Properties

Label 297.2.e.d.100.1
Level $297$
Weight $2$
Character 297.100
Analytic conductor $2.372$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(100,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 297.100
Dual form 297.2.e.d.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 1.62760i) q^{2} +(-0.766044 - 1.32683i) q^{4} +(1.43969 + 2.49362i) q^{5} +(0.326352 - 0.565258i) q^{7} -0.879385 q^{8} -5.41147 q^{10} +(-0.500000 + 0.866025i) q^{11} +(3.37939 + 5.85327i) q^{13} +(0.613341 + 1.06234i) q^{14} +(2.35844 - 4.08494i) q^{16} -0.184793 q^{17} -5.22668 q^{19} +(2.20574 - 3.82045i) q^{20} +(-0.939693 - 1.62760i) q^{22} +(-1.59240 - 2.75811i) q^{23} +(-1.64543 + 2.84997i) q^{25} -12.7023 q^{26} -1.00000 q^{28} +(-2.01114 + 3.48340i) q^{29} +(-0.553033 - 0.957882i) q^{31} +(3.55303 + 6.15403i) q^{32} +(0.173648 - 0.300767i) q^{34} +1.87939 q^{35} +0.106067 q^{37} +(4.91147 - 8.50692i) q^{38} +(-1.26604 - 2.19285i) q^{40} +(-2.80793 - 4.86348i) q^{41} +(-1.92989 + 3.34267i) q^{43} +1.53209 q^{44} +5.98545 q^{46} +(6.00387 - 10.3990i) q^{47} +(3.28699 + 5.69323i) q^{49} +(-3.09240 - 5.35619i) q^{50} +(5.17752 - 8.96773i) q^{52} +10.0719 q^{53} -2.87939 q^{55} +(-0.286989 + 0.497079i) q^{56} +(-3.77972 - 6.54666i) q^{58} +(5.27719 + 9.14036i) q^{59} +(3.67365 - 6.36295i) q^{61} +2.07873 q^{62} -3.92127 q^{64} +(-9.73055 + 16.8538i) q^{65} +(5.90420 + 10.2264i) q^{67} +(0.141559 + 0.245188i) q^{68} +(-1.76604 + 3.05888i) q^{70} +2.47565 q^{71} +10.4611 q^{73} +(-0.0996702 + 0.172634i) q^{74} +(4.00387 + 6.93491i) q^{76} +(0.326352 + 0.565258i) q^{77} +(0.733956 - 1.27125i) q^{79} +13.5817 q^{80} +10.5544 q^{82} +(-0.520945 + 0.902302i) q^{83} +(-0.266044 - 0.460802i) q^{85} +(-3.62701 - 6.28217i) q^{86} +(0.439693 - 0.761570i) q^{88} +3.01960 q^{89} +4.41147 q^{91} +(-2.43969 + 4.22567i) q^{92} +(11.2836 + 19.5437i) q^{94} +(-7.52481 - 13.0334i) q^{95} +(2.86959 - 4.97027i) q^{97} -12.3550 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} + 6 q^{8} - 12 q^{10} - 3 q^{11} + 9 q^{13} - 3 q^{14} + 6 q^{16} + 6 q^{17} - 18 q^{19} + 3 q^{20} - 6 q^{23} + 6 q^{25} - 24 q^{26} - 6 q^{28} - 6 q^{29} + 9 q^{31} + 9 q^{32}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 1.62760i −0.664463 + 1.15088i 0.314968 + 0.949102i \(0.398006\pi\)
−0.979431 + 0.201781i \(0.935327\pi\)
\(3\) 0 0
\(4\) −0.766044 1.32683i −0.383022 0.663414i
\(5\) 1.43969 + 2.49362i 0.643850 + 1.11518i 0.984566 + 0.175015i \(0.0559973\pi\)
−0.340716 + 0.940166i \(0.610669\pi\)
\(6\) 0 0
\(7\) 0.326352 0.565258i 0.123349 0.213647i −0.797737 0.603005i \(-0.793970\pi\)
0.921087 + 0.389358i \(0.127303\pi\)
\(8\) −0.879385 −0.310910
\(9\) 0 0
\(10\) −5.41147 −1.71126
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) 3.37939 + 5.85327i 0.937273 + 1.62340i 0.770530 + 0.637404i \(0.219992\pi\)
0.166743 + 0.986000i \(0.446675\pi\)
\(14\) 0.613341 + 1.06234i 0.163922 + 0.283922i
\(15\) 0 0
\(16\) 2.35844 4.08494i 0.589610 1.02123i
\(17\) −0.184793 −0.0448188 −0.0224094 0.999749i \(-0.507134\pi\)
−0.0224094 + 0.999749i \(0.507134\pi\)
\(18\) 0 0
\(19\) −5.22668 −1.19908 −0.599541 0.800344i \(-0.704650\pi\)
−0.599541 + 0.800344i \(0.704650\pi\)
\(20\) 2.20574 3.82045i 0.493218 0.854278i
\(21\) 0 0
\(22\) −0.939693 1.62760i −0.200343 0.347004i
\(23\) −1.59240 2.75811i −0.332038 0.575106i 0.650874 0.759186i \(-0.274403\pi\)
−0.982911 + 0.184080i \(0.941069\pi\)
\(24\) 0 0
\(25\) −1.64543 + 2.84997i −0.329086 + 0.569994i
\(26\) −12.7023 −2.49113
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −2.01114 + 3.48340i −0.373460 + 0.646852i −0.990095 0.140397i \(-0.955162\pi\)
0.616635 + 0.787249i \(0.288495\pi\)
\(30\) 0 0
\(31\) −0.553033 0.957882i −0.0993277 0.172041i 0.812079 0.583548i \(-0.198336\pi\)
−0.911407 + 0.411507i \(0.865003\pi\)
\(32\) 3.55303 + 6.15403i 0.628094 + 1.08789i
\(33\) 0 0
\(34\) 0.173648 0.300767i 0.0297804 0.0515812i
\(35\) 1.87939 0.317674
\(36\) 0 0
\(37\) 0.106067 0.0174373 0.00871864 0.999962i \(-0.497225\pi\)
0.00871864 + 0.999962i \(0.497225\pi\)
\(38\) 4.91147 8.50692i 0.796746 1.38001i
\(39\) 0 0
\(40\) −1.26604 2.19285i −0.200179 0.346721i
\(41\) −2.80793 4.86348i −0.438526 0.759549i 0.559050 0.829134i \(-0.311166\pi\)
−0.997576 + 0.0695851i \(0.977832\pi\)
\(42\) 0 0
\(43\) −1.92989 + 3.34267i −0.294306 + 0.509753i −0.974823 0.222979i \(-0.928422\pi\)
0.680517 + 0.732732i \(0.261755\pi\)
\(44\) 1.53209 0.230971
\(45\) 0 0
\(46\) 5.98545 0.882507
\(47\) 6.00387 10.3990i 0.875755 1.51685i 0.0197977 0.999804i \(-0.493698\pi\)
0.855957 0.517047i \(-0.172969\pi\)
\(48\) 0 0
\(49\) 3.28699 + 5.69323i 0.469570 + 0.813319i
\(50\) −3.09240 5.35619i −0.437331 0.757479i
\(51\) 0 0
\(52\) 5.17752 8.96773i 0.717993 1.24360i
\(53\) 10.0719 1.38348 0.691742 0.722145i \(-0.256843\pi\)
0.691742 + 0.722145i \(0.256843\pi\)
\(54\) 0 0
\(55\) −2.87939 −0.388256
\(56\) −0.286989 + 0.497079i −0.0383505 + 0.0664250i
\(57\) 0 0
\(58\) −3.77972 6.54666i −0.496301 0.859618i
\(59\) 5.27719 + 9.14036i 0.687031 + 1.18997i 0.972794 + 0.231673i \(0.0744199\pi\)
−0.285762 + 0.958301i \(0.592247\pi\)
\(60\) 0 0
\(61\) 3.67365 6.36295i 0.470362 0.814692i −0.529063 0.848582i \(-0.677457\pi\)
0.999426 + 0.0338908i \(0.0107899\pi\)
\(62\) 2.07873 0.263998
\(63\) 0 0
\(64\) −3.92127 −0.490159
\(65\) −9.73055 + 16.8538i −1.20693 + 2.09046i
\(66\) 0 0
\(67\) 5.90420 + 10.2264i 0.721313 + 1.24935i 0.960474 + 0.278371i \(0.0897943\pi\)
−0.239161 + 0.970980i \(0.576872\pi\)
\(68\) 0.141559 + 0.245188i 0.0171666 + 0.0297334i
\(69\) 0 0
\(70\) −1.76604 + 3.05888i −0.211083 + 0.365606i
\(71\) 2.47565 0.293806 0.146903 0.989151i \(-0.453070\pi\)
0.146903 + 0.989151i \(0.453070\pi\)
\(72\) 0 0
\(73\) 10.4611 1.22438 0.612190 0.790711i \(-0.290289\pi\)
0.612190 + 0.790711i \(0.290289\pi\)
\(74\) −0.0996702 + 0.172634i −0.0115864 + 0.0200683i
\(75\) 0 0
\(76\) 4.00387 + 6.93491i 0.459275 + 0.795488i
\(77\) 0.326352 + 0.565258i 0.0371912 + 0.0644171i
\(78\) 0 0
\(79\) 0.733956 1.27125i 0.0825765 0.143027i −0.821779 0.569806i \(-0.807018\pi\)
0.904356 + 0.426779i \(0.140352\pi\)
\(80\) 13.5817 1.51848
\(81\) 0 0
\(82\) 10.5544 1.16554
\(83\) −0.520945 + 0.902302i −0.0571811 + 0.0990406i −0.893199 0.449662i \(-0.851545\pi\)
0.836018 + 0.548702i \(0.184878\pi\)
\(84\) 0 0
\(85\) −0.266044 0.460802i −0.0288566 0.0499810i
\(86\) −3.62701 6.28217i −0.391111 0.677424i
\(87\) 0 0
\(88\) 0.439693 0.761570i 0.0468714 0.0811836i
\(89\) 3.01960 0.320077 0.160038 0.987111i \(-0.448838\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(90\) 0 0
\(91\) 4.41147 0.462448
\(92\) −2.43969 + 4.22567i −0.254356 + 0.440557i
\(93\) 0 0
\(94\) 11.2836 + 19.5437i 1.16381 + 2.01578i
\(95\) −7.52481 13.0334i −0.772030 1.33719i
\(96\) 0 0
\(97\) 2.86959 4.97027i 0.291362 0.504654i −0.682770 0.730633i \(-0.739225\pi\)
0.974132 + 0.225979i \(0.0725582\pi\)
\(98\) −12.3550 −1.24805
\(99\) 0 0
\(100\) 5.04189 0.504189
\(101\) −2.20961 + 3.82715i −0.219864 + 0.380816i −0.954766 0.297357i \(-0.903895\pi\)
0.734902 + 0.678173i \(0.237228\pi\)
\(102\) 0 0
\(103\) −5.21941 9.04028i −0.514284 0.890765i −0.999863 0.0165725i \(-0.994725\pi\)
0.485579 0.874193i \(-0.338609\pi\)
\(104\) −2.97178 5.14728i −0.291407 0.504732i
\(105\) 0 0
\(106\) −9.46451 + 16.3930i −0.919274 + 1.59223i
\(107\) 8.31315 0.803662 0.401831 0.915714i \(-0.368374\pi\)
0.401831 + 0.915714i \(0.368374\pi\)
\(108\) 0 0
\(109\) −15.9881 −1.53139 −0.765693 0.643206i \(-0.777604\pi\)
−0.765693 + 0.643206i \(0.777604\pi\)
\(110\) 2.70574 4.68647i 0.257982 0.446838i
\(111\) 0 0
\(112\) −1.53936 2.66625i −0.145456 0.251937i
\(113\) −2.53209 4.38571i −0.238199 0.412573i 0.721999 0.691894i \(-0.243224\pi\)
−0.960198 + 0.279322i \(0.909890\pi\)
\(114\) 0 0
\(115\) 4.58512 7.94166i 0.427565 0.740564i
\(116\) 6.16250 0.572174
\(117\) 0 0
\(118\) −19.8357 −1.82603
\(119\) −0.0603074 + 0.104455i −0.00552837 + 0.00957541i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 6.90420 + 11.9584i 0.625077 + 1.08266i
\(123\) 0 0
\(124\) −0.847296 + 1.46756i −0.0760895 + 0.131791i
\(125\) 4.92127 0.440172
\(126\) 0 0
\(127\) 7.80066 0.692197 0.346098 0.938198i \(-0.387506\pi\)
0.346098 + 0.938198i \(0.387506\pi\)
\(128\) −3.42127 + 5.92582i −0.302401 + 0.523774i
\(129\) 0 0
\(130\) −18.2875 31.6748i −1.60392 2.77806i
\(131\) −6.24897 10.8235i −0.545975 0.945657i −0.998545 0.0539276i \(-0.982826\pi\)
0.452570 0.891729i \(-0.350507\pi\)
\(132\) 0 0
\(133\) −1.70574 + 2.95442i −0.147906 + 0.256181i
\(134\) −22.1925 −1.91714
\(135\) 0 0
\(136\) 0.162504 0.0139346
\(137\) 7.61334 13.1867i 0.650452 1.12662i −0.332562 0.943081i \(-0.607913\pi\)
0.983013 0.183534i \(-0.0587537\pi\)
\(138\) 0 0
\(139\) −7.25150 12.5600i −0.615064 1.06532i −0.990373 0.138422i \(-0.955797\pi\)
0.375309 0.926900i \(-0.377536\pi\)
\(140\) −1.43969 2.49362i −0.121676 0.210749i
\(141\) 0 0
\(142\) −2.32635 + 4.02936i −0.195223 + 0.338136i
\(143\) −6.75877 −0.565197
\(144\) 0 0
\(145\) −11.5817 −0.961809
\(146\) −9.83022 + 17.0264i −0.813555 + 1.40912i
\(147\) 0 0
\(148\) −0.0812519 0.140732i −0.00667887 0.0115681i
\(149\) 7.30453 + 12.6518i 0.598410 + 1.03648i 0.993056 + 0.117644i \(0.0375341\pi\)
−0.394645 + 0.918833i \(0.629133\pi\)
\(150\) 0 0
\(151\) 10.5535 18.2792i 0.858832 1.48754i −0.0142125 0.999899i \(-0.504524\pi\)
0.873044 0.487641i \(-0.162143\pi\)
\(152\) 4.59627 0.372806
\(153\) 0 0
\(154\) −1.22668 −0.0988488
\(155\) 1.59240 2.75811i 0.127904 0.221537i
\(156\) 0 0
\(157\) 2.21554 + 3.83742i 0.176819 + 0.306260i 0.940789 0.338992i \(-0.110086\pi\)
−0.763970 + 0.645252i \(0.776753\pi\)
\(158\) 1.37939 + 2.38917i 0.109738 + 0.190072i
\(159\) 0 0
\(160\) −10.2306 + 17.7198i −0.808796 + 1.40088i
\(161\) −2.07873 −0.163827
\(162\) 0 0
\(163\) −2.12567 −0.166495 −0.0832476 0.996529i \(-0.526529\pi\)
−0.0832476 + 0.996529i \(0.526529\pi\)
\(164\) −4.30200 + 7.45129i −0.335930 + 0.581848i
\(165\) 0 0
\(166\) −0.979055 1.69577i −0.0759894 0.131618i
\(167\) 6.21554 + 10.7656i 0.480973 + 0.833069i 0.999762 0.0218332i \(-0.00695027\pi\)
−0.518789 + 0.854902i \(0.673617\pi\)
\(168\) 0 0
\(169\) −16.3405 + 28.3026i −1.25696 + 2.17712i
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) 5.91353 0.450903
\(173\) 1.80200 3.12116i 0.137004 0.237298i −0.789357 0.613934i \(-0.789586\pi\)
0.926361 + 0.376636i \(0.122919\pi\)
\(174\) 0 0
\(175\) 1.07398 + 1.86018i 0.0811851 + 0.140617i
\(176\) 2.35844 + 4.08494i 0.177774 + 0.307914i
\(177\) 0 0
\(178\) −2.83750 + 4.91469i −0.212679 + 0.368371i
\(179\) −12.8726 −0.962142 −0.481071 0.876682i \(-0.659752\pi\)
−0.481071 + 0.876682i \(0.659752\pi\)
\(180\) 0 0
\(181\) −24.3405 −1.80921 −0.904607 0.426246i \(-0.859836\pi\)
−0.904607 + 0.426246i \(0.859836\pi\)
\(182\) −4.14543 + 7.18009i −0.307280 + 0.532224i
\(183\) 0 0
\(184\) 1.40033 + 2.42544i 0.103234 + 0.178806i
\(185\) 0.152704 + 0.264490i 0.0112270 + 0.0194457i
\(186\) 0 0
\(187\) 0.0923963 0.160035i 0.00675668 0.0117029i
\(188\) −18.3969 −1.34173
\(189\) 0 0
\(190\) 28.2841 2.05194
\(191\) 2.97906 5.15988i 0.215557 0.373355i −0.737888 0.674923i \(-0.764177\pi\)
0.953445 + 0.301568i \(0.0975100\pi\)
\(192\) 0 0
\(193\) −5.41147 9.37295i −0.389526 0.674680i 0.602859 0.797847i \(-0.294028\pi\)
−0.992386 + 0.123168i \(0.960695\pi\)
\(194\) 5.39306 + 9.34105i 0.387199 + 0.670648i
\(195\) 0 0
\(196\) 5.03596 8.72254i 0.359711 0.623038i
\(197\) −3.07192 −0.218865 −0.109433 0.993994i \(-0.534903\pi\)
−0.109433 + 0.993994i \(0.534903\pi\)
\(198\) 0 0
\(199\) 1.54664 0.109638 0.0548191 0.998496i \(-0.482542\pi\)
0.0548191 + 0.998496i \(0.482542\pi\)
\(200\) 1.44697 2.50622i 0.102316 0.177216i
\(201\) 0 0
\(202\) −4.15270 7.19269i −0.292183 0.506076i
\(203\) 1.31268 + 2.27363i 0.0921322 + 0.159578i
\(204\) 0 0
\(205\) 8.08512 14.0038i 0.564689 0.978071i
\(206\) 19.6186 1.36689
\(207\) 0 0
\(208\) 31.8803 2.21050
\(209\) 2.61334 4.52644i 0.180769 0.313100i
\(210\) 0 0
\(211\) 7.92649 + 13.7291i 0.545682 + 0.945149i 0.998564 + 0.0535783i \(0.0170627\pi\)
−0.452882 + 0.891571i \(0.649604\pi\)
\(212\) −7.71554 13.3637i −0.529905 0.917823i
\(213\) 0 0
\(214\) −7.81180 + 13.5304i −0.534004 + 0.924922i
\(215\) −11.1138 −0.757955
\(216\) 0 0
\(217\) −0.721934 −0.0490081
\(218\) 15.0239 26.0222i 1.01755 1.76245i
\(219\) 0 0
\(220\) 2.20574 + 3.82045i 0.148711 + 0.257575i
\(221\) −0.624485 1.08164i −0.0420074 0.0727590i
\(222\) 0 0
\(223\) −3.12314 + 5.40944i −0.209141 + 0.362243i −0.951444 0.307821i \(-0.900400\pi\)
0.742303 + 0.670064i \(0.233733\pi\)
\(224\) 4.63816 0.309900
\(225\) 0 0
\(226\) 9.51754 0.633097
\(227\) 1.63088 2.82477i 0.108245 0.187487i −0.806814 0.590805i \(-0.798810\pi\)
0.915060 + 0.403319i \(0.132143\pi\)
\(228\) 0 0
\(229\) 5.40760 + 9.36624i 0.357345 + 0.618939i 0.987516 0.157517i \(-0.0503489\pi\)
−0.630172 + 0.776456i \(0.717016\pi\)
\(230\) 8.61721 + 14.9254i 0.568202 + 0.984155i
\(231\) 0 0
\(232\) 1.76857 3.06325i 0.116112 0.201112i
\(233\) 3.71688 0.243501 0.121750 0.992561i \(-0.461149\pi\)
0.121750 + 0.992561i \(0.461149\pi\)
\(234\) 0 0
\(235\) 34.5749 2.25542
\(236\) 8.08512 14.0038i 0.526297 0.911573i
\(237\) 0 0
\(238\) −0.113341 0.196312i −0.00734679 0.0127250i
\(239\) 4.02869 + 6.97789i 0.260594 + 0.451362i 0.966400 0.257043i \(-0.0827483\pi\)
−0.705806 + 0.708405i \(0.749415\pi\)
\(240\) 0 0
\(241\) 2.15998 3.74119i 0.139136 0.240991i −0.788034 0.615632i \(-0.788901\pi\)
0.927170 + 0.374641i \(0.122234\pi\)
\(242\) 1.87939 0.120811
\(243\) 0 0
\(244\) −11.2567 −0.720637
\(245\) −9.46451 + 16.3930i −0.604665 + 1.04731i
\(246\) 0 0
\(247\) −17.6630 30.5932i −1.12387 1.94660i
\(248\) 0.486329 + 0.842347i 0.0308819 + 0.0534891i
\(249\) 0 0
\(250\) −4.62449 + 8.00984i −0.292478 + 0.506587i
\(251\) −14.1753 −0.894737 −0.447368 0.894350i \(-0.647639\pi\)
−0.447368 + 0.894350i \(0.647639\pi\)
\(252\) 0 0
\(253\) 3.18479 0.200226
\(254\) −7.33022 + 12.6963i −0.459939 + 0.796638i
\(255\) 0 0
\(256\) −10.3512 17.9287i −0.646948 1.12055i
\(257\) −4.31655 7.47649i −0.269259 0.466370i 0.699412 0.714719i \(-0.253445\pi\)
−0.968671 + 0.248349i \(0.920112\pi\)
\(258\) 0 0
\(259\) 0.0346151 0.0599551i 0.00215088 0.00372543i
\(260\) 29.8161 1.84912
\(261\) 0 0
\(262\) 23.4884 1.45112
\(263\) 0.599670 1.03866i 0.0369773 0.0640465i −0.846945 0.531681i \(-0.821560\pi\)
0.883922 + 0.467635i \(0.154894\pi\)
\(264\) 0 0
\(265\) 14.5005 + 25.1155i 0.890757 + 1.54284i
\(266\) −3.20574 5.55250i −0.196556 0.340446i
\(267\) 0 0
\(268\) 9.04576 15.6677i 0.552558 0.957058i
\(269\) −27.9213 −1.70239 −0.851195 0.524849i \(-0.824122\pi\)
−0.851195 + 0.524849i \(0.824122\pi\)
\(270\) 0 0
\(271\) −13.4311 −0.815880 −0.407940 0.913009i \(-0.633753\pi\)
−0.407940 + 0.913009i \(0.633753\pi\)
\(272\) −0.435822 + 0.754866i −0.0264256 + 0.0457705i
\(273\) 0 0
\(274\) 14.3084 + 24.7829i 0.864402 + 1.49719i
\(275\) −1.64543 2.84997i −0.0992231 0.171860i
\(276\) 0 0
\(277\) 4.24035 7.34451i 0.254778 0.441289i −0.710057 0.704144i \(-0.751331\pi\)
0.964835 + 0.262855i \(0.0846642\pi\)
\(278\) 27.2567 1.63475
\(279\) 0 0
\(280\) −1.65270 −0.0987679
\(281\) −1.26945 + 2.19875i −0.0757289 + 0.131166i −0.901403 0.432981i \(-0.857462\pi\)
0.825674 + 0.564147i \(0.190795\pi\)
\(282\) 0 0
\(283\) 2.33750 + 4.04866i 0.138950 + 0.240668i 0.927099 0.374816i \(-0.122294\pi\)
−0.788150 + 0.615484i \(0.788961\pi\)
\(284\) −1.89646 3.28476i −0.112534 0.194915i
\(285\) 0 0
\(286\) 6.35117 11.0005i 0.375552 0.650476i
\(287\) −3.66550 −0.216367
\(288\) 0 0
\(289\) −16.9659 −0.997991
\(290\) 10.8833 18.8504i 0.639087 1.10693i
\(291\) 0 0
\(292\) −8.01367 13.8801i −0.468965 0.812271i
\(293\) 3.92262 + 6.79417i 0.229162 + 0.396920i 0.957560 0.288234i \(-0.0930682\pi\)
−0.728398 + 0.685154i \(0.759735\pi\)
\(294\) 0 0
\(295\) −15.1951 + 26.3186i −0.884691 + 1.53233i
\(296\) −0.0932736 −0.00542142
\(297\) 0 0
\(298\) −27.4561 −1.59049
\(299\) 10.7626 18.6414i 0.622420 1.07806i
\(300\) 0 0
\(301\) 1.25965 + 2.18177i 0.0726049 + 0.125755i
\(302\) 19.8341 + 34.3537i 1.14132 + 1.97683i
\(303\) 0 0
\(304\) −12.3268 + 21.3507i −0.706992 + 1.22455i
\(305\) 21.1557 1.21137
\(306\) 0 0
\(307\) 26.4047 1.50699 0.753497 0.657451i \(-0.228365\pi\)
0.753497 + 0.657451i \(0.228365\pi\)
\(308\) 0.500000 0.866025i 0.0284901 0.0493464i
\(309\) 0 0
\(310\) 2.99273 + 5.18355i 0.169975 + 0.294406i
\(311\) −9.57057 16.5767i −0.542697 0.939980i −0.998748 0.0500257i \(-0.984070\pi\)
0.456050 0.889954i \(-0.349264\pi\)
\(312\) 0 0
\(313\) 4.48545 7.76903i 0.253533 0.439132i −0.710963 0.703229i \(-0.751741\pi\)
0.964496 + 0.264098i \(0.0850741\pi\)
\(314\) −8.32770 −0.469959
\(315\) 0 0
\(316\) −2.24897 −0.126514
\(317\) 3.13903 5.43696i 0.176306 0.305370i −0.764307 0.644853i \(-0.776919\pi\)
0.940612 + 0.339483i \(0.110252\pi\)
\(318\) 0 0
\(319\) −2.01114 3.48340i −0.112602 0.195033i
\(320\) −5.64543 9.77817i −0.315589 0.546616i
\(321\) 0 0
\(322\) 1.95336 3.38332i 0.108857 0.188545i
\(323\) 0.965852 0.0537414
\(324\) 0 0
\(325\) −22.2422 −1.23377
\(326\) 1.99747 3.45973i 0.110630 0.191617i
\(327\) 0 0
\(328\) 2.46926 + 4.27688i 0.136342 + 0.236151i
\(329\) −3.91875 6.78747i −0.216048 0.374205i
\(330\) 0 0
\(331\) 5.93629 10.2820i 0.326288 0.565147i −0.655484 0.755209i \(-0.727535\pi\)
0.981772 + 0.190062i \(0.0608688\pi\)
\(332\) 1.59627 0.0876065
\(333\) 0 0
\(334\) −23.3628 −1.27835
\(335\) −17.0005 + 29.4457i −0.928835 + 1.60879i
\(336\) 0 0
\(337\) −4.52094 7.83051i −0.246272 0.426555i 0.716217 0.697878i \(-0.245872\pi\)
−0.962488 + 0.271323i \(0.912539\pi\)
\(338\) −30.7101 53.1914i −1.67041 2.89323i
\(339\) 0 0
\(340\) −0.407604 + 0.705990i −0.0221054 + 0.0382877i
\(341\) 1.10607 0.0598969
\(342\) 0 0
\(343\) 8.85978 0.478383
\(344\) 1.69712 2.93950i 0.0915025 0.158487i
\(345\) 0 0
\(346\) 3.38666 + 5.86587i 0.182068 + 0.315351i
\(347\) −9.48158 16.4226i −0.508998 0.881610i −0.999946 0.0104213i \(-0.996683\pi\)
0.490948 0.871189i \(-0.336651\pi\)
\(348\) 0 0
\(349\) 11.0642 19.1637i 0.592252 1.02581i −0.401677 0.915782i \(-0.631572\pi\)
0.993928 0.110029i \(-0.0350943\pi\)
\(350\) −4.03684 −0.215778
\(351\) 0 0
\(352\) −7.10607 −0.378755
\(353\) −12.2208 + 21.1670i −0.650445 + 1.12660i 0.332570 + 0.943079i \(0.392084\pi\)
−0.983015 + 0.183525i \(0.941249\pi\)
\(354\) 0 0
\(355\) 3.56418 + 6.17334i 0.189167 + 0.327647i
\(356\) −2.31315 4.00649i −0.122597 0.212344i
\(357\) 0 0
\(358\) 12.0963 20.9513i 0.639308 1.10731i
\(359\) 4.68685 0.247363 0.123681 0.992322i \(-0.460530\pi\)
0.123681 + 0.992322i \(0.460530\pi\)
\(360\) 0 0
\(361\) 8.31820 0.437800
\(362\) 22.8726 39.6165i 1.20216 2.08220i
\(363\) 0 0
\(364\) −3.37939 5.85327i −0.177128 0.306795i
\(365\) 15.0608 + 26.0860i 0.788317 + 1.36541i
\(366\) 0 0
\(367\) 4.50134 7.79656i 0.234968 0.406977i −0.724295 0.689490i \(-0.757835\pi\)
0.959263 + 0.282513i \(0.0911680\pi\)
\(368\) −15.0223 −0.783091
\(369\) 0 0
\(370\) −0.573978 −0.0298397
\(371\) 3.28699 5.69323i 0.170652 0.295578i
\(372\) 0 0
\(373\) −5.13950 8.90187i −0.266113 0.460922i 0.701741 0.712432i \(-0.252406\pi\)
−0.967855 + 0.251510i \(0.919073\pi\)
\(374\) 0.173648 + 0.300767i 0.00897913 + 0.0155523i
\(375\) 0 0
\(376\) −5.27972 + 9.14473i −0.272281 + 0.471604i
\(377\) −27.1857 −1.40014
\(378\) 0 0
\(379\) 14.2540 0.732180 0.366090 0.930579i \(-0.380696\pi\)
0.366090 + 0.930579i \(0.380696\pi\)
\(380\) −11.5287 + 19.9683i −0.591409 + 1.02435i
\(381\) 0 0
\(382\) 5.59879 + 9.69739i 0.286459 + 0.496162i
\(383\) 7.41740 + 12.8473i 0.379012 + 0.656467i 0.990919 0.134462i \(-0.0429307\pi\)
−0.611907 + 0.790930i \(0.709597\pi\)
\(384\) 0 0
\(385\) −0.939693 + 1.62760i −0.0478912 + 0.0829499i
\(386\) 20.3405 1.03530
\(387\) 0 0
\(388\) −8.79292 −0.446393
\(389\) 5.46064 9.45810i 0.276865 0.479545i −0.693739 0.720227i \(-0.744038\pi\)
0.970604 + 0.240682i \(0.0773711\pi\)
\(390\) 0 0
\(391\) 0.294263 + 0.509678i 0.0148815 + 0.0257755i
\(392\) −2.89053 5.00654i −0.145994 0.252869i
\(393\) 0 0
\(394\) 2.88666 4.99984i 0.145428 0.251888i
\(395\) 4.22668 0.212667
\(396\) 0 0
\(397\) −34.5945 −1.73625 −0.868124 0.496347i \(-0.834674\pi\)
−0.868124 + 0.496347i \(0.834674\pi\)
\(398\) −1.45336 + 2.51730i −0.0728505 + 0.126181i
\(399\) 0 0
\(400\) 7.76130 + 13.4430i 0.388065 + 0.672148i
\(401\) 8.62061 + 14.9313i 0.430493 + 0.745636i 0.996916 0.0784791i \(-0.0250064\pi\)
−0.566423 + 0.824115i \(0.691673\pi\)
\(402\) 0 0
\(403\) 3.73783 6.47410i 0.186194 0.322498i
\(404\) 6.77063 0.336851
\(405\) 0 0
\(406\) −4.93407 −0.244874
\(407\) −0.0530334 + 0.0918566i −0.00262877 + 0.00455316i
\(408\) 0 0
\(409\) 2.21167 + 3.83072i 0.109360 + 0.189417i 0.915511 0.402293i \(-0.131787\pi\)
−0.806151 + 0.591710i \(0.798453\pi\)
\(410\) 15.1951 + 26.3186i 0.750431 + 1.29978i
\(411\) 0 0
\(412\) −7.99660 + 13.8505i −0.393964 + 0.682366i
\(413\) 6.88888 0.338980
\(414\) 0 0
\(415\) −3.00000 −0.147264
\(416\) −24.0141 + 41.5937i −1.17739 + 2.03930i
\(417\) 0 0
\(418\) 4.91147 + 8.50692i 0.240228 + 0.416087i
\(419\) −8.75877 15.1706i −0.427894 0.741134i 0.568792 0.822481i \(-0.307411\pi\)
−0.996686 + 0.0813475i \(0.974078\pi\)
\(420\) 0 0
\(421\) −4.95858 + 8.58851i −0.241666 + 0.418578i −0.961189 0.275891i \(-0.911027\pi\)
0.719523 + 0.694469i \(0.244361\pi\)
\(422\) −29.7939 −1.45034
\(423\) 0 0
\(424\) −8.85710 −0.430139
\(425\) 0.304063 0.526653i 0.0147492 0.0255464i
\(426\) 0 0
\(427\) −2.39780 4.15312i −0.116038 0.200983i
\(428\) −6.36824 11.0301i −0.307821 0.533161i
\(429\) 0 0
\(430\) 10.4436 18.0888i 0.503633 0.872319i
\(431\) 2.38238 0.114755 0.0573776 0.998353i \(-0.481726\pi\)
0.0573776 + 0.998353i \(0.481726\pi\)
\(432\) 0 0
\(433\) 31.1661 1.49775 0.748874 0.662712i \(-0.230595\pi\)
0.748874 + 0.662712i \(0.230595\pi\)
\(434\) 0.678396 1.17502i 0.0325640 0.0564026i
\(435\) 0 0
\(436\) 12.2476 + 21.2135i 0.586555 + 1.01594i
\(437\) 8.32295 + 14.4158i 0.398141 + 0.689600i
\(438\) 0 0
\(439\) −4.02734 + 6.97556i −0.192215 + 0.332925i −0.945984 0.324214i \(-0.894900\pi\)
0.753769 + 0.657139i \(0.228234\pi\)
\(440\) 2.53209 0.120713
\(441\) 0 0
\(442\) 2.34730 0.111650
\(443\) −5.81773 + 10.0766i −0.276409 + 0.478754i −0.970490 0.241143i \(-0.922478\pi\)
0.694081 + 0.719897i \(0.255811\pi\)
\(444\) 0 0
\(445\) 4.34730 + 7.52974i 0.206082 + 0.356944i
\(446\) −5.86959 10.1664i −0.277933 0.481394i
\(447\) 0 0
\(448\) −1.27972 + 2.21653i −0.0604609 + 0.104721i
\(449\) 25.7442 1.21494 0.607472 0.794341i \(-0.292183\pi\)
0.607472 + 0.794341i \(0.292183\pi\)
\(450\) 0 0
\(451\) 5.61587 0.264441
\(452\) −3.87939 + 6.71929i −0.182471 + 0.316049i
\(453\) 0 0
\(454\) 3.06506 + 5.30883i 0.143850 + 0.249156i
\(455\) 6.35117 + 11.0005i 0.297747 + 0.515713i
\(456\) 0 0
\(457\) −19.2160 + 33.2831i −0.898887 + 1.55692i −0.0699675 + 0.997549i \(0.522290\pi\)
−0.828919 + 0.559368i \(0.811044\pi\)
\(458\) −20.3259 −0.949769
\(459\) 0 0
\(460\) −14.0496 −0.655067
\(461\) 2.79948 4.84884i 0.130385 0.225833i −0.793440 0.608648i \(-0.791712\pi\)
0.923825 + 0.382815i \(0.125045\pi\)
\(462\) 0 0
\(463\) −4.64677 8.04845i −0.215954 0.374043i 0.737613 0.675223i \(-0.235953\pi\)
−0.953567 + 0.301180i \(0.902619\pi\)
\(464\) 9.48633 + 16.4308i 0.440392 + 0.762781i
\(465\) 0 0
\(466\) −3.49273 + 6.04958i −0.161797 + 0.280241i
\(467\) −17.0642 −0.789636 −0.394818 0.918759i \(-0.629192\pi\)
−0.394818 + 0.918759i \(0.629192\pi\)
\(468\) 0 0
\(469\) 7.70739 0.355894
\(470\) −32.4898 + 56.2740i −1.49864 + 2.59572i
\(471\) 0 0
\(472\) −4.64068 8.03790i −0.213605 0.369974i
\(473\) −1.92989 3.34267i −0.0887365 0.153696i
\(474\) 0 0
\(475\) 8.60014 14.8959i 0.394601 0.683470i
\(476\) 0.184793 0.00846995
\(477\) 0 0
\(478\) −15.1429 −0.692620
\(479\) −19.7101 + 34.1389i −0.900576 + 1.55984i −0.0738286 + 0.997271i \(0.523522\pi\)
−0.826748 + 0.562573i \(0.809812\pi\)
\(480\) 0 0
\(481\) 0.358441 + 0.620838i 0.0163435 + 0.0283078i
\(482\) 4.05943 + 7.03114i 0.184902 + 0.320260i
\(483\) 0 0
\(484\) −0.766044 + 1.32683i −0.0348202 + 0.0603104i
\(485\) 16.5253 0.750374
\(486\) 0 0
\(487\) −34.9522 −1.58384 −0.791919 0.610627i \(-0.790918\pi\)
−0.791919 + 0.610627i \(0.790918\pi\)
\(488\) −3.23055 + 5.59548i −0.146240 + 0.253295i
\(489\) 0 0
\(490\) −17.7875 30.8088i −0.803555 1.39180i
\(491\) −12.0235 20.8253i −0.542612 0.939831i −0.998753 0.0499236i \(-0.984102\pi\)
0.456141 0.889907i \(-0.349231\pi\)
\(492\) 0 0
\(493\) 0.371644 0.643707i 0.0167380 0.0289911i
\(494\) 66.3911 2.98707
\(495\) 0 0
\(496\) −5.21719 −0.234259
\(497\) 0.807934 1.39938i 0.0362408 0.0627709i
\(498\) 0 0
\(499\) −13.5608 23.4879i −0.607064 1.05147i −0.991722 0.128406i \(-0.959014\pi\)
0.384658 0.923059i \(-0.374319\pi\)
\(500\) −3.76991 6.52968i −0.168596 0.292016i
\(501\) 0 0
\(502\) 13.3204 23.0716i 0.594520 1.02974i
\(503\) −16.2867 −0.726190 −0.363095 0.931752i \(-0.618280\pi\)
−0.363095 + 0.931752i \(0.618280\pi\)
\(504\) 0 0
\(505\) −12.7246 −0.566238
\(506\) −2.99273 + 5.18355i −0.133043 + 0.230437i
\(507\) 0 0
\(508\) −5.97565 10.3501i −0.265127 0.459213i
\(509\) 10.6655 + 18.4732i 0.472740 + 0.818809i 0.999513 0.0311963i \(-0.00993171\pi\)
−0.526773 + 0.850006i \(0.676598\pi\)
\(510\) 0 0
\(511\) 3.41400 5.91322i 0.151026 0.261586i
\(512\) 25.2226 1.11469
\(513\) 0 0
\(514\) 16.2249 0.715651
\(515\) 15.0287 26.0304i 0.662243 1.14704i
\(516\) 0 0
\(517\) 6.00387 + 10.3990i 0.264050 + 0.457348i
\(518\) 0.0650551 + 0.112679i 0.00285836 + 0.00495082i
\(519\) 0 0
\(520\) 8.55690 14.8210i 0.375245 0.649944i
\(521\) 39.4671 1.72908 0.864542 0.502560i \(-0.167608\pi\)
0.864542 + 0.502560i \(0.167608\pi\)
\(522\) 0 0
\(523\) 4.68779 0.204983 0.102491 0.994734i \(-0.467319\pi\)
0.102491 + 0.994734i \(0.467319\pi\)
\(524\) −9.57398 + 16.5826i −0.418241 + 0.724415i
\(525\) 0 0
\(526\) 1.12701 + 1.95204i 0.0491400 + 0.0851130i
\(527\) 0.102196 + 0.177009i 0.00445175 + 0.00771065i
\(528\) 0 0
\(529\) 6.42855 11.1346i 0.279502 0.484112i
\(530\) −54.5039 −2.36750
\(531\) 0 0
\(532\) 5.22668 0.226605
\(533\) 18.9782 32.8712i 0.822036 1.42381i
\(534\) 0 0
\(535\) 11.9684 + 20.7298i 0.517438 + 0.896229i
\(536\) −5.19207 8.99292i −0.224263 0.388435i
\(537\) 0 0
\(538\) 26.2374 45.4445i 1.13118 1.95925i
\(539\) −6.57398 −0.283161
\(540\) 0 0
\(541\) 0.200274 0.00861046 0.00430523 0.999991i \(-0.498630\pi\)
0.00430523 + 0.999991i \(0.498630\pi\)
\(542\) 12.6211 21.8604i 0.542122 0.938983i
\(543\) 0 0
\(544\) −0.656574 1.13722i −0.0281504 0.0487579i
\(545\) −23.0180 39.8684i −0.985983 1.70777i
\(546\) 0 0
\(547\) −17.9697 + 31.1245i −0.768330 + 1.33079i 0.170138 + 0.985420i \(0.445579\pi\)
−0.938468 + 0.345366i \(0.887755\pi\)
\(548\) −23.3286 −0.996550
\(549\) 0 0
\(550\) 6.18479 0.263720
\(551\) 10.5116 18.2066i 0.447810 0.775629i
\(552\) 0 0
\(553\) −0.479055 0.829748i −0.0203715 0.0352845i
\(554\) 7.96926 + 13.8032i 0.338581 + 0.586440i
\(555\) 0 0
\(556\) −11.1099 + 19.2430i −0.471166 + 0.816084i
\(557\) −16.6186 −0.704151 −0.352075 0.935972i \(-0.614524\pi\)
−0.352075 + 0.935972i \(0.614524\pi\)
\(558\) 0 0
\(559\) −26.0874 −1.10338
\(560\) 4.43242 7.67717i 0.187304 0.324420i
\(561\) 0 0
\(562\) −2.38578 4.13230i −0.100638 0.174310i
\(563\) −6.46316 11.1945i −0.272390 0.471793i 0.697083 0.716990i \(-0.254481\pi\)
−0.969473 + 0.245197i \(0.921147\pi\)
\(564\) 0 0
\(565\) 7.29086 12.6281i 0.306729 0.531270i
\(566\) −8.78611 −0.369308
\(567\) 0 0
\(568\) −2.17705 −0.0913471
\(569\) 6.73648 11.6679i 0.282408 0.489145i −0.689569 0.724220i \(-0.742200\pi\)
0.971977 + 0.235075i \(0.0755335\pi\)
\(570\) 0 0
\(571\) −0.427204 0.739939i −0.0178779 0.0309655i 0.856948 0.515403i \(-0.172358\pi\)
−0.874826 + 0.484437i \(0.839024\pi\)
\(572\) 5.17752 + 8.96773i 0.216483 + 0.374959i
\(573\) 0 0
\(574\) 3.44444 5.96595i 0.143768 0.249014i
\(575\) 10.4807 0.437076
\(576\) 0 0
\(577\) −2.22668 −0.0926980 −0.0463490 0.998925i \(-0.514759\pi\)
−0.0463490 + 0.998925i \(0.514759\pi\)
\(578\) 15.9427 27.6135i 0.663128 1.14857i
\(579\) 0 0
\(580\) 8.87211 + 15.3669i 0.368394 + 0.638078i
\(581\) 0.340022 + 0.588936i 0.0141065 + 0.0244332i
\(582\) 0 0
\(583\) −5.03596 + 8.72254i −0.208568 + 0.361251i
\(584\) −9.19934 −0.380671
\(585\) 0 0
\(586\) −14.7442 −0.609078
\(587\) 2.41993 4.19144i 0.0998812 0.172999i −0.811754 0.583999i \(-0.801487\pi\)
0.911635 + 0.411000i \(0.134820\pi\)
\(588\) 0 0
\(589\) 2.89053 + 5.00654i 0.119102 + 0.206291i
\(590\) −28.5574 49.4628i −1.17569 2.03635i
\(591\) 0 0
\(592\) 0.250152 0.433277i 0.0102812 0.0178076i
\(593\) −42.2523 −1.73509 −0.867546 0.497356i \(-0.834304\pi\)
−0.867546 + 0.497356i \(0.834304\pi\)
\(594\) 0 0
\(595\) −0.347296 −0.0142378
\(596\) 11.1912 19.3837i 0.458409 0.793988i
\(597\) 0 0
\(598\) 20.2271 + 35.0344i 0.827150 + 1.43267i
\(599\) −1.18227 2.04775i −0.0483061 0.0836686i 0.840861 0.541251i \(-0.182049\pi\)
−0.889167 + 0.457582i \(0.848716\pi\)
\(600\) 0 0
\(601\) 6.14455 10.6427i 0.250642 0.434124i −0.713061 0.701102i \(-0.752692\pi\)
0.963703 + 0.266978i \(0.0860251\pi\)
\(602\) −4.73473 −0.192973
\(603\) 0 0
\(604\) −32.3378 −1.31581
\(605\) 1.43969 2.49362i 0.0585318 0.101380i
\(606\) 0 0
\(607\) −7.08765 12.2762i −0.287679 0.498274i 0.685576 0.728001i \(-0.259550\pi\)
−0.973255 + 0.229726i \(0.926217\pi\)
\(608\) −18.5706 32.1652i −0.753136 1.30447i
\(609\) 0 0
\(610\) −19.8799 + 34.4329i −0.804912 + 1.39415i
\(611\) 81.1576 3.28328
\(612\) 0 0
\(613\) 28.5749 1.15413 0.577065 0.816698i \(-0.304198\pi\)
0.577065 + 0.816698i \(0.304198\pi\)
\(614\) −24.8123 + 42.9761i −1.00134 + 1.73437i
\(615\) 0 0
\(616\) −0.286989 0.497079i −0.0115631 0.0200279i
\(617\) 9.03983 + 15.6574i 0.363930 + 0.630345i 0.988604 0.150541i \(-0.0481015\pi\)
−0.624674 + 0.780886i \(0.714768\pi\)
\(618\) 0 0
\(619\) −7.73190 + 13.3920i −0.310771 + 0.538271i −0.978530 0.206107i \(-0.933921\pi\)
0.667758 + 0.744378i \(0.267254\pi\)
\(620\) −4.87939 −0.195961
\(621\) 0 0
\(622\) 35.9736 1.44241
\(623\) 0.985452 1.70685i 0.0394813 0.0683836i
\(624\) 0 0
\(625\) 15.3123 + 26.5216i 0.612491 + 1.06087i
\(626\) 8.42989 + 14.6010i 0.336926 + 0.583573i
\(627\) 0 0
\(628\) 3.39440 5.87927i 0.135451 0.234609i
\(629\) −0.0196004 −0.000781518
\(630\) 0 0
\(631\) 9.35235 0.372311 0.186156 0.982520i \(-0.440397\pi\)
0.186156 + 0.982520i \(0.440397\pi\)
\(632\) −0.645430 + 1.11792i −0.0256738 + 0.0444684i
\(633\) 0 0
\(634\) 5.89945 + 10.2182i 0.234297 + 0.405815i
\(635\) 11.2306 + 19.4519i 0.445671 + 0.771925i
\(636\) 0 0
\(637\) −22.2160 + 38.4792i −0.880230 + 1.52460i
\(638\) 7.55943 0.299281
\(639\) 0 0
\(640\) −19.7023 −0.778803
\(641\) 0.607411 1.05207i 0.0239913 0.0415541i −0.853780 0.520633i \(-0.825696\pi\)
0.877772 + 0.479079i \(0.159029\pi\)
\(642\) 0 0
\(643\) 15.9013 + 27.5418i 0.627085 + 1.08614i 0.988134 + 0.153596i \(0.0490853\pi\)
−0.361049 + 0.932547i \(0.617581\pi\)
\(644\) 1.59240 + 2.75811i 0.0627492 + 0.108685i
\(645\) 0 0
\(646\) −0.907604 + 1.57202i −0.0357092 + 0.0618501i
\(647\) −30.6854 −1.20637 −0.603184 0.797602i \(-0.706102\pi\)
−0.603184 + 0.797602i \(0.706102\pi\)
\(648\) 0 0
\(649\) −10.5544 −0.414296
\(650\) 20.9008 36.2012i 0.819797 1.41993i
\(651\) 0 0
\(652\) 1.62836 + 2.82039i 0.0637713 + 0.110455i
\(653\) 3.63176 + 6.29039i 0.142122 + 0.246162i 0.928295 0.371844i \(-0.121274\pi\)
−0.786174 + 0.618006i \(0.787941\pi\)
\(654\) 0 0
\(655\) 17.9932 31.1651i 0.703052 1.21772i
\(656\) −26.4894 −1.03424
\(657\) 0 0
\(658\) 14.7297 0.574223
\(659\) 12.7939 22.1596i 0.498378 0.863216i −0.501621 0.865088i \(-0.667263\pi\)
0.999998 + 0.00187222i \(0.000595947\pi\)
\(660\) 0 0
\(661\) −3.87804 6.71696i −0.150838 0.261260i 0.780698 0.624909i \(-0.214864\pi\)
−0.931536 + 0.363649i \(0.881531\pi\)
\(662\) 11.1566 + 19.3238i 0.433613 + 0.751039i
\(663\) 0 0
\(664\) 0.458111 0.793471i 0.0177782 0.0307927i
\(665\) −9.82295 −0.380918
\(666\) 0 0
\(667\) 12.8102 0.496011
\(668\) 9.52276 16.4939i 0.368446 0.638168i
\(669\) 0 0
\(670\) −31.9504 55.3398i −1.23435 2.13796i
\(671\) 3.67365 + 6.36295i 0.141820 + 0.245639i
\(672\) 0 0
\(673\) 21.3025 36.8970i 0.821150 1.42227i −0.0836766 0.996493i \(-0.526666\pi\)
0.904827 0.425780i \(-0.140000\pi\)
\(674\) 16.9932 0.654553
\(675\) 0 0
\(676\) 50.0702 1.92578
\(677\) 11.4256 19.7897i 0.439122 0.760581i −0.558500 0.829504i \(-0.688623\pi\)
0.997622 + 0.0689230i \(0.0219563\pi\)
\(678\) 0 0
\(679\) −1.87299 3.24411i −0.0718787 0.124498i
\(680\) 0.233956 + 0.405223i 0.00897179 + 0.0155396i
\(681\) 0 0
\(682\) −1.03936 + 1.80023i −0.0397993 + 0.0689343i
\(683\) 12.3946 0.474265 0.237132 0.971477i \(-0.423792\pi\)
0.237132 + 0.971477i \(0.423792\pi\)
\(684\) 0 0
\(685\) 43.8435 1.67517
\(686\) −8.32547 + 14.4201i −0.317868 + 0.550564i
\(687\) 0 0
\(688\) 9.10307 + 15.7670i 0.347051 + 0.601111i
\(689\) 34.0369 + 58.9536i 1.29670 + 2.24595i
\(690\) 0 0
\(691\) −8.21823 + 14.2344i −0.312636 + 0.541501i −0.978932 0.204186i \(-0.934545\pi\)
0.666296 + 0.745687i \(0.267879\pi\)
\(692\) −5.52166 −0.209902
\(693\) 0 0
\(694\) 35.6391 1.35284
\(695\) 20.8799 36.1650i 0.792018 1.37182i
\(696\) 0 0
\(697\) 0.518885 + 0.898735i 0.0196542 + 0.0340420i
\(698\) 20.7939 + 36.0160i 0.787059 + 1.36323i
\(699\) 0 0
\(700\) 1.64543 2.84997i 0.0621914 0.107719i
\(701\) −23.8084 −0.899231 −0.449615 0.893222i \(-0.648439\pi\)
−0.449615 + 0.893222i \(0.648439\pi\)
\(702\) 0 0
\(703\) −0.554378 −0.0209087
\(704\) 1.96064 3.39592i 0.0738943 0.127989i
\(705\) 0 0
\(706\) −22.9675 39.7809i −0.864393 1.49717i
\(707\) 1.44222 + 2.49800i 0.0542402 + 0.0939468i
\(708\) 0 0
\(709\) 21.2811 36.8599i 0.799227 1.38430i −0.120893 0.992666i \(-0.538576\pi\)
0.920120 0.391636i \(-0.128091\pi\)
\(710\) −13.3969 −0.502778
\(711\) 0 0
\(712\) −2.65539 −0.0995150
\(713\) −1.76130 + 3.05066i −0.0659611 + 0.114248i
\(714\) 0 0
\(715\) −9.73055 16.8538i −0.363902 0.630297i
\(716\) 9.86097 + 17.0797i 0.368522 + 0.638298i
\(717\) 0 0
\(718\) −4.40420 + 7.62830i −0.164363 + 0.284686i
\(719\) −14.9391 −0.557135 −0.278568 0.960417i \(-0.589860\pi\)
−0.278568 + 0.960417i \(0.589860\pi\)
\(720\) 0 0
\(721\) −6.81345 −0.253746
\(722\) −7.81655 + 13.5387i −0.290902 + 0.503857i
\(723\) 0 0
\(724\) 18.6459 + 32.2956i 0.692969 + 1.20026i
\(725\) −6.61839 11.4634i −0.245801 0.425740i
\(726\) 0 0
\(727\) −22.1013 + 38.2806i −0.819693 + 1.41975i 0.0862163 + 0.996276i \(0.472522\pi\)
−0.905909 + 0.423473i \(0.860811\pi\)
\(728\) −3.87939 −0.143780
\(729\) 0 0
\(730\) −56.6100 −2.09523
\(731\) 0.356630 0.617701i 0.0131904 0.0228465i
\(732\) 0 0
\(733\) −13.4932 23.3709i −0.498382 0.863224i 0.501616 0.865091i \(-0.332739\pi\)
−0.999998 + 0.00186678i \(0.999406\pi\)
\(734\) 8.45976 + 14.6527i 0.312255 + 0.540842i
\(735\) 0 0
\(736\) 11.3157 19.5993i 0.417101 0.722441i
\(737\) −11.8084 −0.434968
\(738\) 0 0
\(739\) 10.5689 0.388784 0.194392 0.980924i \(-0.437727\pi\)
0.194392 + 0.980924i \(0.437727\pi\)
\(740\) 0.233956 0.405223i 0.00860038 0.0148963i
\(741\) 0 0
\(742\) 6.17752 + 10.6998i 0.226784 + 0.392801i
\(743\) 21.8803 + 37.8978i 0.802711 + 1.39034i 0.917825 + 0.396984i \(0.129943\pi\)
−0.115114 + 0.993352i \(0.536723\pi\)
\(744\) 0 0
\(745\) −21.0326 + 36.4295i −0.770573 + 1.33467i
\(746\) 19.3182 0.707290
\(747\) 0 0
\(748\) −0.283119 −0.0103518
\(749\) 2.71301 4.69907i 0.0991313 0.171700i
\(750\) 0 0
\(751\) −3.03091 5.24968i −0.110599 0.191564i 0.805413 0.592714i \(-0.201944\pi\)
−0.916012 + 0.401151i \(0.868610\pi\)
\(752\) −28.3195 49.0509i −1.03271 1.78870i
\(753\) 0 0
\(754\) 25.5462 44.2474i 0.930339 1.61139i
\(755\) 60.7752 2.21184
\(756\) 0 0
\(757\) 20.7192 0.753054 0.376527 0.926406i \(-0.377118\pi\)
0.376527 + 0.926406i \(0.377118\pi\)
\(758\) −13.3944 + 23.1998i −0.486507 + 0.842654i
\(759\) 0 0
\(760\) 6.61721 + 11.4613i 0.240031 + 0.415747i
\(761\) −23.7788 41.1862i −0.861982 1.49300i −0.870013 0.493029i \(-0.835890\pi\)
0.00803057 0.999968i \(-0.497444\pi\)
\(762\) 0 0
\(763\) −5.21776 + 9.03742i −0.188896 + 0.327177i
\(764\) −9.12836 −0.330252
\(765\) 0 0
\(766\) −27.8803 −1.00736
\(767\) −35.6673 + 61.7776i −1.28787 + 2.23066i
\(768\) 0 0
\(769\) −20.8384 36.0932i −0.751453 1.30155i −0.947118 0.320884i \(-0.896020\pi\)
0.195665 0.980671i \(-0.437313\pi\)
\(770\) −1.76604 3.05888i −0.0636438 0.110234i
\(771\) 0 0
\(772\) −8.29086 + 14.3602i −0.298395 + 0.516835i
\(773\) 40.1652 1.44464 0.722321 0.691558i \(-0.243075\pi\)
0.722321 + 0.691558i \(0.243075\pi\)
\(774\) 0 0
\(775\) 3.63991 0.130749
\(776\) −2.52347 + 4.37078i −0.0905873 + 0.156902i
\(777\) 0 0
\(778\) 10.2626 + 17.7754i 0.367934 + 0.637280i
\(779\) 14.6762 + 25.4199i 0.525829 + 0.910762i
\(780\) 0 0
\(781\) −1.23783 + 2.14398i −0.0442929 + 0.0767175i
\(782\) −1.10607 −0.0395529
\(783\) 0 0
\(784\) 31.0087 1.10745
\(785\) −6.37939 + 11.0494i −0.227690 + 0.394371i
\(786\) 0 0
\(787\) 11.2408 + 19.4697i 0.400692 + 0.694019i 0.993810 0.111097i \(-0.0354364\pi\)
−0.593118 + 0.805116i \(0.702103\pi\)
\(788\) 2.35323 + 4.07591i 0.0838302 + 0.145198i
\(789\) 0 0
\(790\) −3.97178 + 6.87933i −0.141310 + 0.244755i
\(791\) −3.30541 −0.117527
\(792\) 0 0
\(793\) 49.6587 1.76343
\(794\) 32.5082 56.3059i 1.15367 1.99822i
\(795\) 0 0
\(796\) −1.18479 2.05212i −0.0419939 0.0727355i
\(797\) −19.9688 34.5871i −0.707333 1.22514i −0.965843 0.259128i \(-0.916565\pi\)
0.258510 0.966009i \(-0.416768\pi\)
\(798\) 0 0
\(799\) −1.10947 + 1.92166i −0.0392502 + 0.0679834i
\(800\) −23.3851 −0.826787
\(801\) 0 0
\(802\) −32.4029 −1.14419
\(803\) −5.23055 + 9.05958i −0.184582 + 0.319706i
\(804\) 0 0
\(805\) −2.99273 5.18355i −0.105480 0.182696i
\(806\) 7.02481 + 12.1673i 0.247439 + 0.428576i
\(807\) 0 0
\(808\) 1.94310 3.36554i 0.0683579 0.118399i
\(809\) −17.9240 −0.630173 −0.315086 0.949063i \(-0.602034\pi\)
−0.315086 + 0.949063i \(0.602034\pi\)
\(810\) 0 0
\(811\) 26.8972 0.944490 0.472245 0.881467i \(-0.343444\pi\)
0.472245 + 0.881467i \(0.343444\pi\)
\(812\) 2.01114 3.48340i 0.0705773 0.122244i
\(813\) 0 0
\(814\) −0.0996702 0.172634i −0.00349344 0.00605081i
\(815\) −3.06031 5.30061i −0.107198 0.185672i
\(816\) 0 0
\(817\) 10.0869 17.4711i 0.352897 0.611236i
\(818\) −8.31315 −0.290662
\(819\) 0 0
\(820\) −24.7743 −0.865154
\(821\) −6.00387 + 10.3990i −0.209537 + 0.362928i −0.951569 0.307436i \(-0.900529\pi\)
0.742032 + 0.670364i \(0.233862\pi\)
\(822\) 0 0
\(823\) 6.47952 + 11.2229i 0.225862 + 0.391204i 0.956578 0.291477i \(-0.0941468\pi\)
−0.730716 + 0.682682i \(0.760814\pi\)
\(824\) 4.58987 + 7.94989i 0.159896 + 0.276947i
\(825\) 0 0
\(826\) −6.47343 + 11.2123i −0.225239 + 0.390126i
\(827\) 23.3678 0.812579 0.406290 0.913744i \(-0.366822\pi\)
0.406290 + 0.913744i \(0.366822\pi\)
\(828\) 0 0
\(829\) −54.3164 −1.88649 −0.943244 0.332100i \(-0.892243\pi\)
−0.943244 + 0.332100i \(0.892243\pi\)
\(830\) 2.81908 4.88279i 0.0978516 0.169484i
\(831\) 0 0
\(832\) −13.2515 22.9523i −0.459413 0.795727i
\(833\) −0.607411 1.05207i −0.0210455 0.0364520i
\(834\) 0 0
\(835\) −17.8969 + 30.9984i −0.619349 + 1.07274i
\(836\) −8.00774 −0.276954
\(837\) 0 0
\(838\) 32.9222 1.13728
\(839\) −22.3790 + 38.7615i −0.772608 + 1.33820i 0.163521 + 0.986540i \(0.447715\pi\)
−0.936129 + 0.351656i \(0.885619\pi\)
\(840\) 0 0
\(841\) 6.41060 + 11.1035i 0.221055 + 0.382879i
\(842\) −9.31908 16.1411i −0.321157 0.556260i
\(843\) 0 0
\(844\) 12.1441 21.0342i 0.418017 0.724026i
\(845\) −94.1011 −3.23718
\(846\) 0 0
\(847\) −0.652704 −0.0224272
\(848\) 23.7540 41.1432i 0.815716 1.41286i
\(849\) 0 0
\(850\) 0.571452 + 0.989783i 0.0196006 + 0.0339493i
\(851\) −0.168900 0.292544i −0.00578983 0.0100283i
\(852\) 0 0
\(853\) −7.06402 + 12.2352i −0.241867 + 0.418926i −0.961246 0.275691i \(-0.911093\pi\)
0.719379 + 0.694618i \(0.244427\pi\)
\(854\) 9.01279 0.308411
\(855\) 0 0
\(856\) −7.31046 −0.249866
\(857\) −9.47906 + 16.4182i −0.323798 + 0.560835i −0.981268 0.192645i \(-0.938293\pi\)
0.657470 + 0.753481i \(0.271627\pi\)
\(858\) 0 0
\(859\) −19.0587 33.0107i −0.650275 1.12631i −0.983056 0.183305i \(-0.941320\pi\)
0.332781 0.943004i \(-0.392013\pi\)
\(860\) 8.51367 + 14.7461i 0.290314 + 0.502838i
\(861\) 0 0
\(862\) −2.23870 + 3.87755i −0.0762505 + 0.132070i
\(863\) 37.9665 1.29239 0.646197 0.763171i \(-0.276359\pi\)
0.646197 + 0.763171i \(0.276359\pi\)
\(864\) 0 0
\(865\) 10.3773 0.352840
\(866\) −29.2866 + 50.7258i −0.995198 + 1.72373i
\(867\) 0 0
\(868\) 0.553033 + 0.957882i 0.0187712 + 0.0325126i
\(869\) 0.733956 + 1.27125i 0.0248977 + 0.0431241i
\(870\) 0 0
\(871\) −39.9051 + 69.1177i −1.35213 + 2.34196i
\(872\) 14.0597 0.476123
\(873\) 0 0
\(874\) −31.2841 −1.05820
\(875\) 1.60607 2.78179i 0.0542950 0.0940416i
\(876\) 0 0
\(877\) −12.5488 21.7351i −0.423741 0.733941i 0.572561 0.819862i \(-0.305950\pi\)
−0.996302 + 0.0859209i \(0.972617\pi\)
\(878\) −7.56893 13.1098i −0.255439 0.442433i
\(879\) 0 0
\(880\) −6.79086 + 11.7621i −0.228920 + 0.396501i
\(881\) 7.51485 0.253182 0.126591 0.991955i \(-0.459596\pi\)
0.126591 + 0.991955i \(0.459596\pi\)
\(882\) 0 0
\(883\) −28.9231 −0.973341 −0.486671 0.873586i \(-0.661789\pi\)
−0.486671 + 0.873586i \(0.661789\pi\)
\(884\) −0.956767 + 1.65717i −0.0321795 + 0.0557366i
\(885\) 0 0
\(886\) −10.9338 18.9378i −0.367327 0.636229i
\(887\) 0.825008 + 1.42896i 0.0277010 + 0.0479796i 0.879544 0.475818i \(-0.157848\pi\)
−0.851843 + 0.523798i \(0.824515\pi\)
\(888\) 0 0
\(889\) 2.54576 4.40938i 0.0853820 0.147886i
\(890\) −16.3405 −0.547734
\(891\) 0 0
\(892\) 9.56986 0.320423
\(893\) −31.3803 + 54.3523i −1.05010 + 1.81883i
\(894\) 0 0
\(895\) −18.5326 32.0993i −0.619475 1.07296i
\(896\) 2.23308 + 3.86780i 0.0746019 + 0.129214i
\(897\) 0 0
\(898\) −24.1917 + 41.9012i −0.807286 + 1.39826i
\(899\) 4.44892 0.148380
\(900\) 0 0
\(901\) −1.86122 −0.0620061
\(902\) −5.27719 + 9.14036i −0.175711 + 0.304341i
\(903\) 0 0
\(904\) 2.22668 + 3.85673i 0.0740583 + 0.128273i
\(905\) −35.0428 60.6959i −1.16486 2.01760i
\(906\) 0 0
\(907\) −13.9213 + 24.1124i −0.462248 + 0.800638i −0.999073 0.0430565i \(-0.986290\pi\)
0.536824 + 0.843694i \(0.319624\pi\)
\(908\) −4.99731 −0.165842
\(909\) 0 0
\(910\) −23.8726 −0.791368
\(911\) −8.52188 + 14.7603i −0.282342 + 0.489031i −0.971961 0.235141i \(-0.924445\pi\)
0.689619 + 0.724173i \(0.257778\pi\)
\(912\) 0 0
\(913\) −0.520945 0.902302i −0.0172407 0.0298619i
\(914\) −36.1143 62.5518i −1.19455 2.06903i
\(915\) 0 0
\(916\) 8.28493 14.3499i 0.273742 0.474135i
\(917\) −8.15745 −0.269383
\(918\) 0 0
\(919\) 47.4638 1.56569 0.782843 0.622219i \(-0.213769\pi\)
0.782843 + 0.622219i \(0.213769\pi\)
\(920\) −4.03209 + 6.98378i −0.132934 + 0.230249i
\(921\) 0 0
\(922\) 5.26130 + 9.11283i 0.173272 + 0.300115i
\(923\) 8.36618 + 14.4907i 0.275376 + 0.476966i
\(924\) 0 0
\(925\) −0.174526 + 0.302287i −0.00573836 + 0.00993914i
\(926\) 17.4662 0.573974
\(927\) 0 0
\(928\) −28.5827 −0.938272
\(929\) 14.4561 25.0386i 0.474288 0.821490i −0.525279 0.850930i \(-0.676039\pi\)
0.999567 + 0.0294398i \(0.00937233\pi\)
\(930\) 0 0
\(931\) −17.1800 29.7567i −0.563053 0.975237i
\(932\) −2.84730 4.93166i −0.0932663 0.161542i
\(933\) 0 0
\(934\) 16.0351 27.7736i 0.524684 0.908779i
\(935\) 0.532089 0.0174012
\(936\) 0 0
\(937\) −4.87258 −0.159180 −0.0795901 0.996828i \(-0.525361\pi\)
−0.0795901 + 0.996828i \(0.525361\pi\)
\(938\) −7.24257 + 12.5445i −0.236478 + 0.409593i
\(939\) 0 0
\(940\) −26.4859 45.8750i −0.863875 1.49628i
\(941\) −27.1391 47.0063i −0.884709 1.53236i −0.846047 0.533109i \(-0.821024\pi\)
−0.0386622 0.999252i \(-0.512310\pi\)
\(942\) 0 0
\(943\) −8.94269 + 15.4892i −0.291214 + 0.504397i
\(944\) 49.7837 1.62032
\(945\) 0 0
\(946\) 7.25402 0.235849
\(947\) −10.7253 + 18.5768i −0.348527 + 0.603666i −0.985988 0.166817i \(-0.946651\pi\)
0.637461 + 0.770482i \(0.279985\pi\)
\(948\) 0 0
\(949\) 35.3521 + 61.2316i 1.14758 + 1.98766i
\(950\) 16.1630 + 27.9951i 0.524396 + 0.908281i
\(951\) 0 0
\(952\) 0.0530334 0.0918566i 0.00171882 0.00297709i
\(953\) 13.0601 0.423057 0.211528 0.977372i \(-0.432156\pi\)
0.211528 + 0.977372i \(0.432156\pi\)
\(954\) 0 0
\(955\) 17.1557 0.555145
\(956\) 6.17230 10.6907i 0.199627 0.345763i
\(957\) 0 0
\(958\) −37.0428 64.1601i −1.19680 2.07292i
\(959\) −4.96926 8.60700i −0.160466 0.277935i
\(960\) 0 0
\(961\) 14.8883 25.7873i 0.480268 0.831849i
\(962\) −1.34730 −0.0434386
\(963\) 0 0
\(964\) −6.61856 −0.213169
\(965\) 15.5817 26.9883i 0.501593 0.868785i
\(966\) 0 0
\(967\) −5.59240 9.68631i −0.179839 0.311491i 0.761986 0.647593i \(-0.224224\pi\)
−0.941825 + 0.336103i \(0.890891\pi\)
\(968\) 0.439693 + 0.761570i 0.0141323 + 0.0244778i
\(969\) 0 0
\(970\) −15.5287 + 26.8965i −0.498596 + 0.863594i
\(971\) −28.4935 −0.914400 −0.457200 0.889364i \(-0.651148\pi\)
−0.457200 + 0.889364i \(0.651148\pi\)
\(972\) 0 0
\(973\) −9.46616 −0.303471
\(974\) 32.8444 56.8881i 1.05240 1.82281i
\(975\) 0 0
\(976\) −17.3282 30.0133i −0.554661 0.960701i
\(977\) −9.96363 17.2575i −0.318765 0.552117i 0.661466 0.749975i \(-0.269935\pi\)
−0.980231 + 0.197859i \(0.936601\pi\)
\(978\) 0 0
\(979\) −1.50980 + 2.61505i −0.0482534 + 0.0835774i
\(980\) 29.0009 0.926401
\(981\) 0 0
\(982\) 45.1935 1.44218
\(983\) −21.5141 + 37.2636i −0.686194 + 1.18852i 0.286865 + 0.957971i \(0.407387\pi\)
−0.973060 + 0.230553i \(0.925947\pi\)
\(984\) 0 0
\(985\) −4.42262 7.66020i −0.140916 0.244074i
\(986\) 0.698463 + 1.20977i 0.0222436 + 0.0385270i
\(987\) 0 0
\(988\) −27.0612 + 46.8714i −0.860933 + 1.49118i
\(989\) 12.2926 0.390882
\(990\) 0 0
\(991\) −21.1516 −0.671902 −0.335951 0.941879i \(-0.609058\pi\)
−0.335951 + 0.941879i \(0.609058\pi\)
\(992\) 3.92989 6.80677i 0.124774 0.216115i
\(993\) 0 0
\(994\) 1.51842 + 2.62998i 0.0481613 + 0.0834178i
\(995\) 2.22668 + 3.85673i 0.0705906 + 0.122266i
\(996\) 0 0
\(997\) 13.4204 23.2448i 0.425028 0.736170i −0.571395 0.820675i \(-0.693597\pi\)
0.996423 + 0.0845048i \(0.0269308\pi\)
\(998\) 50.9718 1.61349
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.e.d.100.1 6
3.2 odd 2 99.2.e.d.34.3 6
9.2 odd 6 891.2.a.l.1.1 3
9.4 even 3 inner 297.2.e.d.199.1 6
9.5 odd 6 99.2.e.d.67.3 yes 6
9.7 even 3 891.2.a.k.1.3 3
33.32 even 2 1089.2.e.h.727.1 6
99.32 even 6 1089.2.e.h.364.1 6
99.43 odd 6 9801.2.a.bd.1.1 3
99.65 even 6 9801.2.a.be.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.d.34.3 6 3.2 odd 2
99.2.e.d.67.3 yes 6 9.5 odd 6
297.2.e.d.100.1 6 1.1 even 1 trivial
297.2.e.d.199.1 6 9.4 even 3 inner
891.2.a.k.1.3 3 9.7 even 3
891.2.a.l.1.1 3 9.2 odd 6
1089.2.e.h.364.1 6 99.32 even 6
1089.2.e.h.727.1 6 33.32 even 2
9801.2.a.bd.1.1 3 99.43 odd 6
9801.2.a.be.1.3 3 99.65 even 6