Properties

Label 297.2.f.b.190.1
Level $297$
Weight $2$
Character 297.190
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{14} + 51x^{12} - 249x^{10} + 1476x^{8} - 2875x^{6} + 2335x^{4} + 125x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.1
Root \(-0.185814 + 0.255752i\) of defining polynomial
Character \(\chi\) \(=\) 297.190
Dual form 297.2.f.b.136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.85934 + 1.35089i) q^{2} +(1.01420 - 3.12140i) q^{4} +(-1.37287 - 0.997447i) q^{5} +(0.0641710 - 0.197498i) q^{7} +(0.910502 + 2.80224i) q^{8} +3.90006 q^{10} +(1.23459 + 3.07828i) q^{11} +(-1.11803 + 0.812299i) q^{13} +(0.147482 + 0.453903i) q^{14} +(-0.168002 - 0.122061i) q^{16} +(2.97055 + 2.15823i) q^{17} +(2.50390 + 7.70620i) q^{19} +(-4.50580 + 3.27365i) q^{20} +(-6.45393 - 4.05576i) q^{22} +3.99523 q^{23} +(-0.655218 - 2.01655i) q^{25} +(0.981477 - 3.02068i) q^{26} +(-0.551387 - 0.400606i) q^{28} +(0.167656 - 0.515993i) q^{29} +(-7.95145 + 5.77707i) q^{31} -5.41563 q^{32} -8.43878 q^{34} +(-0.285092 + 0.207132i) q^{35} +(-0.381966 + 1.17557i) q^{37} +(-15.0658 - 10.9459i) q^{38} +(1.54508 - 4.75528i) q^{40} +(2.88442 + 8.87735i) q^{41} +7.92847 q^{43} +(10.8606 - 0.731656i) q^{44} +(-7.42847 + 5.39710i) q^{46} +(-2.42759 - 7.47136i) q^{47} +(5.62823 + 4.08915i) q^{49} +(3.94241 + 2.86433i) q^{50} +(1.40159 + 4.31366i) q^{52} +(-5.30674 + 3.85557i) q^{53} +(1.37548 - 5.45751i) q^{55} +0.611864 q^{56} +(0.385319 + 1.18589i) q^{58} +(2.43126 - 7.48266i) q^{59} +(1.12434 + 0.816878i) q^{61} +(6.98026 - 21.4830i) q^{62} +(10.4055 - 7.56003i) q^{64} +2.34514 q^{65} -5.85410 q^{67} +(9.74943 - 7.08338i) q^{68} +(0.250271 - 0.770255i) q^{70} +(10.3214 + 7.49891i) q^{71} +(2.36441 - 7.27691i) q^{73} +(-0.877860 - 2.70177i) q^{74} +26.5936 q^{76} +(0.687179 - 0.0462936i) q^{77} +(4.69888 - 3.41394i) q^{79} +(0.108896 + 0.335146i) q^{80} +(-17.3554 - 12.6094i) q^{82} +(11.2233 + 8.15422i) q^{83} +(-1.92545 - 5.92593i) q^{85} +(-14.7417 + 10.7105i) q^{86} +(-7.50196 + 6.26240i) q^{88} -6.19842 q^{89} +(0.0886822 + 0.272936i) q^{91} +(4.05197 - 12.4707i) q^{92} +(14.6067 + 10.6124i) q^{94} +(4.24901 - 13.0771i) q^{95} +(5.68221 - 4.12836i) q^{97} -15.9888 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{4} + 12 q^{10} - 10 q^{16} - 2 q^{19} - 36 q^{22} + 32 q^{25} + 42 q^{28} - 26 q^{31} - 48 q^{34} - 24 q^{37} - 20 q^{40} + 24 q^{43} - 16 q^{46} + 24 q^{49} - 40 q^{52} - 16 q^{55} + 106 q^{58}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85934 + 1.35089i −1.31475 + 0.955222i −0.314768 + 0.949169i \(0.601927\pi\)
−0.999982 + 0.00605296i \(0.998073\pi\)
\(3\) 0 0
\(4\) 1.01420 3.12140i 0.507102 1.56070i
\(5\) −1.37287 0.997447i −0.613965 0.446072i 0.236843 0.971548i \(-0.423887\pi\)
−0.850808 + 0.525476i \(0.823887\pi\)
\(6\) 0 0
\(7\) 0.0641710 0.197498i 0.0242544 0.0746473i −0.938197 0.346103i \(-0.887505\pi\)
0.962451 + 0.271455i \(0.0875049\pi\)
\(8\) 0.910502 + 2.80224i 0.321911 + 0.990741i
\(9\) 0 0
\(10\) 3.90006 1.23331
\(11\) 1.23459 + 3.07828i 0.372244 + 0.928135i
\(12\) 0 0
\(13\) −1.11803 + 0.812299i −0.310087 + 0.225291i −0.731934 0.681376i \(-0.761382\pi\)
0.421847 + 0.906667i \(0.361382\pi\)
\(14\) 0.147482 + 0.453903i 0.0394163 + 0.121311i
\(15\) 0 0
\(16\) −0.168002 0.122061i −0.0420005 0.0305151i
\(17\) 2.97055 + 2.15823i 0.720464 + 0.523448i 0.886532 0.462666i \(-0.153107\pi\)
−0.166068 + 0.986114i \(0.553107\pi\)
\(18\) 0 0
\(19\) 2.50390 + 7.70620i 0.574433 + 1.76792i 0.638102 + 0.769952i \(0.279720\pi\)
−0.0636693 + 0.997971i \(0.520280\pi\)
\(20\) −4.50580 + 3.27365i −1.00753 + 0.732011i
\(21\) 0 0
\(22\) −6.45393 4.05576i −1.37598 0.864690i
\(23\) 3.99523 0.833062 0.416531 0.909121i \(-0.363246\pi\)
0.416531 + 0.909121i \(0.363246\pi\)
\(24\) 0 0
\(25\) −0.655218 2.01655i −0.131044 0.403311i
\(26\) 0.981477 3.02068i 0.192483 0.592403i
\(27\) 0 0
\(28\) −0.551387 0.400606i −0.104202 0.0757075i
\(29\) 0.167656 0.515993i 0.0311330 0.0958175i −0.934283 0.356533i \(-0.883959\pi\)
0.965416 + 0.260716i \(0.0839586\pi\)
\(30\) 0 0
\(31\) −7.95145 + 5.77707i −1.42812 + 1.03759i −0.437760 + 0.899092i \(0.644228\pi\)
−0.990362 + 0.138500i \(0.955772\pi\)
\(32\) −5.41563 −0.957358
\(33\) 0 0
\(34\) −8.43878 −1.44724
\(35\) −0.285092 + 0.207132i −0.0481894 + 0.0350116i
\(36\) 0 0
\(37\) −0.381966 + 1.17557i −0.0627948 + 0.193263i −0.977532 0.210787i \(-0.932398\pi\)
0.914737 + 0.404049i \(0.132398\pi\)
\(38\) −15.0658 10.9459i −2.44399 1.77567i
\(39\) 0 0
\(40\) 1.54508 4.75528i 0.244299 0.751876i
\(41\) 2.88442 + 8.87735i 0.450471 + 1.38641i 0.876370 + 0.481638i \(0.159958\pi\)
−0.425899 + 0.904771i \(0.640042\pi\)
\(42\) 0 0
\(43\) 7.92847 1.20908 0.604540 0.796575i \(-0.293357\pi\)
0.604540 + 0.796575i \(0.293357\pi\)
\(44\) 10.8606 0.731656i 1.63730 0.110301i
\(45\) 0 0
\(46\) −7.42847 + 5.39710i −1.09527 + 0.795759i
\(47\) −2.42759 7.47136i −0.354101 1.08981i −0.956529 0.291637i \(-0.905800\pi\)
0.602429 0.798173i \(-0.294200\pi\)
\(48\) 0 0
\(49\) 5.62823 + 4.08915i 0.804033 + 0.584164i
\(50\) 3.94241 + 2.86433i 0.557541 + 0.405077i
\(51\) 0 0
\(52\) 1.40159 + 4.31366i 0.194366 + 0.598197i
\(53\) −5.30674 + 3.85557i −0.728936 + 0.529603i −0.889227 0.457467i \(-0.848757\pi\)
0.160290 + 0.987070i \(0.448757\pi\)
\(54\) 0 0
\(55\) 1.37548 5.45751i 0.185470 0.735890i
\(56\) 0.611864 0.0817638
\(57\) 0 0
\(58\) 0.385319 + 1.18589i 0.0505949 + 0.155715i
\(59\) 2.43126 7.48266i 0.316524 0.974160i −0.658599 0.752494i \(-0.728851\pi\)
0.975123 0.221666i \(-0.0711494\pi\)
\(60\) 0 0
\(61\) 1.12434 + 0.816878i 0.143957 + 0.104591i 0.657433 0.753513i \(-0.271642\pi\)
−0.513476 + 0.858104i \(0.671642\pi\)
\(62\) 6.98026 21.4830i 0.886494 2.72835i
\(63\) 0 0
\(64\) 10.4055 7.56003i 1.30069 0.945004i
\(65\) 2.34514 0.290879
\(66\) 0 0
\(67\) −5.85410 −0.715192 −0.357596 0.933876i \(-0.616404\pi\)
−0.357596 + 0.933876i \(0.616404\pi\)
\(68\) 9.74943 7.08338i 1.18229 0.858986i
\(69\) 0 0
\(70\) 0.250271 0.770255i 0.0299131 0.0920631i
\(71\) 10.3214 + 7.49891i 1.22492 + 0.889957i 0.996499 0.0836058i \(-0.0266437\pi\)
0.228421 + 0.973562i \(0.426644\pi\)
\(72\) 0 0
\(73\) 2.36441 7.27691i 0.276733 0.851697i −0.712022 0.702157i \(-0.752221\pi\)
0.988756 0.149541i \(-0.0477795\pi\)
\(74\) −0.877860 2.70177i −0.102049 0.314075i
\(75\) 0 0
\(76\) 26.5936 3.05049
\(77\) 0.687179 0.0462936i 0.0783113 0.00527564i
\(78\) 0 0
\(79\) 4.69888 3.41394i 0.528666 0.384098i −0.291193 0.956664i \(-0.594052\pi\)
0.819858 + 0.572566i \(0.194052\pi\)
\(80\) 0.108896 + 0.335146i 0.0121749 + 0.0374705i
\(81\) 0 0
\(82\) −17.3554 12.6094i −1.91658 1.39248i
\(83\) 11.2233 + 8.15422i 1.23192 + 0.895042i 0.997033 0.0769806i \(-0.0245280\pi\)
0.234887 + 0.972023i \(0.424528\pi\)
\(84\) 0 0
\(85\) −1.92545 5.92593i −0.208845 0.642758i
\(86\) −14.7417 + 10.7105i −1.58964 + 1.15494i
\(87\) 0 0
\(88\) −7.50196 + 6.26240i −0.799712 + 0.667574i
\(89\) −6.19842 −0.657031 −0.328515 0.944499i \(-0.606548\pi\)
−0.328515 + 0.944499i \(0.606548\pi\)
\(90\) 0 0
\(91\) 0.0886822 + 0.272936i 0.00929642 + 0.0286114i
\(92\) 4.05197 12.4707i 0.422447 1.30016i
\(93\) 0 0
\(94\) 14.6067 + 10.6124i 1.50656 + 1.09458i
\(95\) 4.24901 13.0771i 0.435939 1.34168i
\(96\) 0 0
\(97\) 5.68221 4.12836i 0.576941 0.419172i −0.260679 0.965425i \(-0.583947\pi\)
0.837620 + 0.546254i \(0.183947\pi\)
\(98\) −15.9888 −1.61511
\(99\) 0 0
\(100\) −6.95899 −0.695899
\(101\) −9.23533 + 6.70986i −0.918949 + 0.667656i −0.943262 0.332049i \(-0.892260\pi\)
0.0243129 + 0.999704i \(0.492260\pi\)
\(102\) 0 0
\(103\) −0.389798 + 1.19968i −0.0384080 + 0.118208i −0.968422 0.249316i \(-0.919794\pi\)
0.930014 + 0.367523i \(0.119794\pi\)
\(104\) −3.29423 2.39340i −0.323026 0.234692i
\(105\) 0 0
\(106\) 4.65857 14.3376i 0.452480 1.39259i
\(107\) 2.38967 + 7.35465i 0.231018 + 0.711001i 0.997625 + 0.0688836i \(0.0219437\pi\)
−0.766607 + 0.642117i \(0.778056\pi\)
\(108\) 0 0
\(109\) −10.2673 −0.983430 −0.491715 0.870756i \(-0.663630\pi\)
−0.491715 + 0.870756i \(0.663630\pi\)
\(110\) 4.81499 + 12.0055i 0.459091 + 1.14468i
\(111\) 0 0
\(112\) −0.0348876 + 0.0253473i −0.00329657 + 0.00239510i
\(113\) −3.66218 11.2710i −0.344509 1.06029i −0.961846 0.273591i \(-0.911788\pi\)
0.617337 0.786699i \(-0.288212\pi\)
\(114\) 0 0
\(115\) −5.48492 3.98503i −0.511471 0.371606i
\(116\) −1.44058 1.04664i −0.133755 0.0971784i
\(117\) 0 0
\(118\) 5.58769 + 17.1972i 0.514389 + 1.58313i
\(119\) 0.616870 0.448182i 0.0565483 0.0410848i
\(120\) 0 0
\(121\) −7.95156 + 7.60083i −0.722869 + 0.690985i
\(122\) −3.19403 −0.289174
\(123\) 0 0
\(124\) 9.96813 + 30.6788i 0.895165 + 2.75503i
\(125\) −3.73382 + 11.4915i −0.333963 + 1.02783i
\(126\) 0 0
\(127\) −13.8799 10.0844i −1.23164 0.894842i −0.234632 0.972084i \(-0.575388\pi\)
−0.997012 + 0.0772427i \(0.975388\pi\)
\(128\) −5.78752 + 17.8121i −0.511549 + 1.57439i
\(129\) 0 0
\(130\) −4.36040 + 3.16802i −0.382433 + 0.277854i
\(131\) −8.00969 −0.699810 −0.349905 0.936785i \(-0.613786\pi\)
−0.349905 + 0.936785i \(0.613786\pi\)
\(132\) 0 0
\(133\) 1.68264 0.145903
\(134\) 10.8847 7.90823i 0.940299 0.683167i
\(135\) 0 0
\(136\) −3.34318 + 10.2893i −0.286676 + 0.882297i
\(137\) −7.30502 5.30740i −0.624110 0.453442i 0.230245 0.973133i \(-0.426047\pi\)
−0.854355 + 0.519691i \(0.826047\pi\)
\(138\) 0 0
\(139\) 0.961286 2.95853i 0.0815352 0.250940i −0.901976 0.431786i \(-0.857884\pi\)
0.983511 + 0.180846i \(0.0578836\pi\)
\(140\) 0.357399 + 1.09996i 0.0302057 + 0.0929636i
\(141\) 0 0
\(142\) −29.3211 −2.46057
\(143\) −3.88080 2.43876i −0.324529 0.203939i
\(144\) 0 0
\(145\) −0.744846 + 0.541162i −0.0618561 + 0.0449411i
\(146\) 5.43404 + 16.7243i 0.449725 + 1.38411i
\(147\) 0 0
\(148\) 3.28203 + 2.38453i 0.269781 + 0.196008i
\(149\) 12.1956 + 8.86062i 0.999102 + 0.725890i 0.961895 0.273418i \(-0.0881541\pi\)
0.0372065 + 0.999308i \(0.488154\pi\)
\(150\) 0 0
\(151\) −3.97542 12.2351i −0.323515 0.995677i −0.972106 0.234540i \(-0.924642\pi\)
0.648591 0.761137i \(-0.275358\pi\)
\(152\) −19.3148 + 14.0330i −1.56664 + 1.13823i
\(153\) 0 0
\(154\) −1.21516 + 1.01438i −0.0979203 + 0.0817408i
\(155\) 16.6786 1.33966
\(156\) 0 0
\(157\) 0.325627 + 1.00218i 0.0259879 + 0.0799825i 0.963209 0.268752i \(-0.0866113\pi\)
−0.937221 + 0.348735i \(0.886611\pi\)
\(158\) −4.12496 + 12.6953i −0.328164 + 1.00999i
\(159\) 0 0
\(160\) 7.43495 + 5.40181i 0.587785 + 0.427050i
\(161\) 0.256378 0.789049i 0.0202054 0.0621858i
\(162\) 0 0
\(163\) 11.3245 8.22775i 0.887006 0.644447i −0.0480900 0.998843i \(-0.515313\pi\)
0.935096 + 0.354396i \(0.115313\pi\)
\(164\) 30.6351 2.39220
\(165\) 0 0
\(166\) −31.8834 −2.47463
\(167\) −4.20514 + 3.05521i −0.325404 + 0.236420i −0.738478 0.674278i \(-0.764455\pi\)
0.413074 + 0.910697i \(0.364455\pi\)
\(168\) 0 0
\(169\) −3.42705 + 10.5474i −0.263619 + 0.811337i
\(170\) 11.5853 + 8.41724i 0.888555 + 0.645573i
\(171\) 0 0
\(172\) 8.04108 24.7479i 0.613127 1.88701i
\(173\) −3.27054 10.0657i −0.248654 0.765279i −0.995014 0.0997365i \(-0.968200\pi\)
0.746360 0.665543i \(-0.231800\pi\)
\(174\) 0 0
\(175\) −0.440312 −0.0332844
\(176\) 0.168322 0.667851i 0.0126878 0.0503412i
\(177\) 0 0
\(178\) 11.5249 8.37336i 0.863831 0.627610i
\(179\) −2.16300 6.65703i −0.161670 0.497569i 0.837105 0.547042i \(-0.184246\pi\)
−0.998776 + 0.0494722i \(0.984246\pi\)
\(180\) 0 0
\(181\) −0.933353 0.678121i −0.0693756 0.0504043i 0.552557 0.833475i \(-0.313652\pi\)
−0.621933 + 0.783071i \(0.713652\pi\)
\(182\) −0.533595 0.387680i −0.0395527 0.0287367i
\(183\) 0 0
\(184\) 3.63766 + 11.1956i 0.268172 + 0.825349i
\(185\) 1.69696 1.23291i 0.124763 0.0906456i
\(186\) 0 0
\(187\) −2.97621 + 11.8087i −0.217642 + 0.863538i
\(188\) −25.7831 −1.88043
\(189\) 0 0
\(190\) 9.76535 + 30.0547i 0.708453 + 2.18039i
\(191\) 7.27171 22.3800i 0.526162 1.61936i −0.235844 0.971791i \(-0.575785\pi\)
0.762006 0.647570i \(-0.224215\pi\)
\(192\) 0 0
\(193\) −6.61563 4.80653i −0.476203 0.345982i 0.323651 0.946177i \(-0.395090\pi\)
−0.799854 + 0.600195i \(0.795090\pi\)
\(194\) −4.98818 + 15.3520i −0.358130 + 1.10221i
\(195\) 0 0
\(196\) 18.4720 13.4207i 1.31943 0.958622i
\(197\) −13.5502 −0.965411 −0.482705 0.875783i \(-0.660346\pi\)
−0.482705 + 0.875783i \(0.660346\pi\)
\(198\) 0 0
\(199\) 21.1166 1.49692 0.748458 0.663182i \(-0.230795\pi\)
0.748458 + 0.663182i \(0.230795\pi\)
\(200\) 5.05429 3.67215i 0.357392 0.259661i
\(201\) 0 0
\(202\) 8.10732 24.9518i 0.570429 1.75560i
\(203\) −0.0911490 0.0662236i −0.00639740 0.00464799i
\(204\) 0 0
\(205\) 4.89475 15.0645i 0.341864 1.05215i
\(206\) −0.895861 2.75718i −0.0624176 0.192102i
\(207\) 0 0
\(208\) 0.286982 0.0198986
\(209\) −20.6305 + 17.2217i −1.42704 + 1.19125i
\(210\) 0 0
\(211\) 12.6961 9.22427i 0.874037 0.635025i −0.0576303 0.998338i \(-0.518354\pi\)
0.931667 + 0.363313i \(0.118354\pi\)
\(212\) 6.65265 + 20.4748i 0.456906 + 1.40621i
\(213\) 0 0
\(214\) −14.3785 10.4466i −0.982894 0.714114i
\(215\) −10.8847 7.90823i −0.742334 0.539337i
\(216\) 0 0
\(217\) 0.630707 + 1.94112i 0.0428152 + 0.131772i
\(218\) 19.0904 13.8700i 1.29296 0.939394i
\(219\) 0 0
\(220\) −15.6400 9.82846i −1.05445 0.662634i
\(221\) −5.07430 −0.341335
\(222\) 0 0
\(223\) 3.06417 + 9.43055i 0.205192 + 0.631516i 0.999705 + 0.0242696i \(0.00772601\pi\)
−0.794513 + 0.607247i \(0.792274\pi\)
\(224\) −0.347527 + 1.06958i −0.0232201 + 0.0714641i
\(225\) 0 0
\(226\) 22.0351 + 16.0095i 1.46576 + 1.06493i
\(227\) −3.43225 + 10.5634i −0.227806 + 0.701116i 0.770188 + 0.637817i \(0.220162\pi\)
−0.997995 + 0.0632994i \(0.979838\pi\)
\(228\) 0 0
\(229\) 1.69470 1.23127i 0.111989 0.0813647i −0.530381 0.847759i \(-0.677951\pi\)
0.642370 + 0.766395i \(0.277951\pi\)
\(230\) 15.5816 1.02742
\(231\) 0 0
\(232\) 1.59859 0.104952
\(233\) −17.5799 + 12.7726i −1.15170 + 0.836758i −0.988706 0.149869i \(-0.952115\pi\)
−0.162993 + 0.986627i \(0.552115\pi\)
\(234\) 0 0
\(235\) −4.11952 + 12.6786i −0.268728 + 0.827060i
\(236\) −20.8906 15.1779i −1.35986 0.987996i
\(237\) 0 0
\(238\) −0.541525 + 1.66664i −0.0351019 + 0.108032i
\(239\) −4.17617 12.8529i −0.270134 0.831388i −0.990466 0.137758i \(-0.956010\pi\)
0.720332 0.693630i \(-0.243990\pi\)
\(240\) 0 0
\(241\) 9.51009 0.612599 0.306299 0.951935i \(-0.400909\pi\)
0.306299 + 0.951935i \(0.400909\pi\)
\(242\) 4.51676 24.8742i 0.290349 1.59897i
\(243\) 0 0
\(244\) 3.69011 2.68102i 0.236235 0.171635i
\(245\) −3.64811 11.2277i −0.233069 0.717313i
\(246\) 0 0
\(247\) −9.05918 6.58188i −0.576422 0.418795i
\(248\) −23.4285 17.0218i −1.48771 1.08089i
\(249\) 0 0
\(250\) −8.58132 26.4106i −0.542731 1.67035i
\(251\) 23.4285 17.0218i 1.47880 1.07441i 0.500854 0.865532i \(-0.333019\pi\)
0.977942 0.208876i \(-0.0669806\pi\)
\(252\) 0 0
\(253\) 4.93248 + 12.2984i 0.310102 + 0.773194i
\(254\) 39.4303 2.47408
\(255\) 0 0
\(256\) −5.35217 16.4723i −0.334511 1.02952i
\(257\) −2.93523 + 9.03369i −0.183094 + 0.563506i −0.999910 0.0133919i \(-0.995737\pi\)
0.816816 + 0.576898i \(0.195737\pi\)
\(258\) 0 0
\(259\) 0.207662 + 0.150875i 0.0129035 + 0.00937492i
\(260\) 2.37845 7.32011i 0.147505 0.453974i
\(261\) 0 0
\(262\) 14.8927 10.8202i 0.920074 0.668473i
\(263\) 10.0485 0.619616 0.309808 0.950799i \(-0.399735\pi\)
0.309808 + 0.950799i \(0.399735\pi\)
\(264\) 0 0
\(265\) 11.1312 0.683783
\(266\) −3.12859 + 2.27305i −0.191826 + 0.139370i
\(267\) 0 0
\(268\) −5.93725 + 18.2730i −0.362675 + 1.11620i
\(269\) 18.4856 + 13.4305i 1.12708 + 0.818874i 0.985268 0.171019i \(-0.0547058\pi\)
0.141816 + 0.989893i \(0.454706\pi\)
\(270\) 0 0
\(271\) −4.83254 + 14.8730i −0.293556 + 0.903472i 0.690147 + 0.723669i \(0.257546\pi\)
−0.983703 + 0.179803i \(0.942454\pi\)
\(272\) −0.235623 0.725174i −0.0142868 0.0439701i
\(273\) 0 0
\(274\) 20.7522 1.25369
\(275\) 5.39858 4.50657i 0.325547 0.271756i
\(276\) 0 0
\(277\) −16.7326 + 12.1569i −1.00536 + 0.730440i −0.963232 0.268672i \(-0.913415\pi\)
−0.0421330 + 0.999112i \(0.513415\pi\)
\(278\) 2.20929 + 6.79950i 0.132504 + 0.407807i
\(279\) 0 0
\(280\) −0.840010 0.610303i −0.0502002 0.0364726i
\(281\) −7.50832 5.45512i −0.447909 0.325425i 0.340861 0.940114i \(-0.389282\pi\)
−0.788770 + 0.614689i \(0.789282\pi\)
\(282\) 0 0
\(283\) 5.42068 + 16.6831i 0.322226 + 0.991710i 0.972677 + 0.232162i \(0.0745798\pi\)
−0.650451 + 0.759548i \(0.725420\pi\)
\(284\) 33.8750 24.6116i 2.01011 1.46043i
\(285\) 0 0
\(286\) 10.5102 0.708047i 0.621481 0.0418677i
\(287\) 1.93836 0.114417
\(288\) 0 0
\(289\) −1.08708 3.34570i −0.0639461 0.196806i
\(290\) 0.653870 2.01241i 0.0383966 0.118173i
\(291\) 0 0
\(292\) −20.3161 14.7605i −1.18891 0.863794i
\(293\) 3.68537 11.3424i 0.215301 0.662629i −0.783831 0.620975i \(-0.786737\pi\)
0.999132 0.0416549i \(-0.0132630\pi\)
\(294\) 0 0
\(295\) −10.8014 + 7.84765i −0.628880 + 0.456908i
\(296\) −3.64201 −0.211687
\(297\) 0 0
\(298\) −34.6454 −2.00695
\(299\) −4.46680 + 3.24532i −0.258322 + 0.187682i
\(300\) 0 0
\(301\) 0.508778 1.56586i 0.0293255 0.0902545i
\(302\) 23.9199 + 17.3788i 1.37643 + 1.00004i
\(303\) 0 0
\(304\) 0.519963 1.60028i 0.0298219 0.0917825i
\(305\) −0.728773 2.24293i −0.0417294 0.128430i
\(306\) 0 0
\(307\) 8.18209 0.466977 0.233488 0.972360i \(-0.424986\pi\)
0.233488 + 0.972360i \(0.424986\pi\)
\(308\) 0.552438 2.19191i 0.0314781 0.124896i
\(309\) 0 0
\(310\) −31.0112 + 22.5309i −1.76132 + 1.27967i
\(311\) −10.8027 33.2473i −0.612565 1.88528i −0.432521 0.901624i \(-0.642376\pi\)
−0.180044 0.983659i \(-0.557624\pi\)
\(312\) 0 0
\(313\) 0.553974 + 0.402485i 0.0313124 + 0.0227498i 0.603331 0.797491i \(-0.293840\pi\)
−0.572019 + 0.820240i \(0.693840\pi\)
\(314\) −1.95928 1.42350i −0.110569 0.0803328i
\(315\) 0 0
\(316\) −5.89063 18.1295i −0.331374 1.01986i
\(317\) 11.4843 8.34384i 0.645023 0.468637i −0.216549 0.976272i \(-0.569480\pi\)
0.861572 + 0.507635i \(0.169480\pi\)
\(318\) 0 0
\(319\) 1.79536 0.120949i 0.100521 0.00677184i
\(320\) −21.8261 −1.22012
\(321\) 0 0
\(322\) 0.589224 + 1.81345i 0.0328362 + 0.101059i
\(323\) −9.19380 + 28.2956i −0.511557 + 1.57441i
\(324\) 0 0
\(325\) 2.37060 + 1.72234i 0.131497 + 0.0955384i
\(326\) −9.94135 + 30.5963i −0.550600 + 1.69457i
\(327\) 0 0
\(328\) −22.2502 + 16.1657i −1.22856 + 0.892601i
\(329\) −1.63136 −0.0899398
\(330\) 0 0
\(331\) −15.3465 −0.843520 −0.421760 0.906708i \(-0.638587\pi\)
−0.421760 + 0.906708i \(0.638587\pi\)
\(332\) 36.8353 26.7624i 2.02160 1.46878i
\(333\) 0 0
\(334\) 3.69153 11.3613i 0.201991 0.621665i
\(335\) 8.03691 + 5.83916i 0.439103 + 0.319027i
\(336\) 0 0
\(337\) 0.348342 1.07209i 0.0189754 0.0584002i −0.941120 0.338071i \(-0.890225\pi\)
0.960096 + 0.279671i \(0.0902255\pi\)
\(338\) −7.87628 24.2407i −0.428413 1.31852i
\(339\) 0 0
\(340\) −20.4500 −1.10906
\(341\) −27.6002 17.3444i −1.49464 0.939254i
\(342\) 0 0
\(343\) 2.34478 1.70358i 0.126606 0.0919849i
\(344\) 7.21889 + 22.2175i 0.389216 + 1.19789i
\(345\) 0 0
\(346\) 19.6786 + 14.2974i 1.05793 + 0.768631i
\(347\) −2.88335 2.09487i −0.154786 0.112459i 0.507696 0.861536i \(-0.330497\pi\)
−0.662483 + 0.749077i \(0.730497\pi\)
\(348\) 0 0
\(349\) 5.58911 + 17.2015i 0.299178 + 0.920776i 0.981786 + 0.189991i \(0.0608459\pi\)
−0.682607 + 0.730785i \(0.739154\pi\)
\(350\) 0.818688 0.594811i 0.0437607 0.0317940i
\(351\) 0 0
\(352\) −6.68610 16.6708i −0.356370 0.888557i
\(353\) −14.3798 −0.765362 −0.382681 0.923881i \(-0.624999\pi\)
−0.382681 + 0.923881i \(0.624999\pi\)
\(354\) 0 0
\(355\) −6.69011 20.5900i −0.355074 1.09281i
\(356\) −6.28645 + 19.3477i −0.333181 + 1.02543i
\(357\) 0 0
\(358\) 13.0146 + 9.45569i 0.687845 + 0.499749i
\(359\) −3.27240 + 10.0714i −0.172710 + 0.531548i −0.999522 0.0309316i \(-0.990153\pi\)
0.826811 + 0.562480i \(0.190153\pi\)
\(360\) 0 0
\(361\) −37.7447 + 27.4231i −1.98656 + 1.44332i
\(362\) 2.65148 0.139359
\(363\) 0 0
\(364\) 0.941882 0.0493680
\(365\) −10.5044 + 7.63186i −0.549823 + 0.399470i
\(366\) 0 0
\(367\) −4.46675 + 13.7473i −0.233163 + 0.717601i 0.764197 + 0.644983i \(0.223135\pi\)
−0.997360 + 0.0726181i \(0.976865\pi\)
\(368\) −0.671206 0.487659i −0.0349890 0.0254210i
\(369\) 0 0
\(370\) −1.48969 + 4.58480i −0.0774454 + 0.238352i
\(371\) 0.420929 + 1.29549i 0.0218535 + 0.0672583i
\(372\) 0 0
\(373\) 34.5181 1.78728 0.893640 0.448785i \(-0.148143\pi\)
0.893640 + 0.448785i \(0.148143\pi\)
\(374\) −10.4185 25.9769i −0.538725 1.34323i
\(375\) 0 0
\(376\) 18.7262 13.6054i 0.965730 0.701644i
\(377\) 0.231695 + 0.713085i 0.0119329 + 0.0367257i
\(378\) 0 0
\(379\) 4.72788 + 3.43500i 0.242855 + 0.176444i 0.702554 0.711630i \(-0.252043\pi\)
−0.459699 + 0.888075i \(0.652043\pi\)
\(380\) −36.5094 26.5257i −1.87290 1.36074i
\(381\) 0 0
\(382\) 16.7123 + 51.4352i 0.855077 + 2.63166i
\(383\) 3.61724 2.62808i 0.184832 0.134289i −0.491521 0.870865i \(-0.663559\pi\)
0.676354 + 0.736577i \(0.263559\pi\)
\(384\) 0 0
\(385\) −0.989581 0.621869i −0.0504337 0.0316934i
\(386\) 18.7938 0.956577
\(387\) 0 0
\(388\) −7.12335 21.9234i −0.361633 1.11299i
\(389\) −0.757488 + 2.33131i −0.0384061 + 0.118202i −0.968421 0.249319i \(-0.919793\pi\)
0.930015 + 0.367521i \(0.119793\pi\)
\(390\) 0 0
\(391\) 11.8680 + 8.62262i 0.600191 + 0.436065i
\(392\) −6.33425 + 19.4948i −0.319928 + 0.984637i
\(393\) 0 0
\(394\) 25.1944 18.3048i 1.26927 0.922181i
\(395\) −9.85617 −0.495918
\(396\) 0 0
\(397\) 4.85892 0.243862 0.121931 0.992539i \(-0.461091\pi\)
0.121931 + 0.992539i \(0.461091\pi\)
\(398\) −39.2629 + 28.5261i −1.96807 + 1.42989i
\(399\) 0 0
\(400\) −0.136064 + 0.418761i −0.00680319 + 0.0209381i
\(401\) 2.29934 + 1.67057i 0.114824 + 0.0834243i 0.643715 0.765265i \(-0.277392\pi\)
−0.528891 + 0.848689i \(0.677392\pi\)
\(402\) 0 0
\(403\) 4.19729 12.9179i 0.209082 0.643487i
\(404\) 11.5776 + 35.6323i 0.576009 + 1.77277i
\(405\) 0 0
\(406\) 0.258937 0.0128508
\(407\) −4.09030 + 0.275554i −0.202749 + 0.0136587i
\(408\) 0 0
\(409\) −8.89642 + 6.46363i −0.439900 + 0.319606i −0.785595 0.618741i \(-0.787643\pi\)
0.345695 + 0.938347i \(0.387643\pi\)
\(410\) 11.2494 + 34.6222i 0.555570 + 1.70987i
\(411\) 0 0
\(412\) 3.34933 + 2.43343i 0.165010 + 0.119887i
\(413\) −1.32179 0.960340i −0.0650413 0.0472552i
\(414\) 0 0
\(415\) −7.27474 22.3893i −0.357103 1.09905i
\(416\) 6.05486 4.39911i 0.296864 0.215684i
\(417\) 0 0
\(418\) 15.0945 59.8904i 0.738296 2.92934i
\(419\) 14.3966 0.703320 0.351660 0.936128i \(-0.385617\pi\)
0.351660 + 0.936128i \(0.385617\pi\)
\(420\) 0 0
\(421\) −0.787498 2.42367i −0.0383803 0.118122i 0.930031 0.367482i \(-0.119780\pi\)
−0.968411 + 0.249359i \(0.919780\pi\)
\(422\) −11.1454 + 34.3021i −0.542550 + 1.66980i
\(423\) 0 0
\(424\) −15.6360 11.3602i −0.759352 0.551702i
\(425\) 2.40583 7.40439i 0.116700 0.359165i
\(426\) 0 0
\(427\) 0.233482 0.169634i 0.0112990 0.00820918i
\(428\) 25.3804 1.22681
\(429\) 0 0
\(430\) 30.9215 1.49117
\(431\) 19.6549 14.2801i 0.946743 0.687849i −0.00329155 0.999995i \(-0.501048\pi\)
0.950034 + 0.312146i \(0.101048\pi\)
\(432\) 0 0
\(433\) 11.6717 35.9219i 0.560907 1.72629i −0.118903 0.992906i \(-0.537938\pi\)
0.679810 0.733388i \(-0.262062\pi\)
\(434\) −3.79493 2.75718i −0.182162 0.132349i
\(435\) 0 0
\(436\) −10.4131 + 32.0484i −0.498699 + 1.53484i
\(437\) 10.0036 + 30.7880i 0.478538 + 1.47279i
\(438\) 0 0
\(439\) −3.61817 −0.172686 −0.0863429 0.996265i \(-0.527518\pi\)
−0.0863429 + 0.996265i \(0.527518\pi\)
\(440\) 16.5456 1.11464i 0.788782 0.0531383i
\(441\) 0 0
\(442\) 9.43484 6.85481i 0.448770 0.326050i
\(443\) 2.00397 + 6.16758i 0.0952114 + 0.293031i 0.987309 0.158813i \(-0.0507666\pi\)
−0.892097 + 0.451843i \(0.850767\pi\)
\(444\) 0 0
\(445\) 8.50961 + 6.18259i 0.403394 + 0.293083i
\(446\) −18.4369 13.3952i −0.873014 0.634282i
\(447\) 0 0
\(448\) −0.825361 2.54020i −0.0389946 0.120013i
\(449\) 28.0402 20.3724i 1.32330 0.961433i 0.323415 0.946257i \(-0.395169\pi\)
0.999885 0.0151762i \(-0.00483092\pi\)
\(450\) 0 0
\(451\) −23.7658 + 19.8390i −1.11909 + 0.934180i
\(452\) −38.8956 −1.82949
\(453\) 0 0
\(454\) −7.88823 24.2775i −0.370213 1.13940i
\(455\) 0.150490 0.463161i 0.00705508 0.0217133i
\(456\) 0 0
\(457\) −29.5150 21.4439i −1.38065 1.00310i −0.996819 0.0797015i \(-0.974603\pi\)
−0.383835 0.923402i \(-0.625397\pi\)
\(458\) −1.48771 + 4.57869i −0.0695160 + 0.213948i
\(459\) 0 0
\(460\) −18.0017 + 13.0790i −0.839332 + 0.609811i
\(461\) −17.2602 −0.803887 −0.401943 0.915665i \(-0.631665\pi\)
−0.401943 + 0.915665i \(0.631665\pi\)
\(462\) 0 0
\(463\) 37.5981 1.74733 0.873667 0.486524i \(-0.161736\pi\)
0.873667 + 0.486524i \(0.161736\pi\)
\(464\) −0.0911490 + 0.0662236i −0.00423148 + 0.00307435i
\(465\) 0 0
\(466\) 15.4327 47.4970i 0.714906 2.20025i
\(467\) 28.6222 + 20.7952i 1.32448 + 0.962288i 0.999865 + 0.0164409i \(0.00523352\pi\)
0.324611 + 0.945847i \(0.394766\pi\)
\(468\) 0 0
\(469\) −0.375664 + 1.15617i −0.0173465 + 0.0533872i
\(470\) −9.46776 29.1388i −0.436715 1.34407i
\(471\) 0 0
\(472\) 23.1819 1.06703
\(473\) 9.78843 + 24.4060i 0.450073 + 1.12219i
\(474\) 0 0
\(475\) 13.8994 10.0985i 0.637747 0.463350i
\(476\) −0.773322 2.38004i −0.0354452 0.109089i
\(477\) 0 0
\(478\) 25.1278 + 18.2564i 1.14932 + 0.835029i
\(479\) 19.2138 + 13.9596i 0.877900 + 0.637831i 0.932695 0.360666i \(-0.117451\pi\)
−0.0547953 + 0.998498i \(0.517451\pi\)
\(480\) 0 0
\(481\) −0.527864 1.62460i −0.0240685 0.0740753i
\(482\) −17.6825 + 12.8471i −0.805414 + 0.585167i
\(483\) 0 0
\(484\) 15.6607 + 32.5288i 0.711851 + 1.47858i
\(485\) −11.9187 −0.541202
\(486\) 0 0
\(487\) −7.50153 23.0873i −0.339927 1.04619i −0.964244 0.265016i \(-0.914623\pi\)
0.624317 0.781171i \(-0.285377\pi\)
\(488\) −1.26538 + 3.89443i −0.0572809 + 0.176292i
\(489\) 0 0
\(490\) 21.9505 + 15.9479i 0.991621 + 0.720455i
\(491\) −0.117847 + 0.362697i −0.00531838 + 0.0163683i −0.953680 0.300821i \(-0.902739\pi\)
0.948362 + 0.317190i \(0.102739\pi\)
\(492\) 0 0
\(493\) 1.61166 1.17094i 0.0725857 0.0527366i
\(494\) 25.7354 1.15789
\(495\) 0 0
\(496\) 2.04101 0.0916441
\(497\) 2.14335 1.55724i 0.0961425 0.0698516i
\(498\) 0 0
\(499\) −0.981860 + 3.02185i −0.0439541 + 0.135277i −0.970625 0.240596i \(-0.922657\pi\)
0.926671 + 0.375873i \(0.122657\pi\)
\(500\) 32.0828 + 23.3095i 1.43478 + 1.04243i
\(501\) 0 0
\(502\) −20.5670 + 63.2986i −0.917949 + 2.82516i
\(503\) −13.3297 41.0245i −0.594341 1.82919i −0.557980 0.829854i \(-0.688424\pi\)
−0.0363603 0.999339i \(-0.511576\pi\)
\(504\) 0 0
\(505\) 19.3716 0.862026
\(506\) −25.7849 16.2037i −1.14628 0.720341i
\(507\) 0 0
\(508\) −45.5543 + 33.0972i −2.02115 + 1.46845i
\(509\) 8.63067 + 26.5625i 0.382548 + 1.17736i 0.938244 + 0.345975i \(0.112452\pi\)
−0.555696 + 0.831386i \(0.687548\pi\)
\(510\) 0 0
\(511\) −1.28545 0.933933i −0.0568649 0.0413148i
\(512\) 1.89985 + 1.38032i 0.0839625 + 0.0610023i
\(513\) 0 0
\(514\) −6.74593 20.7618i −0.297550 0.915765i
\(515\) 1.73176 1.25819i 0.0763103 0.0554427i
\(516\) 0 0
\(517\) 20.0018 16.6969i 0.879679 0.734328i
\(518\) −0.589928 −0.0259200
\(519\) 0 0
\(520\) 2.13525 + 6.57164i 0.0936371 + 0.288185i
\(521\) 2.17716 6.70060i 0.0953830 0.293559i −0.891970 0.452094i \(-0.850677\pi\)
0.987353 + 0.158535i \(0.0506772\pi\)
\(522\) 0 0
\(523\) −10.8399 7.87565i −0.473996 0.344378i 0.325001 0.945714i \(-0.394635\pi\)
−0.798996 + 0.601336i \(0.794635\pi\)
\(524\) −8.12345 + 25.0014i −0.354875 + 1.09219i
\(525\) 0 0
\(526\) −18.6835 + 13.5744i −0.814640 + 0.591871i
\(527\) −36.0884 −1.57204
\(528\) 0 0
\(529\) −7.03817 −0.306007
\(530\) −20.6966 + 15.0370i −0.899004 + 0.653164i
\(531\) 0 0
\(532\) 1.70654 5.25218i 0.0739877 0.227711i
\(533\) −10.4359 7.58216i −0.452031 0.328420i
\(534\) 0 0
\(535\) 4.05517 12.4805i 0.175320 0.539581i
\(536\) −5.33017 16.4046i −0.230228 0.708570i
\(537\) 0 0
\(538\) −52.5140 −2.26404
\(539\) −5.63896 + 22.3737i −0.242887 + 0.963703i
\(540\) 0 0
\(541\) 10.9773 7.97545i 0.471950 0.342892i −0.326251 0.945283i \(-0.605785\pi\)
0.798201 + 0.602392i \(0.205785\pi\)
\(542\) −11.1065 34.1822i −0.477064 1.46825i
\(543\) 0 0
\(544\) −16.0874 11.6882i −0.689742 0.501127i
\(545\) 14.0957 + 10.2411i 0.603792 + 0.438681i
\(546\) 0 0
\(547\) 9.97497 + 30.6998i 0.426499 + 1.31263i 0.901552 + 0.432672i \(0.142429\pi\)
−0.475052 + 0.879958i \(0.657571\pi\)
\(548\) −23.9753 + 17.4191i −1.02417 + 0.744105i
\(549\) 0 0
\(550\) −3.94992 + 15.6721i −0.168425 + 0.668261i
\(551\) 4.39614 0.187282
\(552\) 0 0
\(553\) −0.372714 1.14710i −0.0158494 0.0487795i
\(554\) 14.6889 45.2077i 0.624071 1.92069i
\(555\) 0 0
\(556\) −8.25982 6.00111i −0.350294 0.254504i
\(557\) −1.31597 + 4.05013i −0.0557593 + 0.171609i −0.975058 0.221952i \(-0.928757\pi\)
0.919298 + 0.393562i \(0.128757\pi\)
\(558\) 0 0
\(559\) −8.86430 + 6.44029i −0.374920 + 0.272395i
\(560\) 0.0731787 0.00309236
\(561\) 0 0
\(562\) 21.3297 0.899741
\(563\) −10.8181 + 7.85982i −0.455929 + 0.331252i −0.791932 0.610609i \(-0.790925\pi\)
0.336003 + 0.941861i \(0.390925\pi\)
\(564\) 0 0
\(565\) −6.21457 + 19.1265i −0.261449 + 0.804658i
\(566\) −32.6159 23.6968i −1.37095 0.996053i
\(567\) 0 0
\(568\) −11.6161 + 35.7507i −0.487401 + 1.50007i
\(569\) −3.47017 10.6801i −0.145477 0.447733i 0.851595 0.524200i \(-0.175636\pi\)
−0.997072 + 0.0764679i \(0.975636\pi\)
\(570\) 0 0
\(571\) −7.08202 −0.296373 −0.148187 0.988959i \(-0.547344\pi\)
−0.148187 + 0.988959i \(0.547344\pi\)
\(572\) −11.5482 + 9.64011i −0.482856 + 0.403073i
\(573\) 0 0
\(574\) −3.60406 + 2.61850i −0.150430 + 0.109294i
\(575\) −2.61774 8.05659i −0.109167 0.335983i
\(576\) 0 0
\(577\) 12.5556 + 9.12216i 0.522695 + 0.379760i 0.817618 0.575761i \(-0.195294\pi\)
−0.294923 + 0.955521i \(0.595294\pi\)
\(578\) 6.54092 + 4.75226i 0.272066 + 0.197668i
\(579\) 0 0
\(580\) 0.933757 + 2.87381i 0.0387721 + 0.119328i
\(581\) 2.33066 1.69332i 0.0966919 0.0702508i
\(582\) 0 0
\(583\) −18.4202 11.5755i −0.762885 0.479410i
\(584\) 22.5444 0.932895
\(585\) 0 0
\(586\) 8.46995 + 26.0678i 0.349891 + 1.07685i
\(587\) −8.31220 + 25.5823i −0.343081 + 1.05590i 0.619522 + 0.784979i \(0.287327\pi\)
−0.962603 + 0.270916i \(0.912673\pi\)
\(588\) 0 0
\(589\) −64.4288 46.8103i −2.65474 1.92878i
\(590\) 9.48209 29.1829i 0.390371 1.20144i
\(591\) 0 0
\(592\) 0.207662 0.150875i 0.00853485 0.00620093i
\(593\) 40.9970 1.68355 0.841773 0.539832i \(-0.181512\pi\)
0.841773 + 0.539832i \(0.181512\pi\)
\(594\) 0 0
\(595\) −1.29392 −0.0530455
\(596\) 40.0263 29.0808i 1.63954 1.19120i
\(597\) 0 0
\(598\) 3.92122 12.0683i 0.160351 0.493509i
\(599\) −34.5769 25.1216i −1.41278 1.02644i −0.992912 0.118854i \(-0.962078\pi\)
−0.419863 0.907587i \(-0.637922\pi\)
\(600\) 0 0
\(601\) 5.24244 16.1346i 0.213844 0.658143i −0.785390 0.619001i \(-0.787538\pi\)
0.999234 0.0391417i \(-0.0124624\pi\)
\(602\) 1.16931 + 3.59876i 0.0476574 + 0.146674i
\(603\) 0 0
\(604\) −42.2224 −1.71801
\(605\) 18.4979 2.50368i 0.752046 0.101789i
\(606\) 0 0
\(607\) −15.7067 + 11.4116i −0.637514 + 0.463181i −0.858995 0.511983i \(-0.828911\pi\)
0.221481 + 0.975165i \(0.428911\pi\)
\(608\) −13.5602 41.7339i −0.549938 1.69253i
\(609\) 0 0
\(610\) 4.38498 + 3.18588i 0.177543 + 0.128992i
\(611\) 8.78311 + 6.38130i 0.355326 + 0.258160i
\(612\) 0 0
\(613\) −8.52386 26.2337i −0.344275 1.05957i −0.961971 0.273153i \(-0.911933\pi\)
0.617695 0.786418i \(-0.288067\pi\)
\(614\) −15.2133 + 11.0531i −0.613958 + 0.446066i
\(615\) 0 0
\(616\) 0.755403 + 1.88349i 0.0304361 + 0.0758879i
\(617\) 31.9850 1.28767 0.643835 0.765165i \(-0.277343\pi\)
0.643835 + 0.765165i \(0.277343\pi\)
\(618\) 0 0
\(619\) −3.71721 11.4404i −0.149407 0.459828i 0.848144 0.529765i \(-0.177720\pi\)
−0.997551 + 0.0699375i \(0.977720\pi\)
\(620\) 16.9155 52.0606i 0.679343 2.09080i
\(621\) 0 0
\(622\) 64.9993 + 47.2247i 2.60623 + 1.89354i
\(623\) −0.397759 + 1.22418i −0.0159359 + 0.0490455i
\(624\) 0 0
\(625\) 8.01133 5.82057i 0.320453 0.232823i
\(626\) −1.57374 −0.0628991
\(627\) 0 0
\(628\) 3.45845 0.138007
\(629\) −3.67180 + 2.66772i −0.146404 + 0.106369i
\(630\) 0 0
\(631\) −13.4511 + 41.3983i −0.535480 + 1.64804i 0.207128 + 0.978314i \(0.433588\pi\)
−0.742609 + 0.669726i \(0.766412\pi\)
\(632\) 13.8450 + 10.0590i 0.550725 + 0.400125i
\(633\) 0 0
\(634\) −10.0816 + 31.0280i −0.400392 + 1.23228i
\(635\) 8.99670 + 27.6890i 0.357023 + 1.09880i
\(636\) 0 0
\(637\) −9.61417 −0.380927
\(638\) −3.17478 + 2.65021i −0.125691 + 0.104923i
\(639\) 0 0
\(640\) 25.7122 18.6810i 1.01636 0.738431i
\(641\) 3.08773 + 9.50306i 0.121958 + 0.375348i 0.993335 0.115267i \(-0.0367722\pi\)
−0.871377 + 0.490615i \(0.836772\pi\)
\(642\) 0 0
\(643\) −10.2644 7.45750i −0.404787 0.294095i 0.366701 0.930339i \(-0.380487\pi\)
−0.771488 + 0.636244i \(0.780487\pi\)
\(644\) −2.20292 1.60051i −0.0868071 0.0630690i
\(645\) 0 0
\(646\) −21.1298 65.0309i −0.831341 2.55861i
\(647\) 17.3064 12.5738i 0.680384 0.494328i −0.193101 0.981179i \(-0.561855\pi\)
0.873485 + 0.486851i \(0.161855\pi\)
\(648\) 0 0
\(649\) 26.0353 1.75394i 1.02198 0.0688481i
\(650\) −6.73444 −0.264146
\(651\) 0 0
\(652\) −14.1967 43.6930i −0.555986 1.71115i
\(653\) 8.77002 26.9914i 0.343198 1.05625i −0.619344 0.785120i \(-0.712601\pi\)
0.962542 0.271134i \(-0.0873986\pi\)
\(654\) 0 0
\(655\) 10.9962 + 7.98924i 0.429659 + 0.312165i
\(656\) 0.598985 1.84349i 0.0233864 0.0719760i
\(657\) 0 0
\(658\) 3.03325 2.20378i 0.118248 0.0859124i
\(659\) 21.3927 0.833340 0.416670 0.909058i \(-0.363197\pi\)
0.416670 + 0.909058i \(0.363197\pi\)
\(660\) 0 0
\(661\) −7.45589 −0.290001 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(662\) 28.5343 20.7314i 1.10902 0.805748i
\(663\) 0 0
\(664\) −12.6312 + 38.8749i −0.490186 + 1.50864i
\(665\) −2.31004 1.67834i −0.0895795 0.0650833i
\(666\) 0 0
\(667\) 0.669825 2.06151i 0.0259357 0.0798219i
\(668\) 5.27167 + 16.2245i 0.203967 + 0.627746i
\(669\) 0 0
\(670\) −22.8314 −0.882053
\(671\) −1.12648 + 4.46953i −0.0434872 + 0.172544i
\(672\) 0 0
\(673\) 23.8617 17.3365i 0.919801 0.668275i −0.0236731 0.999720i \(-0.507536\pi\)
0.943475 + 0.331445i \(0.107536\pi\)
\(674\) 0.800582 + 2.46394i 0.0308373 + 0.0949074i
\(675\) 0 0
\(676\) 29.4468 + 21.3944i 1.13257 + 0.822860i
\(677\) 6.28907 + 4.56928i 0.241709 + 0.175612i 0.702044 0.712133i \(-0.252271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(678\) 0 0
\(679\) −0.450711 1.38715i −0.0172967 0.0532338i
\(680\) 14.8527 10.7912i 0.569577 0.413822i
\(681\) 0 0
\(682\) 74.7485 5.03563i 2.86227 0.192824i
\(683\) 7.88885 0.301858 0.150929 0.988545i \(-0.451773\pi\)
0.150929 + 0.988545i \(0.451773\pi\)
\(684\) 0 0
\(685\) 4.73497 + 14.5727i 0.180914 + 0.556796i
\(686\) −2.05839 + 6.33507i −0.0785897 + 0.241874i
\(687\) 0 0
\(688\) −1.33200 0.967753i −0.0507820 0.0368952i
\(689\) 2.80124 8.62132i 0.106719 0.328446i
\(690\) 0 0
\(691\) 6.65092 4.83218i 0.253013 0.183825i −0.454048 0.890977i \(-0.650021\pi\)
0.707061 + 0.707152i \(0.250021\pi\)
\(692\) −34.7360 −1.32046
\(693\) 0 0
\(694\) 8.19105 0.310928
\(695\) −4.27070 + 3.10285i −0.161997 + 0.117698i
\(696\) 0 0
\(697\) −10.5910 + 32.5958i −0.401164 + 1.23466i
\(698\) −33.6294 24.4332i −1.27289 0.924809i
\(699\) 0 0
\(700\) −0.446565 + 1.37439i −0.0168786 + 0.0519469i
\(701\) −2.64646 8.14496i −0.0999554 0.307631i 0.888558 0.458764i \(-0.151708\pi\)
−0.988513 + 0.151133i \(0.951708\pi\)
\(702\) 0 0
\(703\) −10.0156 −0.377745
\(704\) 36.1184 + 22.6974i 1.36126 + 0.855441i
\(705\) 0 0
\(706\) 26.7370 19.4255i 1.00626 0.731090i
\(707\) 0.732544 + 2.25454i 0.0275501 + 0.0847906i
\(708\) 0 0
\(709\) −0.947014 0.688046i −0.0355659 0.0258401i 0.569860 0.821742i \(-0.306997\pi\)
−0.605426 + 0.795901i \(0.706997\pi\)
\(710\) 40.2540 + 29.2462i 1.51070 + 1.09759i
\(711\) 0 0
\(712\) −5.64367 17.3694i −0.211506 0.650947i
\(713\) −31.7678 + 23.0807i −1.18972 + 0.864379i
\(714\) 0 0
\(715\) 2.89529 + 7.21899i 0.108278 + 0.269975i
\(716\) −22.9729 −0.858539
\(717\) 0 0
\(718\) −7.52084 23.1468i −0.280675 0.863830i
\(719\) 3.54766 10.9186i 0.132305 0.407194i −0.862856 0.505450i \(-0.831326\pi\)
0.995161 + 0.0982562i \(0.0313265\pi\)
\(720\) 0 0
\(721\) 0.211920 + 0.153969i 0.00789231 + 0.00573410i
\(722\) 33.1345 101.978i 1.23314 3.79521i
\(723\) 0 0
\(724\) −3.06329 + 2.22561i −0.113846 + 0.0827143i
\(725\) −1.15038 −0.0427240
\(726\) 0 0
\(727\) 30.5458 1.13288 0.566441 0.824102i \(-0.308320\pi\)
0.566441 + 0.824102i \(0.308320\pi\)
\(728\) −0.684085 + 0.497017i −0.0253539 + 0.0184207i
\(729\) 0 0
\(730\) 9.22135 28.3804i 0.341298 1.05041i
\(731\) 23.5519 + 17.1115i 0.871099 + 0.632890i
\(732\) 0 0
\(733\) 1.56318 4.81098i 0.0577375 0.177698i −0.918028 0.396514i \(-0.870220\pi\)
0.975766 + 0.218817i \(0.0702197\pi\)
\(734\) −10.2658 31.5949i −0.378917 1.16619i
\(735\) 0 0
\(736\) −21.6367 −0.797538
\(737\) −7.22743 18.0205i −0.266226 0.663795i
\(738\) 0 0
\(739\) 22.9584 16.6802i 0.844537 0.613592i −0.0790973 0.996867i \(-0.525204\pi\)
0.923634 + 0.383275i \(0.125204\pi\)
\(740\) −2.12735 6.54730i −0.0782029 0.240684i
\(741\) 0 0
\(742\) −2.53270 1.84012i −0.0929785 0.0675528i
\(743\) 16.9950 + 12.3476i 0.623487 + 0.452990i 0.854138 0.520047i \(-0.174086\pi\)
−0.230651 + 0.973037i \(0.574086\pi\)
\(744\) 0 0
\(745\) −7.90495 24.3289i −0.289615 0.891343i
\(746\) −64.1808 + 46.6301i −2.34983 + 1.70725i
\(747\) 0 0
\(748\) 33.8412 + 21.2664i 1.23736 + 0.777575i
\(749\) 1.60588 0.0586774
\(750\) 0 0
\(751\) −1.94283 5.97940i −0.0708947 0.218192i 0.909331 0.416073i \(-0.136594\pi\)
−0.980226 + 0.197881i \(0.936594\pi\)
\(752\) −0.504118 + 1.55152i −0.0183833 + 0.0565779i
\(753\) 0 0
\(754\) −1.39410 1.01287i −0.0507700 0.0368866i
\(755\) −6.74612 + 20.7624i −0.245517 + 0.755622i
\(756\) 0 0
\(757\) 22.7711 16.5442i 0.827630 0.601308i −0.0912581 0.995827i \(-0.529089\pi\)
0.918888 + 0.394519i \(0.129089\pi\)
\(758\) −13.4310 −0.487837
\(759\) 0 0
\(760\) 40.5139 1.46959
\(761\) 17.6923 12.8542i 0.641347 0.465966i −0.218966 0.975733i \(-0.570268\pi\)
0.860313 + 0.509767i \(0.170268\pi\)
\(762\) 0 0
\(763\) −0.658864 + 2.02777i −0.0238525 + 0.0734104i
\(764\) −62.4819 45.3958i −2.26052 1.64236i
\(765\) 0 0
\(766\) −3.17543 + 9.77297i −0.114733 + 0.353112i
\(767\) 3.35992 + 10.3408i 0.121320 + 0.373384i
\(768\) 0 0
\(769\) −41.3397 −1.49075 −0.745374 0.666647i \(-0.767729\pi\)
−0.745374 + 0.666647i \(0.767729\pi\)
\(770\) 2.68004 0.180548i 0.0965820 0.00650650i
\(771\) 0 0
\(772\) −21.7127 + 15.7752i −0.781457 + 0.567762i
\(773\) 1.05855 + 3.25789i 0.0380735 + 0.117178i 0.968287 0.249841i \(-0.0803783\pi\)
−0.930213 + 0.367019i \(0.880378\pi\)
\(774\) 0 0
\(775\) 16.8597 + 12.2493i 0.605619 + 0.440008i
\(776\) 16.7423 + 12.1640i 0.601014 + 0.436662i
\(777\) 0 0
\(778\) −1.74091 5.35797i −0.0624146 0.192092i
\(779\) −61.1883 + 44.4559i −2.19230 + 1.59280i
\(780\) 0 0
\(781\) −10.3410 + 41.0301i −0.370031 + 1.46817i
\(782\) −33.7148 −1.20564
\(783\) 0 0
\(784\) −0.446430 1.37397i −0.0159439 0.0490703i
\(785\) 0.552576 1.70065i 0.0197223 0.0606990i
\(786\) 0 0
\(787\) 8.14921 + 5.92074i 0.290488 + 0.211052i 0.723479 0.690346i \(-0.242542\pi\)
−0.432991 + 0.901398i \(0.642542\pi\)
\(788\) −13.7426 + 42.2955i −0.489561 + 1.50671i
\(789\) 0 0
\(790\) 18.3259 13.3146i 0.652008 0.473712i
\(791\) −2.46102 −0.0875036
\(792\) 0 0
\(793\) −1.92060 −0.0682024
\(794\) −9.03436 + 6.56385i −0.320618 + 0.232942i
\(795\) 0 0
\(796\) 21.4165 65.9133i 0.759088 2.33623i
\(797\) 15.1927 + 11.0381i 0.538151 + 0.390990i 0.823398 0.567464i \(-0.192076\pi\)
−0.285247 + 0.958454i \(0.592076\pi\)
\(798\) 0 0
\(799\) 8.91363 27.4333i 0.315342 0.970522i
\(800\) 3.54842 + 10.9209i 0.125456 + 0.386113i
\(801\) 0 0
\(802\) −6.53201 −0.230653
\(803\) 25.3194 1.70571i 0.893502 0.0601931i
\(804\) 0 0
\(805\) −1.13901 + 0.827538i −0.0401448 + 0.0291669i
\(806\) 9.64648 + 29.6888i 0.339783 + 1.04574i
\(807\) 0 0
\(808\) −27.2114 19.7702i −0.957294 0.695515i
\(809\) −32.4991 23.6120i −1.14261 0.830152i −0.155126 0.987895i \(-0.549578\pi\)
−0.987480 + 0.157742i \(0.949578\pi\)
\(810\) 0 0
\(811\) −6.95555 21.4070i −0.244243 0.751701i −0.995760 0.0919881i \(-0.970678\pi\)
0.751518 0.659713i \(-0.229322\pi\)
\(812\) −0.299154 + 0.217348i −0.0104982 + 0.00762741i
\(813\) 0 0
\(814\) 7.23301 6.03789i 0.253517 0.211628i
\(815\) −23.7538 −0.832061
\(816\) 0 0
\(817\) 19.8521 + 61.0984i 0.694536 + 2.13756i
\(818\) 7.80981 24.0361i 0.273064 0.840403i
\(819\) 0 0
\(820\) −42.0580 30.5569i −1.46873 1.06709i
\(821\) 13.8301 42.5647i 0.482674 1.48552i −0.352648 0.935756i \(-0.614719\pi\)
0.835322 0.549761i \(-0.185281\pi\)
\(822\) 0 0
\(823\) −2.56435 + 1.86311i −0.0893876 + 0.0649439i −0.631581 0.775310i \(-0.717594\pi\)
0.542194 + 0.840253i \(0.317594\pi\)
\(824\) −3.71669 −0.129477
\(825\) 0 0
\(826\) 3.75497 0.130652
\(827\) −19.0904 + 13.8700i −0.663838 + 0.482307i −0.867957 0.496640i \(-0.834567\pi\)
0.204119 + 0.978946i \(0.434567\pi\)
\(828\) 0 0
\(829\) −7.87416 + 24.2342i −0.273481 + 0.841688i 0.716136 + 0.697960i \(0.245909\pi\)
−0.989617 + 0.143727i \(0.954091\pi\)
\(830\) 43.7717 + 31.8020i 1.51934 + 1.10386i
\(831\) 0 0
\(832\) −5.49268 + 16.9047i −0.190425 + 0.586066i
\(833\) 7.89361 + 24.2940i 0.273497 + 0.841739i
\(834\) 0 0
\(835\) 8.82052 0.305247
\(836\) 32.8322 + 81.8623i 1.13553 + 2.83127i
\(837\) 0 0
\(838\) −26.7681 + 19.4482i −0.924690 + 0.671827i
\(839\) −4.23546 13.0354i −0.146224 0.450032i 0.850942 0.525260i \(-0.176032\pi\)
−0.997166 + 0.0752273i \(0.976032\pi\)
\(840\) 0 0
\(841\) 23.2234 + 16.8728i 0.800805 + 0.581819i
\(842\) 4.73833 + 3.44260i 0.163293 + 0.118640i
\(843\) 0 0
\(844\) −15.9162 48.9849i −0.547857 1.68613i
\(845\) 15.2253 11.0619i 0.523768 0.380540i
\(846\) 0 0
\(847\) 0.990890 + 2.05817i 0.0340474 + 0.0707196i
\(848\) 1.36215 0.0467766
\(849\) 0 0
\(850\) 5.52924 + 17.0173i 0.189651 + 0.583687i
\(851\) −1.52604 + 4.69667i −0.0523120 + 0.161000i
\(852\) 0 0
\(853\) 13.7910 + 10.0197i 0.472195 + 0.343069i 0.798296 0.602265i \(-0.205735\pi\)
−0.326101 + 0.945335i \(0.605735\pi\)
\(854\) −0.204964 + 0.630815i −0.00701373 + 0.0215860i
\(855\) 0 0
\(856\) −18.4337 + 13.3928i −0.630050 + 0.457758i
\(857\) −48.3488 −1.65156 −0.825781 0.563990i \(-0.809265\pi\)
−0.825781 + 0.563990i \(0.809265\pi\)
\(858\) 0 0
\(859\) −3.58643 −0.122367 −0.0611837 0.998127i \(-0.519488\pi\)
−0.0611837 + 0.998127i \(0.519488\pi\)
\(860\) −35.7241 + 25.9551i −1.21818 + 0.885060i
\(861\) 0 0
\(862\) −17.2542 + 53.1031i −0.587682 + 1.80870i
\(863\) −31.4913 22.8798i −1.07198 0.778836i −0.0957096 0.995409i \(-0.530512\pi\)
−0.976266 + 0.216573i \(0.930512\pi\)
\(864\) 0 0
\(865\) −5.54997 + 17.0810i −0.188705 + 0.580773i
\(866\) 26.8247 + 82.5580i 0.911541 + 2.80544i
\(867\) 0 0
\(868\) 6.69866 0.227367
\(869\) 16.3103 + 10.2496i 0.553287 + 0.347695i
\(870\) 0 0
\(871\) 6.54508 4.75528i 0.221772 0.161127i
\(872\) −9.34841 28.7715i −0.316577 0.974324i
\(873\) 0 0
\(874\) −60.1912 43.7315i −2.03600 1.47924i
\(875\) 2.02995 + 1.47485i 0.0686249 + 0.0498589i
\(876\) 0 0
\(877\) 7.00935 + 21.5725i 0.236689 + 0.728453i 0.996893 + 0.0787689i \(0.0250989\pi\)
−0.760204 + 0.649684i \(0.774901\pi\)
\(878\) 6.72740 4.88774i 0.227039 0.164953i
\(879\) 0 0
\(880\) −0.897230 + 0.748980i −0.0302456 + 0.0252481i
\(881\) 48.0217 1.61789 0.808946 0.587882i \(-0.200038\pi\)
0.808946 + 0.587882i \(0.200038\pi\)
\(882\) 0 0
\(883\) −12.6278 38.8642i −0.424958 1.30789i −0.903035 0.429568i \(-0.858666\pi\)
0.478077 0.878318i \(-0.341334\pi\)
\(884\) −5.14638 + 15.8389i −0.173091 + 0.532720i
\(885\) 0 0
\(886\) −12.0578 8.76047i −0.405088 0.294314i
\(887\) 9.56688 29.4438i 0.321224 0.988627i −0.651892 0.758312i \(-0.726024\pi\)
0.973116 0.230315i \(-0.0739757\pi\)
\(888\) 0 0
\(889\) −2.88233 + 2.09413i −0.0966702 + 0.0702350i
\(890\) −24.1742 −0.810322
\(891\) 0 0
\(892\) 32.5442 1.08966
\(893\) 51.4973 37.4150i 1.72329 1.25204i
\(894\) 0 0
\(895\) −3.67052 + 11.2967i −0.122692 + 0.377607i
\(896\) 3.14647 + 2.28605i 0.105116 + 0.0763715i
\(897\) 0 0
\(898\) −24.6154 + 75.7583i −0.821426 + 2.52809i
\(899\) 1.64782 + 5.07146i 0.0549577 + 0.169143i
\(900\) 0 0
\(901\) −24.0851 −0.802392
\(902\) 17.3885 68.9923i 0.578973 2.29719i
\(903\) 0 0
\(904\) 28.2497 20.5246i 0.939572 0.682639i
\(905\) 0.604982 + 1.86194i 0.0201103 + 0.0618930i
\(906\) 0 0
\(907\) −20.1030 14.6057i −0.667510 0.484974i 0.201681 0.979451i \(-0.435360\pi\)
−0.869191 + 0.494477i \(0.835360\pi\)
\(908\) 29.4915 + 21.4268i 0.978710 + 0.711074i
\(909\) 0 0
\(910\) 0.345866 + 1.06447i 0.0114654 + 0.0352867i
\(911\) −24.1302 + 17.5316i −0.799469 + 0.580848i −0.910758 0.412940i \(-0.864502\pi\)
0.111289 + 0.993788i \(0.464502\pi\)
\(912\) 0 0
\(913\) −11.2447 + 44.6156i −0.372146 + 1.47656i
\(914\) 83.8466 2.77340
\(915\) 0 0
\(916\) −2.12452 6.53859i −0.0701960 0.216041i
\(917\) −0.513990 + 1.58190i −0.0169734 + 0.0522389i
\(918\) 0 0
\(919\) 10.0050 + 7.26908i 0.330035 + 0.239785i 0.740446 0.672116i \(-0.234615\pi\)
−0.410410 + 0.911901i \(0.634615\pi\)
\(920\) 6.17296 18.9984i 0.203517 0.626360i
\(921\) 0 0
\(922\) 32.0925 23.3166i 1.05691 0.767890i
\(923\) −17.6310 −0.580331
\(924\) 0 0
\(925\) 2.62087 0.0861738
\(926\) −69.9076 + 50.7909i −2.29731 + 1.66909i
\(927\) 0 0
\(928\) −0.907965 + 2.79443i −0.0298054 + 0.0917316i
\(929\) −16.7613 12.1778i −0.549919 0.399540i 0.277837 0.960628i \(-0.410383\pi\)
−0.827756 + 0.561089i \(0.810383\pi\)
\(930\) 0 0
\(931\) −17.4193 + 53.6111i −0.570894 + 1.75703i
\(932\) 22.0386 + 67.8278i 0.721898 + 2.22177i
\(933\) 0 0
\(934\) −81.3103 −2.66055
\(935\) 15.8645 13.2432i 0.518825 0.433099i
\(936\) 0 0
\(937\) −26.7917 + 19.4653i −0.875247 + 0.635904i −0.931990 0.362485i \(-0.881929\pi\)
0.0567426 + 0.998389i \(0.481929\pi\)
\(938\) −0.863375 2.65720i −0.0281902 0.0867605i
\(939\) 0 0
\(940\) 35.3969 + 25.7173i 1.15452 + 0.838806i
\(941\) 30.4872 + 22.1503i 0.993855 + 0.722078i 0.960762 0.277374i \(-0.0894641\pi\)
0.0330933 + 0.999452i \(0.489464\pi\)
\(942\) 0 0
\(943\) 11.5239 + 35.4670i 0.375271 + 1.15496i
\(944\) −1.32179 + 0.960340i −0.0430208 + 0.0312564i
\(945\) 0 0
\(946\) −51.1698 32.1559i −1.66367 1.04548i
\(947\) −34.0284 −1.10577 −0.552887 0.833256i \(-0.686474\pi\)
−0.552887 + 0.833256i \(0.686474\pi\)
\(948\) 0 0
\(949\) 3.26753 + 10.0564i 0.106069 + 0.326446i
\(950\) −12.2017 + 37.5530i −0.395875 + 1.21838i
\(951\) 0 0
\(952\) 1.81757 + 1.32054i 0.0589079 + 0.0427991i
\(953\) 1.29564 3.98756i 0.0419697 0.129170i −0.927876 0.372888i \(-0.878367\pi\)
0.969846 + 0.243719i \(0.0783674\pi\)
\(954\) 0 0
\(955\) −32.3060 + 23.4717i −1.04540 + 0.759525i
\(956\) −44.3546 −1.43453
\(957\) 0 0
\(958\) −54.5828 −1.76349
\(959\) −1.51697 + 1.10215i −0.0489856 + 0.0355901i
\(960\) 0 0
\(961\) 20.2715 62.3894i 0.653921 2.01256i
\(962\) 3.17613 + 2.30759i 0.102402 + 0.0743997i
\(963\) 0 0
\(964\) 9.64516 29.6847i 0.310650 0.956081i
\(965\) 4.28812 + 13.1975i 0.138039 + 0.424842i
\(966\) 0 0
\(967\) 16.7939 0.540054 0.270027 0.962853i \(-0.412967\pi\)
0.270027 + 0.962853i \(0.412967\pi\)
\(968\) −28.5393 15.3616i −0.917287 0.493740i
\(969\) 0 0
\(970\) 22.1610 16.1009i 0.711546 0.516968i
\(971\) 9.32489 + 28.6991i 0.299250 + 0.920997i 0.981761 + 0.190121i \(0.0608881\pi\)
−0.682511 + 0.730876i \(0.739112\pi\)
\(972\) 0 0
\(973\) −0.522618 0.379704i −0.0167544 0.0121728i
\(974\) 45.1363 + 32.7934i 1.44626 + 1.05077i
\(975\) 0 0
\(976\) −0.0891821 0.274474i −0.00285465 0.00878570i
\(977\) −32.8429 + 23.8618i −1.05074 + 0.763406i −0.972353 0.233517i \(-0.924977\pi\)
−0.0783856 + 0.996923i \(0.524977\pi\)
\(978\) 0 0
\(979\) −7.65252 19.0804i −0.244576 0.609813i
\(980\) −38.7461 −1.23770
\(981\) 0 0
\(982\) −0.270845 0.833575i −0.00864301 0.0266004i
\(983\) −1.75230 + 5.39303i −0.0558897 + 0.172011i −0.975105 0.221745i \(-0.928825\pi\)
0.919215 + 0.393756i \(0.128825\pi\)
\(984\) 0 0
\(985\) 18.6026 + 13.5156i 0.592729 + 0.430643i
\(986\) −1.41481 + 4.35435i −0.0450569 + 0.138671i
\(987\) 0 0
\(988\) −29.7325 + 21.6019i −0.945917 + 0.687249i
\(989\) 31.6760 1.00724
\(990\) 0 0
\(991\) 41.6198 1.32210 0.661049 0.750343i \(-0.270112\pi\)
0.661049 + 0.750343i \(0.270112\pi\)
\(992\) 43.0621 31.2865i 1.36722 0.993347i
\(993\) 0 0
\(994\) −1.88156 + 5.79085i −0.0596795 + 0.183675i
\(995\) −28.9903 21.0627i −0.919055 0.667732i
\(996\) 0 0
\(997\) 14.0461 43.2295i 0.444844 1.36909i −0.437810 0.899068i \(-0.644246\pi\)
0.882654 0.470023i \(-0.155754\pi\)
\(998\) −2.25658 6.94502i −0.0714306 0.219841i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.f.b.190.1 yes 16
3.2 odd 2 inner 297.2.f.b.190.4 yes 16
9.2 odd 6 891.2.n.h.190.1 32
9.4 even 3 891.2.n.h.784.1 32
9.5 odd 6 891.2.n.h.784.4 32
9.7 even 3 891.2.n.h.190.4 32
11.2 odd 10 3267.2.a.bi.1.2 8
11.4 even 5 inner 297.2.f.b.136.1 16
11.9 even 5 3267.2.a.bj.1.7 8
33.2 even 10 3267.2.a.bi.1.7 8
33.20 odd 10 3267.2.a.bj.1.2 8
33.26 odd 10 inner 297.2.f.b.136.4 yes 16
99.4 even 15 891.2.n.h.136.4 32
99.59 odd 30 891.2.n.h.136.1 32
99.70 even 15 891.2.n.h.433.1 32
99.92 odd 30 891.2.n.h.433.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.b.136.1 16 11.4 even 5 inner
297.2.f.b.136.4 yes 16 33.26 odd 10 inner
297.2.f.b.190.1 yes 16 1.1 even 1 trivial
297.2.f.b.190.4 yes 16 3.2 odd 2 inner
891.2.n.h.136.1 32 99.59 odd 30
891.2.n.h.136.4 32 99.4 even 15
891.2.n.h.190.1 32 9.2 odd 6
891.2.n.h.190.4 32 9.7 even 3
891.2.n.h.433.1 32 99.70 even 15
891.2.n.h.433.4 32 99.92 odd 30
891.2.n.h.784.1 32 9.4 even 3
891.2.n.h.784.4 32 9.5 odd 6
3267.2.a.bi.1.2 8 11.2 odd 10
3267.2.a.bi.1.7 8 33.2 even 10
3267.2.a.bj.1.2 8 33.20 odd 10
3267.2.a.bj.1.7 8 11.9 even 5