Properties

Label 2960.2.p.g.961.1
Level $2960$
Weight $2$
Character 2960.961
Analytic conductor $23.636$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2960,2,Mod(961,2960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2960.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2960.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6357189983\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.1
Root \(0.264658 + 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 2960.961
Dual form 2960.2.p.g.961.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.24914 q^{3} -1.00000i q^{5} -1.52932 q^{7} +2.05863 q^{9} -2.71982 q^{11} -0.941367i q^{13} +2.24914i q^{15} +4.83709i q^{17} -0.249141i q^{19} +3.43965 q^{21} +0.941367i q^{23} -1.00000 q^{25} +2.11727 q^{27} -0.719824i q^{29} +4.02760i q^{31} +6.11727 q^{33} +1.52932i q^{35} +(-4.71982 + 3.83709i) q^{37} +2.11727i q^{39} -8.27674 q^{41} +2.71982i q^{43} -2.05863i q^{45} +3.30777 q^{47} -4.66119 q^{49} -10.8793i q^{51} +8.39400 q^{53} +2.71982i q^{55} +0.560352i q^{57} -7.30777i q^{59} -6.83709i q^{61} -3.14830 q^{63} -0.941367 q^{65} +7.68879 q^{67} -2.11727i q^{69} +3.05863 q^{71} +9.11383 q^{73} +2.24914 q^{75} +4.15947 q^{77} -1.75086i q^{79} -10.9379 q^{81} -0.131874 q^{83} +4.83709 q^{85} +1.61899i q^{87} +8.99656i q^{89} +1.43965i q^{91} -9.05863i q^{93} -0.249141 q^{95} -16.2767i q^{97} -5.59912 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 10 q^{7} + 14 q^{9} + 2 q^{11} - 16 q^{21} - 6 q^{25} + 16 q^{27} + 40 q^{33} - 10 q^{37} + 2 q^{41} + 4 q^{47} - 8 q^{49} + 2 q^{53} - 58 q^{63} - 4 q^{65} - 8 q^{67} + 20 q^{71} - 12 q^{73}+ \cdots + 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2960\mathbb{Z}\right)^\times\).

\(n\) \(741\) \(1777\) \(2481\) \(2591\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.24914 −1.29854 −0.649271 0.760557i \(-0.724926\pi\)
−0.649271 + 0.760557i \(0.724926\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −1.52932 −0.578027 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(8\) 0 0
\(9\) 2.05863 0.686211
\(10\) 0 0
\(11\) −2.71982 −0.820058 −0.410029 0.912073i \(-0.634481\pi\)
−0.410029 + 0.912073i \(0.634481\pi\)
\(12\) 0 0
\(13\) 0.941367i 0.261088i −0.991443 0.130544i \(-0.958328\pi\)
0.991443 0.130544i \(-0.0416724\pi\)
\(14\) 0 0
\(15\) 2.24914i 0.580726i
\(16\) 0 0
\(17\) 4.83709i 1.17317i 0.809889 + 0.586583i \(0.199527\pi\)
−0.809889 + 0.586583i \(0.800473\pi\)
\(18\) 0 0
\(19\) 0.249141i 0.0571568i −0.999592 0.0285784i \(-0.990902\pi\)
0.999592 0.0285784i \(-0.00909802\pi\)
\(20\) 0 0
\(21\) 3.43965 0.750593
\(22\) 0 0
\(23\) 0.941367i 0.196289i 0.995172 + 0.0981443i \(0.0312907\pi\)
−0.995172 + 0.0981443i \(0.968709\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 2.11727 0.407468
\(28\) 0 0
\(29\) 0.719824i 0.133668i −0.997764 0.0668340i \(-0.978710\pi\)
0.997764 0.0668340i \(-0.0212898\pi\)
\(30\) 0 0
\(31\) 4.02760i 0.723378i 0.932299 + 0.361689i \(0.117800\pi\)
−0.932299 + 0.361689i \(0.882200\pi\)
\(32\) 0 0
\(33\) 6.11727 1.06488
\(34\) 0 0
\(35\) 1.52932i 0.258502i
\(36\) 0 0
\(37\) −4.71982 + 3.83709i −0.775934 + 0.630814i
\(38\) 0 0
\(39\) 2.11727i 0.339034i
\(40\) 0 0
\(41\) −8.27674 −1.29261 −0.646305 0.763079i \(-0.723686\pi\)
−0.646305 + 0.763079i \(0.723686\pi\)
\(42\) 0 0
\(43\) 2.71982i 0.414769i 0.978259 + 0.207385i \(0.0664952\pi\)
−0.978259 + 0.207385i \(0.933505\pi\)
\(44\) 0 0
\(45\) 2.05863i 0.306883i
\(46\) 0 0
\(47\) 3.30777 0.482488 0.241244 0.970464i \(-0.422445\pi\)
0.241244 + 0.970464i \(0.422445\pi\)
\(48\) 0 0
\(49\) −4.66119 −0.665884
\(50\) 0 0
\(51\) 10.8793i 1.52341i
\(52\) 0 0
\(53\) 8.39400 1.15301 0.576503 0.817095i \(-0.304417\pi\)
0.576503 + 0.817095i \(0.304417\pi\)
\(54\) 0 0
\(55\) 2.71982i 0.366741i
\(56\) 0 0
\(57\) 0.560352i 0.0742204i
\(58\) 0 0
\(59\) 7.30777i 0.951391i −0.879610 0.475696i \(-0.842196\pi\)
0.879610 0.475696i \(-0.157804\pi\)
\(60\) 0 0
\(61\) 6.83709i 0.875400i −0.899121 0.437700i \(-0.855793\pi\)
0.899121 0.437700i \(-0.144207\pi\)
\(62\) 0 0
\(63\) −3.14830 −0.396649
\(64\) 0 0
\(65\) −0.941367 −0.116762
\(66\) 0 0
\(67\) 7.68879 0.939335 0.469668 0.882843i \(-0.344374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(68\) 0 0
\(69\) 2.11727i 0.254889i
\(70\) 0 0
\(71\) 3.05863 0.362993 0.181496 0.983392i \(-0.441906\pi\)
0.181496 + 0.983392i \(0.441906\pi\)
\(72\) 0 0
\(73\) 9.11383 1.06669 0.533346 0.845897i \(-0.320934\pi\)
0.533346 + 0.845897i \(0.320934\pi\)
\(74\) 0 0
\(75\) 2.24914 0.259708
\(76\) 0 0
\(77\) 4.15947 0.474016
\(78\) 0 0
\(79\) 1.75086i 0.196987i −0.995138 0.0984935i \(-0.968598\pi\)
0.995138 0.0984935i \(-0.0314024\pi\)
\(80\) 0 0
\(81\) −10.9379 −1.21533
\(82\) 0 0
\(83\) −0.131874 −0.0144751 −0.00723754 0.999974i \(-0.502304\pi\)
−0.00723754 + 0.999974i \(0.502304\pi\)
\(84\) 0 0
\(85\) 4.83709 0.524656
\(86\) 0 0
\(87\) 1.61899i 0.173573i
\(88\) 0 0
\(89\) 8.99656i 0.953634i 0.879003 + 0.476817i \(0.158210\pi\)
−0.879003 + 0.476817i \(0.841790\pi\)
\(90\) 0 0
\(91\) 1.43965i 0.150916i
\(92\) 0 0
\(93\) 9.05863i 0.939337i
\(94\) 0 0
\(95\) −0.249141 −0.0255613
\(96\) 0 0
\(97\) 16.2767i 1.65265i −0.563192 0.826326i \(-0.690427\pi\)
0.563192 0.826326i \(-0.309573\pi\)
\(98\) 0 0
\(99\) −5.59912 −0.562733
\(100\) 0 0
\(101\) −11.1138 −1.10587 −0.552934 0.833225i \(-0.686492\pi\)
−0.552934 + 0.833225i \(0.686492\pi\)
\(102\) 0 0
\(103\) 14.1725i 1.39645i 0.715876 + 0.698227i \(0.246027\pi\)
−0.715876 + 0.698227i \(0.753973\pi\)
\(104\) 0 0
\(105\) 3.43965i 0.335675i
\(106\) 0 0
\(107\) −10.6922 −1.03366 −0.516828 0.856089i \(-0.672887\pi\)
−0.516828 + 0.856089i \(0.672887\pi\)
\(108\) 0 0
\(109\) 12.2767i 1.17590i −0.808898 0.587949i \(-0.799936\pi\)
0.808898 0.587949i \(-0.200064\pi\)
\(110\) 0 0
\(111\) 10.6155 8.63016i 1.00758 0.819138i
\(112\) 0 0
\(113\) 2.95436i 0.277922i 0.990298 + 0.138961i \(0.0443763\pi\)
−0.990298 + 0.138961i \(0.955624\pi\)
\(114\) 0 0
\(115\) 0.941367 0.0877829
\(116\) 0 0
\(117\) 1.93793i 0.179162i
\(118\) 0 0
\(119\) 7.39744i 0.678122i
\(120\) 0 0
\(121\) −3.60256 −0.327505
\(122\) 0 0
\(123\) 18.6155 1.67851
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −8.30434 −0.736891 −0.368445 0.929649i \(-0.620110\pi\)
−0.368445 + 0.929649i \(0.620110\pi\)
\(128\) 0 0
\(129\) 6.11727i 0.538595i
\(130\) 0 0
\(131\) 11.0732i 0.967474i −0.875214 0.483737i \(-0.839279\pi\)
0.875214 0.483737i \(-0.160721\pi\)
\(132\) 0 0
\(133\) 0.381015i 0.0330382i
\(134\) 0 0
\(135\) 2.11727i 0.182225i
\(136\) 0 0
\(137\) 0.325819 0.0278366 0.0139183 0.999903i \(-0.495570\pi\)
0.0139183 + 0.999903i \(0.495570\pi\)
\(138\) 0 0
\(139\) 13.3906 1.13577 0.567887 0.823107i \(-0.307761\pi\)
0.567887 + 0.823107i \(0.307761\pi\)
\(140\) 0 0
\(141\) −7.43965 −0.626531
\(142\) 0 0
\(143\) 2.56035i 0.214107i
\(144\) 0 0
\(145\) −0.719824 −0.0597781
\(146\) 0 0
\(147\) 10.4837 0.864679
\(148\) 0 0
\(149\) 8.44309 0.691685 0.345842 0.938293i \(-0.387593\pi\)
0.345842 + 0.938293i \(0.387593\pi\)
\(150\) 0 0
\(151\) 4.94137 0.402123 0.201061 0.979579i \(-0.435561\pi\)
0.201061 + 0.979579i \(0.435561\pi\)
\(152\) 0 0
\(153\) 9.95779i 0.805040i
\(154\) 0 0
\(155\) 4.02760 0.323504
\(156\) 0 0
\(157\) 19.2733 1.53818 0.769088 0.639142i \(-0.220711\pi\)
0.769088 + 0.639142i \(0.220711\pi\)
\(158\) 0 0
\(159\) −18.8793 −1.49723
\(160\) 0 0
\(161\) 1.43965i 0.113460i
\(162\) 0 0
\(163\) 17.3354i 1.35781i −0.734226 0.678906i \(-0.762455\pi\)
0.734226 0.678906i \(-0.237545\pi\)
\(164\) 0 0
\(165\) 6.11727i 0.476229i
\(166\) 0 0
\(167\) 17.0518i 1.31950i −0.751483 0.659752i \(-0.770661\pi\)
0.751483 0.659752i \(-0.229339\pi\)
\(168\) 0 0
\(169\) 12.1138 0.931833
\(170\) 0 0
\(171\) 0.512889i 0.0392216i
\(172\) 0 0
\(173\) 10.7198 0.815013 0.407507 0.913202i \(-0.366398\pi\)
0.407507 + 0.913202i \(0.366398\pi\)
\(174\) 0 0
\(175\) 1.52932 0.115605
\(176\) 0 0
\(177\) 16.4362i 1.23542i
\(178\) 0 0
\(179\) 9.48024i 0.708586i −0.935134 0.354293i \(-0.884722\pi\)
0.935134 0.354293i \(-0.115278\pi\)
\(180\) 0 0
\(181\) 20.9966 1.56066 0.780331 0.625367i \(-0.215051\pi\)
0.780331 + 0.625367i \(0.215051\pi\)
\(182\) 0 0
\(183\) 15.3776i 1.13674i
\(184\) 0 0
\(185\) 3.83709 + 4.71982i 0.282108 + 0.347008i
\(186\) 0 0
\(187\) 13.1560i 0.962064i
\(188\) 0 0
\(189\) −3.23797 −0.235528
\(190\) 0 0
\(191\) 11.0862i 0.802172i −0.916041 0.401086i \(-0.868633\pi\)
0.916041 0.401086i \(-0.131367\pi\)
\(192\) 0 0
\(193\) 2.23453i 0.160845i −0.996761 0.0804226i \(-0.974373\pi\)
0.996761 0.0804226i \(-0.0256270\pi\)
\(194\) 0 0
\(195\) 2.11727 0.151621
\(196\) 0 0
\(197\) 13.4396 0.957535 0.478768 0.877942i \(-0.341084\pi\)
0.478768 + 0.877942i \(0.341084\pi\)
\(198\) 0 0
\(199\) 23.4802i 1.66447i −0.554423 0.832235i \(-0.687061\pi\)
0.554423 0.832235i \(-0.312939\pi\)
\(200\) 0 0
\(201\) −17.2932 −1.21977
\(202\) 0 0
\(203\) 1.10084i 0.0772637i
\(204\) 0 0
\(205\) 8.27674i 0.578072i
\(206\) 0 0
\(207\) 1.93793i 0.134695i
\(208\) 0 0
\(209\) 0.677618i 0.0468718i
\(210\) 0 0
\(211\) 19.7716 1.36113 0.680566 0.732687i \(-0.261734\pi\)
0.680566 + 0.732687i \(0.261734\pi\)
\(212\) 0 0
\(213\) −6.87930 −0.471362
\(214\) 0 0
\(215\) 2.71982 0.185490
\(216\) 0 0
\(217\) 6.15947i 0.418132i
\(218\) 0 0
\(219\) −20.4983 −1.38515
\(220\) 0 0
\(221\) 4.55348 0.306300
\(222\) 0 0
\(223\) 9.14143 0.612155 0.306078 0.952007i \(-0.400983\pi\)
0.306078 + 0.952007i \(0.400983\pi\)
\(224\) 0 0
\(225\) −2.05863 −0.137242
\(226\) 0 0
\(227\) 18.7198i 1.24248i −0.783621 0.621239i \(-0.786630\pi\)
0.783621 0.621239i \(-0.213370\pi\)
\(228\) 0 0
\(229\) −25.1138 −1.65957 −0.829784 0.558084i \(-0.811537\pi\)
−0.829784 + 0.558084i \(0.811537\pi\)
\(230\) 0 0
\(231\) −9.35524 −0.615529
\(232\) 0 0
\(233\) 20.4362 1.33882 0.669410 0.742893i \(-0.266547\pi\)
0.669410 + 0.742893i \(0.266547\pi\)
\(234\) 0 0
\(235\) 3.30777i 0.215775i
\(236\) 0 0
\(237\) 3.93793i 0.255796i
\(238\) 0 0
\(239\) 8.91377i 0.576584i 0.957543 + 0.288292i \(0.0930873\pi\)
−0.957543 + 0.288292i \(0.906913\pi\)
\(240\) 0 0
\(241\) 13.8827i 0.894265i −0.894468 0.447133i \(-0.852445\pi\)
0.894468 0.447133i \(-0.147555\pi\)
\(242\) 0 0
\(243\) 18.2491 1.17068
\(244\) 0 0
\(245\) 4.66119i 0.297793i
\(246\) 0 0
\(247\) −0.234533 −0.0149230
\(248\) 0 0
\(249\) 0.296604 0.0187965
\(250\) 0 0
\(251\) 3.80605i 0.240236i 0.992760 + 0.120118i \(0.0383273\pi\)
−0.992760 + 0.120118i \(0.961673\pi\)
\(252\) 0 0
\(253\) 2.56035i 0.160968i
\(254\) 0 0
\(255\) −10.8793 −0.681288
\(256\) 0 0
\(257\) 8.78801i 0.548181i 0.961704 + 0.274090i \(0.0883768\pi\)
−0.961704 + 0.274090i \(0.911623\pi\)
\(258\) 0 0
\(259\) 7.21811 5.86813i 0.448511 0.364628i
\(260\) 0 0
\(261\) 1.48185i 0.0917244i
\(262\) 0 0
\(263\) 10.4707 0.645650 0.322825 0.946459i \(-0.395367\pi\)
0.322825 + 0.946459i \(0.395367\pi\)
\(264\) 0 0
\(265\) 8.39400i 0.515640i
\(266\) 0 0
\(267\) 20.2345i 1.23833i
\(268\) 0 0
\(269\) −5.88273 −0.358677 −0.179338 0.983787i \(-0.557396\pi\)
−0.179338 + 0.983787i \(0.557396\pi\)
\(270\) 0 0
\(271\) −7.61211 −0.462403 −0.231201 0.972906i \(-0.574266\pi\)
−0.231201 + 0.972906i \(0.574266\pi\)
\(272\) 0 0
\(273\) 3.23797i 0.195971i
\(274\) 0 0
\(275\) 2.71982 0.164012
\(276\) 0 0
\(277\) 26.4914i 1.59171i −0.605484 0.795857i \(-0.707021\pi\)
0.605484 0.795857i \(-0.292979\pi\)
\(278\) 0 0
\(279\) 8.29135i 0.496390i
\(280\) 0 0
\(281\) 26.6707i 1.59104i −0.605925 0.795522i \(-0.707197\pi\)
0.605925 0.795522i \(-0.292803\pi\)
\(282\) 0 0
\(283\) 8.73281i 0.519112i 0.965728 + 0.259556i \(0.0835762\pi\)
−0.965728 + 0.259556i \(0.916424\pi\)
\(284\) 0 0
\(285\) 0.560352 0.0331924
\(286\) 0 0
\(287\) 12.6578 0.747164
\(288\) 0 0
\(289\) −6.39744 −0.376320
\(290\) 0 0
\(291\) 36.6087i 2.14604i
\(292\) 0 0
\(293\) 23.4819 1.37182 0.685912 0.727684i \(-0.259403\pi\)
0.685912 + 0.727684i \(0.259403\pi\)
\(294\) 0 0
\(295\) −7.30777 −0.425475
\(296\) 0 0
\(297\) −5.75859 −0.334147
\(298\) 0 0
\(299\) 0.886172 0.0512486
\(300\) 0 0
\(301\) 4.15947i 0.239748i
\(302\) 0 0
\(303\) 24.9966 1.43601
\(304\) 0 0
\(305\) −6.83709 −0.391491
\(306\) 0 0
\(307\) −27.2457 −1.55499 −0.777497 0.628886i \(-0.783511\pi\)
−0.777497 + 0.628886i \(0.783511\pi\)
\(308\) 0 0
\(309\) 31.8759i 1.81335i
\(310\) 0 0
\(311\) 17.7018i 1.00378i 0.864933 + 0.501888i \(0.167361\pi\)
−0.864933 + 0.501888i \(0.832639\pi\)
\(312\) 0 0
\(313\) 23.9931i 1.35617i 0.734983 + 0.678086i \(0.237190\pi\)
−0.734983 + 0.678086i \(0.762810\pi\)
\(314\) 0 0
\(315\) 3.14830i 0.177387i
\(316\) 0 0
\(317\) −3.16291 −0.177647 −0.0888234 0.996047i \(-0.528311\pi\)
−0.0888234 + 0.996047i \(0.528311\pi\)
\(318\) 0 0
\(319\) 1.95779i 0.109615i
\(320\) 0 0
\(321\) 24.0483 1.34225
\(322\) 0 0
\(323\) 1.20512 0.0670544
\(324\) 0 0
\(325\) 0.941367i 0.0522176i
\(326\) 0 0
\(327\) 27.6121i 1.52695i
\(328\) 0 0
\(329\) −5.05863 −0.278891
\(330\) 0 0
\(331\) 4.48367i 0.246445i 0.992379 + 0.123222i \(0.0393229\pi\)
−0.992379 + 0.123222i \(0.960677\pi\)
\(332\) 0 0
\(333\) −9.71639 + 7.89916i −0.532455 + 0.432871i
\(334\) 0 0
\(335\) 7.68879i 0.420083i
\(336\) 0 0
\(337\) −11.2051 −0.610382 −0.305191 0.952291i \(-0.598720\pi\)
−0.305191 + 0.952291i \(0.598720\pi\)
\(338\) 0 0
\(339\) 6.64476i 0.360894i
\(340\) 0 0
\(341\) 10.9544i 0.593212i
\(342\) 0 0
\(343\) 17.8337 0.962927
\(344\) 0 0
\(345\) −2.11727 −0.113990
\(346\) 0 0
\(347\) 13.9931i 0.751190i 0.926784 + 0.375595i \(0.122562\pi\)
−0.926784 + 0.375595i \(0.877438\pi\)
\(348\) 0 0
\(349\) −6.56035 −0.351168 −0.175584 0.984464i \(-0.556181\pi\)
−0.175584 + 0.984464i \(0.556181\pi\)
\(350\) 0 0
\(351\) 1.99312i 0.106385i
\(352\) 0 0
\(353\) 36.5957i 1.94779i 0.226995 + 0.973896i \(0.427110\pi\)
−0.226995 + 0.973896i \(0.572890\pi\)
\(354\) 0 0
\(355\) 3.05863i 0.162335i
\(356\) 0 0
\(357\) 16.6379i 0.880570i
\(358\) 0 0
\(359\) −21.2311 −1.12053 −0.560267 0.828312i \(-0.689302\pi\)
−0.560267 + 0.828312i \(0.689302\pi\)
\(360\) 0 0
\(361\) 18.9379 0.996733
\(362\) 0 0
\(363\) 8.10266 0.425279
\(364\) 0 0
\(365\) 9.11383i 0.477040i
\(366\) 0 0
\(367\) −23.4932 −1.22634 −0.613168 0.789952i \(-0.710105\pi\)
−0.613168 + 0.789952i \(0.710105\pi\)
\(368\) 0 0
\(369\) −17.0388 −0.887003
\(370\) 0 0
\(371\) −12.8371 −0.666469
\(372\) 0 0
\(373\) −7.55691 −0.391282 −0.195641 0.980676i \(-0.562679\pi\)
−0.195641 + 0.980676i \(0.562679\pi\)
\(374\) 0 0
\(375\) 2.24914i 0.116145i
\(376\) 0 0
\(377\) −0.677618 −0.0348991
\(378\) 0 0
\(379\) −12.2637 −0.629946 −0.314973 0.949101i \(-0.601996\pi\)
−0.314973 + 0.949101i \(0.601996\pi\)
\(380\) 0 0
\(381\) 18.6776 0.956883
\(382\) 0 0
\(383\) 33.5208i 1.71283i 0.516285 + 0.856417i \(0.327315\pi\)
−0.516285 + 0.856417i \(0.672685\pi\)
\(384\) 0 0
\(385\) 4.15947i 0.211986i
\(386\) 0 0
\(387\) 5.59912i 0.284619i
\(388\) 0 0
\(389\) 9.95092i 0.504532i −0.967658 0.252266i \(-0.918824\pi\)
0.967658 0.252266i \(-0.0811757\pi\)
\(390\) 0 0
\(391\) −4.55348 −0.230279
\(392\) 0 0
\(393\) 24.9053i 1.25630i
\(394\) 0 0
\(395\) −1.75086 −0.0880953
\(396\) 0 0
\(397\) 8.67762 0.435517 0.217759 0.976003i \(-0.430125\pi\)
0.217759 + 0.976003i \(0.430125\pi\)
\(398\) 0 0
\(399\) 0.856956i 0.0429014i
\(400\) 0 0
\(401\) 11.5569i 0.577125i 0.957461 + 0.288562i \(0.0931773\pi\)
−0.957461 + 0.288562i \(0.906823\pi\)
\(402\) 0 0
\(403\) 3.79145 0.188865
\(404\) 0 0
\(405\) 10.9379i 0.543510i
\(406\) 0 0
\(407\) 12.8371 10.4362i 0.636311 0.517304i
\(408\) 0 0
\(409\) 3.34836i 0.165566i −0.996568 0.0827829i \(-0.973619\pi\)
0.996568 0.0827829i \(-0.0263808\pi\)
\(410\) 0 0
\(411\) −0.732814 −0.0361470
\(412\) 0 0
\(413\) 11.1759i 0.549930i
\(414\) 0 0
\(415\) 0.131874i 0.00647345i
\(416\) 0 0
\(417\) −30.1173 −1.47485
\(418\) 0 0
\(419\) 11.3776 0.555831 0.277916 0.960606i \(-0.410356\pi\)
0.277916 + 0.960606i \(0.410356\pi\)
\(420\) 0 0
\(421\) 3.23109i 0.157474i 0.996895 + 0.0787370i \(0.0250887\pi\)
−0.996895 + 0.0787370i \(0.974911\pi\)
\(422\) 0 0
\(423\) 6.80949 0.331089
\(424\) 0 0
\(425\) 4.83709i 0.234633i
\(426\) 0 0
\(427\) 10.4561i 0.506005i
\(428\) 0 0
\(429\) 5.75859i 0.278027i
\(430\) 0 0
\(431\) 29.2327i 1.40809i 0.710155 + 0.704045i \(0.248625\pi\)
−0.710155 + 0.704045i \(0.751375\pi\)
\(432\) 0 0
\(433\) 17.7655 0.853754 0.426877 0.904310i \(-0.359614\pi\)
0.426877 + 0.904310i \(0.359614\pi\)
\(434\) 0 0
\(435\) 1.61899 0.0776244
\(436\) 0 0
\(437\) 0.234533 0.0112192
\(438\) 0 0
\(439\) 32.7604i 1.56357i −0.623549 0.781785i \(-0.714310\pi\)
0.623549 0.781785i \(-0.285690\pi\)
\(440\) 0 0
\(441\) −9.59568 −0.456937
\(442\) 0 0
\(443\) 0.600939 0.0285515 0.0142757 0.999898i \(-0.495456\pi\)
0.0142757 + 0.999898i \(0.495456\pi\)
\(444\) 0 0
\(445\) 8.99656 0.426478
\(446\) 0 0
\(447\) −18.9897 −0.898181
\(448\) 0 0
\(449\) 34.0191i 1.60546i −0.596342 0.802730i \(-0.703380\pi\)
0.596342 0.802730i \(-0.296620\pi\)
\(450\) 0 0
\(451\) 22.5113 1.06001
\(452\) 0 0
\(453\) −11.1138 −0.522173
\(454\) 0 0
\(455\) 1.43965 0.0674917
\(456\) 0 0
\(457\) 30.9215i 1.44645i −0.690614 0.723223i \(-0.742660\pi\)
0.690614 0.723223i \(-0.257340\pi\)
\(458\) 0 0
\(459\) 10.2414i 0.478028i
\(460\) 0 0
\(461\) 1.27330i 0.0593035i 0.999560 + 0.0296518i \(0.00943983\pi\)
−0.999560 + 0.0296518i \(0.990560\pi\)
\(462\) 0 0
\(463\) 2.61555i 0.121555i −0.998151 0.0607774i \(-0.980642\pi\)
0.998151 0.0607774i \(-0.0193580\pi\)
\(464\) 0 0
\(465\) −9.05863 −0.420084
\(466\) 0 0
\(467\) 19.0096i 0.879657i −0.898082 0.439829i \(-0.855039\pi\)
0.898082 0.439829i \(-0.144961\pi\)
\(468\) 0 0
\(469\) −11.7586 −0.542961
\(470\) 0 0
\(471\) −43.3484 −1.99739
\(472\) 0 0
\(473\) 7.39744i 0.340135i
\(474\) 0 0
\(475\) 0.249141i 0.0114314i
\(476\) 0 0
\(477\) 17.2802 0.791205
\(478\) 0 0
\(479\) 38.8578i 1.77546i 0.460366 + 0.887729i \(0.347718\pi\)
−0.460366 + 0.887729i \(0.652282\pi\)
\(480\) 0 0
\(481\) 3.61211 + 4.44309i 0.164698 + 0.202587i
\(482\) 0 0
\(483\) 3.23797i 0.147333i
\(484\) 0 0
\(485\) −16.2767 −0.739089
\(486\) 0 0
\(487\) 38.4914i 1.74421i 0.489317 + 0.872106i \(0.337246\pi\)
−0.489317 + 0.872106i \(0.662754\pi\)
\(488\) 0 0
\(489\) 38.9897i 1.76317i
\(490\) 0 0
\(491\) 11.2672 0.508481 0.254240 0.967141i \(-0.418175\pi\)
0.254240 + 0.967141i \(0.418175\pi\)
\(492\) 0 0
\(493\) 3.48185 0.156815
\(494\) 0 0
\(495\) 5.59912i 0.251662i
\(496\) 0 0
\(497\) −4.67762 −0.209820
\(498\) 0 0
\(499\) 20.8578i 0.933724i −0.884330 0.466862i \(-0.845384\pi\)
0.884330 0.466862i \(-0.154616\pi\)
\(500\) 0 0
\(501\) 38.3518i 1.71343i
\(502\) 0 0
\(503\) 6.64476i 0.296275i 0.988967 + 0.148138i \(0.0473279\pi\)
−0.988967 + 0.148138i \(0.952672\pi\)
\(504\) 0 0
\(505\) 11.1138i 0.494559i
\(506\) 0 0
\(507\) −27.2457 −1.21002
\(508\) 0 0
\(509\) −18.5535 −0.822368 −0.411184 0.911552i \(-0.634885\pi\)
−0.411184 + 0.911552i \(0.634885\pi\)
\(510\) 0 0
\(511\) −13.9379 −0.616578
\(512\) 0 0
\(513\) 0.527497i 0.0232896i
\(514\) 0 0
\(515\) 14.1725 0.624513
\(516\) 0 0
\(517\) −8.99656 −0.395668
\(518\) 0 0
\(519\) −24.1104 −1.05833
\(520\) 0 0
\(521\) −42.6509 −1.86857 −0.934284 0.356529i \(-0.883960\pi\)
−0.934284 + 0.356529i \(0.883960\pi\)
\(522\) 0 0
\(523\) 12.3879i 0.541685i −0.962624 0.270842i \(-0.912698\pi\)
0.962624 0.270842i \(-0.0873022\pi\)
\(524\) 0 0
\(525\) −3.43965 −0.150119
\(526\) 0 0
\(527\) −19.4819 −0.848643
\(528\) 0 0
\(529\) 22.1138 0.961471
\(530\) 0 0
\(531\) 15.0440i 0.652855i
\(532\) 0 0
\(533\) 7.79145i 0.337485i
\(534\) 0 0
\(535\) 10.6922i 0.462265i
\(536\) 0 0
\(537\) 21.3224i 0.920129i
\(538\) 0 0
\(539\) 12.6776 0.546064
\(540\) 0 0
\(541\) 7.64820i 0.328822i −0.986392 0.164411i \(-0.947428\pi\)
0.986392 0.164411i \(-0.0525723\pi\)
\(542\) 0 0
\(543\) −47.2242 −2.02659
\(544\) 0 0
\(545\) −12.2767 −0.525878
\(546\) 0 0
\(547\) 12.6837i 0.542317i −0.962535 0.271159i \(-0.912593\pi\)
0.962535 0.271159i \(-0.0874068\pi\)
\(548\) 0 0
\(549\) 14.0751i 0.600709i
\(550\) 0 0
\(551\) −0.179337 −0.00764003
\(552\) 0 0
\(553\) 2.67762i 0.113864i
\(554\) 0 0
\(555\) −8.63016 10.6155i −0.366330 0.450605i
\(556\) 0 0
\(557\) 2.61555i 0.110824i 0.998464 + 0.0554121i \(0.0176473\pi\)
−0.998464 + 0.0554121i \(0.982353\pi\)
\(558\) 0 0
\(559\) 2.56035 0.108291
\(560\) 0 0
\(561\) 29.5898i 1.24928i
\(562\) 0 0
\(563\) 35.3285i 1.48892i −0.667668 0.744459i \(-0.732707\pi\)
0.667668 0.744459i \(-0.267293\pi\)
\(564\) 0 0
\(565\) 2.95436 0.124291
\(566\) 0 0
\(567\) 16.7276 0.702491
\(568\) 0 0
\(569\) 28.8724i 1.21039i 0.796075 + 0.605197i \(0.206906\pi\)
−0.796075 + 0.605197i \(0.793094\pi\)
\(570\) 0 0
\(571\) 8.15947 0.341463 0.170732 0.985318i \(-0.445387\pi\)
0.170732 + 0.985318i \(0.445387\pi\)
\(572\) 0 0
\(573\) 24.9345i 1.04165i
\(574\) 0 0
\(575\) 0.941367i 0.0392577i
\(576\) 0 0
\(577\) 37.5500i 1.56323i −0.623762 0.781614i \(-0.714397\pi\)
0.623762 0.781614i \(-0.285603\pi\)
\(578\) 0 0
\(579\) 5.02578i 0.208864i
\(580\) 0 0
\(581\) 0.201677 0.00836699
\(582\) 0 0
\(583\) −22.8302 −0.945531
\(584\) 0 0
\(585\) −1.93793 −0.0801235
\(586\) 0 0
\(587\) 19.5078i 0.805174i 0.915382 + 0.402587i \(0.131889\pi\)
−0.915382 + 0.402587i \(0.868111\pi\)
\(588\) 0 0
\(589\) 1.00344 0.0413459
\(590\) 0 0
\(591\) −30.2277 −1.24340
\(592\) 0 0
\(593\) 41.5569 1.70654 0.853269 0.521471i \(-0.174617\pi\)
0.853269 + 0.521471i \(0.174617\pi\)
\(594\) 0 0
\(595\) −7.39744 −0.303266
\(596\) 0 0
\(597\) 52.8103i 2.16138i
\(598\) 0 0
\(599\) −27.6381 −1.12926 −0.564631 0.825344i \(-0.690981\pi\)
−0.564631 + 0.825344i \(0.690981\pi\)
\(600\) 0 0
\(601\) 14.4301 0.588616 0.294308 0.955711i \(-0.404911\pi\)
0.294308 + 0.955711i \(0.404911\pi\)
\(602\) 0 0
\(603\) 15.8284 0.644582
\(604\) 0 0
\(605\) 3.60256i 0.146465i
\(606\) 0 0
\(607\) 47.4880i 1.92748i 0.266848 + 0.963739i \(0.414018\pi\)
−0.266848 + 0.963739i \(0.585982\pi\)
\(608\) 0 0
\(609\) 2.47594i 0.100330i
\(610\) 0 0
\(611\) 3.11383i 0.125972i
\(612\) 0 0
\(613\) −18.7198 −0.756087 −0.378043 0.925788i \(-0.623403\pi\)
−0.378043 + 0.925788i \(0.623403\pi\)
\(614\) 0 0
\(615\) 18.6155i 0.750651i
\(616\) 0 0
\(617\) −15.0225 −0.604785 −0.302392 0.953184i \(-0.597785\pi\)
−0.302392 + 0.953184i \(0.597785\pi\)
\(618\) 0 0
\(619\) −16.6318 −0.668487 −0.334244 0.942487i \(-0.608481\pi\)
−0.334244 + 0.942487i \(0.608481\pi\)
\(620\) 0 0
\(621\) 1.99312i 0.0799813i
\(622\) 0 0
\(623\) 13.7586i 0.551226i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.52406i 0.0608651i
\(628\) 0 0
\(629\) −18.5604 22.8302i −0.740050 0.910300i
\(630\) 0 0
\(631\) 35.9294i 1.43033i −0.698957 0.715164i \(-0.746352\pi\)
0.698957 0.715164i \(-0.253648\pi\)
\(632\) 0 0
\(633\) −44.4691 −1.76749
\(634\) 0 0
\(635\) 8.30434i 0.329548i
\(636\) 0 0
\(637\) 4.38789i 0.173855i
\(638\) 0 0
\(639\) 6.29660 0.249090
\(640\) 0 0
\(641\) 29.3354 1.15868 0.579339 0.815087i \(-0.303311\pi\)
0.579339 + 0.815087i \(0.303311\pi\)
\(642\) 0 0
\(643\) 0.368025i 0.0145135i −0.999974 0.00725674i \(-0.997690\pi\)
0.999974 0.00725674i \(-0.00230991\pi\)
\(644\) 0 0
\(645\) −6.11727 −0.240867
\(646\) 0 0
\(647\) 26.7811i 1.05287i 0.850214 + 0.526437i \(0.176473\pi\)
−0.850214 + 0.526437i \(0.823527\pi\)
\(648\) 0 0
\(649\) 19.8759i 0.780196i
\(650\) 0 0
\(651\) 13.8535i 0.542962i
\(652\) 0 0
\(653\) 2.00000i 0.0782660i −0.999234 0.0391330i \(-0.987540\pi\)
0.999234 0.0391330i \(-0.0124596\pi\)
\(654\) 0 0
\(655\) −11.0732 −0.432667
\(656\) 0 0
\(657\) 18.7620 0.731976
\(658\) 0 0
\(659\) 12.9966 0.506274 0.253137 0.967430i \(-0.418538\pi\)
0.253137 + 0.967430i \(0.418538\pi\)
\(660\) 0 0
\(661\) 18.6026i 0.723556i 0.932264 + 0.361778i \(0.117830\pi\)
−0.932264 + 0.361778i \(0.882170\pi\)
\(662\) 0 0
\(663\) −10.2414 −0.397743
\(664\) 0 0
\(665\) 0.381015 0.0147751
\(666\) 0 0
\(667\) 0.677618 0.0262375
\(668\) 0 0
\(669\) −20.5604 −0.794909
\(670\) 0 0
\(671\) 18.5957i 0.717878i
\(672\) 0 0
\(673\) 20.4622 0.788759 0.394380 0.918948i \(-0.370959\pi\)
0.394380 + 0.918948i \(0.370959\pi\)
\(674\) 0 0
\(675\) −2.11727 −0.0814936
\(676\) 0 0
\(677\) −39.9018 −1.53355 −0.766776 0.641915i \(-0.778140\pi\)
−0.766776 + 0.641915i \(0.778140\pi\)
\(678\) 0 0
\(679\) 24.8923i 0.955278i
\(680\) 0 0
\(681\) 42.1035i 1.61341i
\(682\) 0 0
\(683\) 12.3940i 0.474243i 0.971480 + 0.237122i \(0.0762040\pi\)
−0.971480 + 0.237122i \(0.923796\pi\)
\(684\) 0 0
\(685\) 0.325819i 0.0124489i
\(686\) 0 0
\(687\) 56.4845 2.15502
\(688\) 0 0
\(689\) 7.90184i 0.301036i
\(690\) 0 0
\(691\) 51.5630 1.96155 0.980775 0.195142i \(-0.0625167\pi\)
0.980775 + 0.195142i \(0.0625167\pi\)
\(692\) 0 0
\(693\) 8.56283 0.325275
\(694\) 0 0
\(695\) 13.3906i 0.507933i
\(696\) 0 0
\(697\) 40.0353i 1.51645i
\(698\) 0 0
\(699\) −45.9639 −1.73851
\(700\) 0 0
\(701\) 9.76547i 0.368837i 0.982848 + 0.184418i \(0.0590401\pi\)
−0.982848 + 0.184418i \(0.940960\pi\)
\(702\) 0 0
\(703\) 0.955975 + 1.17590i 0.0360553 + 0.0443499i
\(704\) 0 0
\(705\) 7.43965i 0.280193i
\(706\) 0 0
\(707\) 16.9966 0.639222
\(708\) 0 0
\(709\) 49.8268i 1.87128i 0.352951 + 0.935642i \(0.385178\pi\)
−0.352951 + 0.935642i \(0.614822\pi\)
\(710\) 0 0
\(711\) 3.60438i 0.135175i
\(712\) 0 0
\(713\) −3.79145 −0.141991
\(714\) 0 0
\(715\) 2.56035 0.0957517
\(716\) 0 0
\(717\) 20.0483i 0.748718i
\(718\) 0 0
\(719\) 4.26375 0.159011 0.0795055 0.996834i \(-0.474666\pi\)
0.0795055 + 0.996834i \(0.474666\pi\)
\(720\) 0 0
\(721\) 21.6742i 0.807189i
\(722\) 0 0
\(723\) 31.2242i 1.16124i
\(724\) 0 0
\(725\) 0.719824i 0.0267336i
\(726\) 0 0
\(727\) 13.1759i 0.488667i −0.969691 0.244334i \(-0.921431\pi\)
0.969691 0.244334i \(-0.0785692\pi\)
\(728\) 0 0
\(729\) −8.23109 −0.304855
\(730\) 0 0
\(731\) −13.1560 −0.486593
\(732\) 0 0
\(733\) 9.39057 0.346848 0.173424 0.984847i \(-0.444517\pi\)
0.173424 + 0.984847i \(0.444517\pi\)
\(734\) 0 0
\(735\) 10.4837i 0.386696i
\(736\) 0 0
\(737\) −20.9122 −0.770309
\(738\) 0 0
\(739\) 9.62510 0.354065 0.177033 0.984205i \(-0.443350\pi\)
0.177033 + 0.984205i \(0.443350\pi\)
\(740\) 0 0
\(741\) 0.527497 0.0193781
\(742\) 0 0
\(743\) 25.6137 0.939677 0.469838 0.882753i \(-0.344312\pi\)
0.469838 + 0.882753i \(0.344312\pi\)
\(744\) 0 0
\(745\) 8.44309i 0.309331i
\(746\) 0 0
\(747\) −0.271481 −0.00993296
\(748\) 0 0
\(749\) 16.3518 0.597482
\(750\) 0 0
\(751\) −11.9740 −0.436938 −0.218469 0.975844i \(-0.570106\pi\)
−0.218469 + 0.975844i \(0.570106\pi\)
\(752\) 0 0
\(753\) 8.56035i 0.311957i
\(754\) 0 0
\(755\) 4.94137i 0.179835i
\(756\) 0 0
\(757\) 19.2051i 0.698022i 0.937119 + 0.349011i \(0.113482\pi\)
−0.937119 + 0.349011i \(0.886518\pi\)
\(758\) 0 0
\(759\) 5.75859i 0.209024i
\(760\) 0 0
\(761\) −31.8596 −1.15491 −0.577455 0.816422i \(-0.695954\pi\)
−0.577455 + 0.816422i \(0.695954\pi\)
\(762\) 0 0
\(763\) 18.7750i 0.679701i
\(764\) 0 0
\(765\) 9.95779 0.360025
\(766\) 0 0
\(767\) −6.87930 −0.248397
\(768\) 0 0
\(769\) 35.2242i 1.27022i −0.772423 0.635109i \(-0.780955\pi\)
0.772423 0.635109i \(-0.219045\pi\)
\(770\) 0 0
\(771\) 19.7655i 0.711836i
\(772\) 0 0
\(773\) −50.2630 −1.80783 −0.903917 0.427708i \(-0.859321\pi\)
−0.903917 + 0.427708i \(0.859321\pi\)
\(774\) 0 0
\(775\) 4.02760i 0.144676i
\(776\) 0 0
\(777\) −16.2345 + 13.1982i −0.582411 + 0.473484i
\(778\) 0 0
\(779\) 2.06207i 0.0738814i
\(780\) 0 0
\(781\) −8.31894 −0.297675
\(782\) 0 0
\(783\) 1.52406i 0.0544654i
\(784\) 0 0
\(785\) 19.2733i 0.687894i
\(786\) 0 0
\(787\) 51.9525 1.85191 0.925954 0.377636i \(-0.123263\pi\)
0.925954 + 0.377636i \(0.123263\pi\)
\(788\) 0 0
\(789\) −23.5500 −0.838404
\(790\) 0 0
\(791\) 4.51815i 0.160647i
\(792\) 0 0
\(793\) −6.43621 −0.228557
\(794\) 0 0
\(795\) 18.8793i 0.669580i
\(796\) 0 0
\(797\) 35.4880i 1.25705i 0.777790 + 0.628524i \(0.216341\pi\)
−0.777790 + 0.628524i \(0.783659\pi\)
\(798\) 0 0
\(799\) 16.0000i 0.566039i
\(800\) 0 0
\(801\) 18.5206i 0.654394i
\(802\) 0 0
\(803\) −24.7880 −0.874750
\(804\) 0 0
\(805\) −1.43965 −0.0507409
\(806\) 0 0
\(807\) 13.2311 0.465757
\(808\) 0 0
\(809\) 13.2051i 0.464267i 0.972684 + 0.232134i \(0.0745706\pi\)
−0.972684 + 0.232134i \(0.925429\pi\)
\(810\) 0 0
\(811\) 10.1173 0.355265 0.177633 0.984097i \(-0.443156\pi\)
0.177633 + 0.984097i \(0.443156\pi\)
\(812\) 0 0
\(813\) 17.1207 0.600449
\(814\) 0 0
\(815\) −17.3354 −0.607232
\(816\) 0 0
\(817\) 0.677618 0.0237069
\(818\) 0 0
\(819\) 2.96371i 0.103560i
\(820\) 0 0
\(821\) 5.68106 0.198270 0.0991351 0.995074i \(-0.468392\pi\)
0.0991351 + 0.995074i \(0.468392\pi\)
\(822\) 0 0
\(823\) 22.3404 0.778738 0.389369 0.921082i \(-0.372693\pi\)
0.389369 + 0.921082i \(0.372693\pi\)
\(824\) 0 0
\(825\) −6.11727 −0.212976
\(826\) 0 0
\(827\) 3.71639i 0.129231i −0.997910 0.0646157i \(-0.979418\pi\)
0.997910 0.0646157i \(-0.0205822\pi\)
\(828\) 0 0
\(829\) 15.8596i 0.550828i 0.961326 + 0.275414i \(0.0888149\pi\)
−0.961326 + 0.275414i \(0.911185\pi\)
\(830\) 0 0
\(831\) 59.5829i 2.06691i
\(832\) 0 0
\(833\) 22.5466i 0.781193i
\(834\) 0 0
\(835\) −17.0518 −0.590100
\(836\) 0 0
\(837\) 8.52750i 0.294753i
\(838\) 0 0
\(839\) 33.8950 1.17018 0.585092 0.810967i \(-0.301058\pi\)
0.585092 + 0.810967i \(0.301058\pi\)
\(840\) 0 0
\(841\) 28.4819 0.982133
\(842\) 0 0
\(843\) 59.9862i 2.06604i
\(844\) 0 0
\(845\) 12.1138i 0.416728i
\(846\) 0 0
\(847\) 5.50945 0.189307
\(848\) 0 0
\(849\) 19.6413i 0.674089i
\(850\) 0 0
\(851\) −3.61211 4.44309i −0.123822 0.152307i
\(852\) 0 0
\(853\) 35.7586i 1.22435i −0.790722 0.612175i \(-0.790295\pi\)
0.790722 0.612175i \(-0.209705\pi\)
\(854\) 0 0
\(855\) −0.512889 −0.0175404
\(856\) 0 0
\(857\) 17.3837i 0.593816i −0.954906 0.296908i \(-0.904045\pi\)
0.954906 0.296908i \(-0.0959554\pi\)
\(858\) 0 0
\(859\) 43.3922i 1.48052i −0.672319 0.740261i \(-0.734702\pi\)
0.672319 0.740261i \(-0.265298\pi\)
\(860\) 0 0
\(861\) −28.4691 −0.970223
\(862\) 0 0
\(863\) −34.8708 −1.18702 −0.593508 0.804828i \(-0.702257\pi\)
−0.593508 + 0.804828i \(0.702257\pi\)
\(864\) 0 0
\(865\) 10.7198i 0.364485i
\(866\) 0 0
\(867\) 14.3887 0.488667
\(868\) 0 0
\(869\) 4.76203i 0.161541i
\(870\) 0 0
\(871\) 7.23797i 0.245249i
\(872\) 0 0
\(873\) 33.5078i 1.13407i
\(874\) 0 0
\(875\) 1.52932i 0.0517003i
\(876\) 0 0
\(877\) 47.0907 1.59014 0.795070 0.606517i \(-0.207434\pi\)
0.795070 + 0.606517i \(0.207434\pi\)
\(878\) 0 0
\(879\) −52.8140 −1.78137
\(880\) 0 0
\(881\) 29.0027 0.977125 0.488562 0.872529i \(-0.337521\pi\)
0.488562 + 0.872529i \(0.337521\pi\)
\(882\) 0 0
\(883\) 11.0388i 0.371484i −0.982599 0.185742i \(-0.940531\pi\)
0.982599 0.185742i \(-0.0594689\pi\)
\(884\) 0 0
\(885\) 16.4362 0.552497
\(886\) 0 0
\(887\) 5.76709 0.193640 0.0968199 0.995302i \(-0.469133\pi\)
0.0968199 + 0.995302i \(0.469133\pi\)
\(888\) 0 0
\(889\) 12.7000 0.425943
\(890\) 0 0
\(891\) 29.7492 0.996637
\(892\) 0 0
\(893\) 0.824101i 0.0275775i
\(894\) 0 0
\(895\) −9.48024 −0.316889
\(896\) 0 0
\(897\) −1.99312 −0.0665485
\(898\) 0 0
\(899\) 2.89916 0.0966924
\(900\) 0 0
\(901\) 40.6026i 1.35267i
\(902\) 0 0
\(903\) 9.35524i 0.311323i
\(904\) 0 0
\(905\) 20.9966i 0.697949i
\(906\) 0 0
\(907\) 54.2139i 1.80014i −0.435742 0.900072i \(-0.643514\pi\)
0.435742 0.900072i \(-0.356486\pi\)
\(908\) 0 0
\(909\) −22.8793 −0.758858
\(910\) 0 0
\(911\) 37.1284i 1.23012i −0.788480 0.615060i \(-0.789132\pi\)
0.788480 0.615060i \(-0.210868\pi\)
\(912\) 0 0
\(913\) 0.358675 0.0118704
\(914\) 0 0
\(915\) 15.3776 0.508367
\(916\) 0 0
\(917\) 16.9345i 0.559226i
\(918\) 0 0
\(919\) 20.0889i 0.662672i −0.943513 0.331336i \(-0.892501\pi\)
0.943513 0.331336i \(-0.107499\pi\)
\(920\) 0 0
\(921\) 61.2794 2.01923
\(922\) 0 0
\(923\) 2.87930i 0.0947732i
\(924\) 0 0
\(925\) 4.71982 3.83709i 0.155187 0.126163i
\(926\) 0 0
\(927\) 29.1759i 0.958262i
\(928\) 0 0
\(929\) 12.9803 0.425871 0.212936 0.977066i \(-0.431698\pi\)
0.212936 + 0.977066i \(0.431698\pi\)
\(930\) 0 0
\(931\) 1.16129i 0.0380598i
\(932\) 0 0
\(933\) 39.8138i 1.30344i
\(934\) 0 0
\(935\) −13.1560 −0.430248
\(936\) 0 0
\(937\) −9.32238 −0.304549 −0.152274 0.988338i \(-0.548660\pi\)
−0.152274 + 0.988338i \(0.548660\pi\)
\(938\) 0 0
\(939\) 53.9639i 1.76105i
\(940\) 0 0
\(941\) −17.7586 −0.578914 −0.289457 0.957191i \(-0.593475\pi\)
−0.289457 + 0.957191i \(0.593475\pi\)
\(942\) 0 0
\(943\) 7.79145i 0.253724i
\(944\) 0 0
\(945\) 3.23797i 0.105331i
\(946\) 0 0
\(947\) 17.3354i 0.563324i −0.959514 0.281662i \(-0.909114\pi\)
0.959514 0.281662i \(-0.0908857\pi\)
\(948\) 0 0
\(949\) 8.57946i 0.278501i
\(950\) 0 0
\(951\) 7.11383 0.230682
\(952\) 0 0
\(953\) −5.88961 −0.190783 −0.0953916 0.995440i \(-0.530410\pi\)
−0.0953916 + 0.995440i \(0.530410\pi\)
\(954\) 0 0
\(955\) −11.0862 −0.358742
\(956\) 0 0
\(957\) 4.40335i 0.142340i
\(958\) 0 0
\(959\) −0.498281 −0.0160903
\(960\) 0 0
\(961\) 14.7785 0.476724
\(962\) 0 0
\(963\) −22.0114 −0.709307
\(964\) 0 0
\(965\) −2.23453 −0.0719322
\(966\) 0 0
\(967\) 32.3189i 1.03931i −0.854377 0.519654i \(-0.826061\pi\)
0.854377 0.519654i \(-0.173939\pi\)
\(968\) 0 0
\(969\) −2.71047 −0.0870730
\(970\) 0 0
\(971\) −6.11115 −0.196116 −0.0980581 0.995181i \(-0.531263\pi\)
−0.0980581 + 0.995181i \(0.531263\pi\)
\(972\) 0 0
\(973\) −20.4784 −0.656508
\(974\) 0 0
\(975\) 2.11727i 0.0678068i
\(976\) 0 0
\(977\) 47.3906i 1.51616i −0.652162 0.758079i \(-0.726138\pi\)
0.652162 0.758079i \(-0.273862\pi\)
\(978\) 0 0
\(979\) 24.4691i 0.782035i
\(980\) 0 0
\(981\) 25.2733i 0.806914i
\(982\) 0 0
\(983\) 55.7862 1.77930 0.889652 0.456640i \(-0.150947\pi\)
0.889652 + 0.456640i \(0.150947\pi\)
\(984\) 0 0
\(985\) 13.4396i 0.428223i
\(986\) 0 0
\(987\) 11.3776 0.362152
\(988\) 0 0
\(989\) −2.56035 −0.0814145
\(990\) 0 0
\(991\) 29.9655i 0.951886i 0.879476 + 0.475943i \(0.157893\pi\)
−0.879476 + 0.475943i \(0.842107\pi\)
\(992\) 0 0
\(993\) 10.0844i 0.320019i
\(994\) 0 0
\(995\) −23.4802 −0.744374
\(996\) 0 0
\(997\) 20.7811i 0.658145i 0.944305 + 0.329073i \(0.106736\pi\)
−0.944305 + 0.329073i \(0.893264\pi\)
\(998\) 0 0
\(999\) −9.99312 + 8.12414i −0.316168 + 0.257036i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2960.2.p.g.961.1 6
4.3 odd 2 370.2.d.c.221.6 yes 6
12.11 even 2 3330.2.h.n.2071.2 6
20.3 even 4 1850.2.c.j.1849.5 6
20.7 even 4 1850.2.c.i.1849.2 6
20.19 odd 2 1850.2.d.f.1701.1 6
37.36 even 2 inner 2960.2.p.g.961.2 6
148.147 odd 2 370.2.d.c.221.3 6
444.443 even 2 3330.2.h.n.2071.5 6
740.147 even 4 1850.2.c.j.1849.2 6
740.443 even 4 1850.2.c.i.1849.5 6
740.739 odd 2 1850.2.d.f.1701.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.d.c.221.3 6 148.147 odd 2
370.2.d.c.221.6 yes 6 4.3 odd 2
1850.2.c.i.1849.2 6 20.7 even 4
1850.2.c.i.1849.5 6 740.443 even 4
1850.2.c.j.1849.2 6 740.147 even 4
1850.2.c.j.1849.5 6 20.3 even 4
1850.2.d.f.1701.1 6 20.19 odd 2
1850.2.d.f.1701.4 6 740.739 odd 2
2960.2.p.g.961.1 6 1.1 even 1 trivial
2960.2.p.g.961.2 6 37.36 even 2 inner
3330.2.h.n.2071.2 6 12.11 even 2
3330.2.h.n.2071.5 6 444.443 even 2