262i \(0.946185\pi\)
\(978\) 0.474287 0.172790i 0.0151660 0.00552520i
\(979\) −3.31330 + 5.73880i −0.105893 + 0.183413i
\(980\) 0.157058 0.131950i 0.00501702 0.00421498i
\(981\) 14.1382 + 24.4880i 0.451397 + 0.781843i
\(982\) −28.5827 + 10.4131i −0.912110 + 0.332295i
\(983\) −0.144476 + 0.250239i −0.00460806 + 0.00798139i −0.868320 0.496004i \(-0.834800\pi\)
0.863712 + 0.503985i \(0.168133\pi\)
\(984\) −0.455832 0.787864i −0.0145314 0.0251162i
\(985\) 1.97153i 0.0628183i
\(986\) 9.21581 52.3585i 0.293491 1.66743i
\(987\) 1.03993 + 0.600401i 0.0331012 + 0.0191110i
\(988\) 2.89563 + 16.3638i 0.0921221 + 0.520601i
\(989\) 70.2441i 2.23363i
\(990\) −0.829832 + 0.302320i −0.0263738 + 0.00960835i
\(991\) 14.7001i 0.466964i 0.972361 + 0.233482i \(0.0750121\pi\)
−0.972361 + 0.233482i \(0.924988\pi\)
\(992\) −7.07383 39.7644i −0.224594 1.26252i
\(993\) 1.50199i 0.0476643i
\(994\) −37.8670 6.66512i −1.20107 0.211405i
\(995\) −0.188640 + 0.108912i −0.00598031 + 0.00345273i
\(996\) 0.0363138 0.0305085i 0.00115065 0.000966699i
\(997\) 4.47953 7.75877i 0.141868 0.245723i −0.786332 0.617804i \(-0.788022\pi\)
0.928200 + 0.372081i \(0.121356\pi\)
\(998\) −11.6117 + 13.8468i −0.367561 + 0.438313i
\(999\) 2.16251 1.08205i 0.0684188 0.0342346i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.2.q.a.101.14 yes 72
4.3 odd 2 1184.2.y.a.1137.18 72
8.3 odd 2 1184.2.y.a.1137.19 72
8.5 even 2 inner 296.2.q.a.101.1 yes 72
37.11 even 6 inner 296.2.q.a.85.1 72
148.11 odd 6 1184.2.y.a.529.19 72
296.11 odd 6 1184.2.y.a.529.18 72
296.85 even 6 inner 296.2.q.a.85.14 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.q.a.85.1 72 37.11 even 6 inner
296.2.q.a.85.14 yes 72 296.85 even 6 inner
296.2.q.a.101.1 yes 72 8.5 even 2 inner
296.2.q.a.101.14 yes 72 1.1 even 1 trivial
1184.2.y.a.529.18 72 296.11 odd 6
1184.2.y.a.529.19 72 148.11 odd 6
1184.2.y.a.1137.18 72 4.3 odd 2
1184.2.y.a.1137.19 72 8.3 odd 2