Properties

Label 297.2.f.b.190.2
Level $297$
Weight $2$
Character 297.190
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{14} + 51x^{12} - 249x^{10} + 1476x^{8} - 2875x^{6} + 2335x^{4} + 125x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.2
Root \(-1.35089 + 1.85934i\) of defining polynomial
Character \(\chi\) \(=\) 297.190
Dual form 297.2.f.b.136.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.255752 + 0.185814i) q^{2} +(-0.587152 + 1.80707i) q^{4} +(3.28092 + 2.38373i) q^{5} +(1.05386 - 3.24346i) q^{7} +(-0.380991 - 1.17257i) q^{8} -1.28203 q^{10} +(-1.15551 + 3.10883i) q^{11} +(-1.11803 + 0.812299i) q^{13} +(0.333154 + 1.02534i) q^{14} +(-2.75905 - 2.00457i) q^{16} +(5.20368 + 3.78070i) q^{17} +(-1.07684 - 3.31419i) q^{19} +(-6.23395 + 4.52923i) q^{20} +(-0.282141 - 1.00980i) q^{22} -3.73931 q^{23} +(3.53718 + 10.8863i) q^{25} +(0.135002 - 0.415494i) q^{26} +(5.24237 + 3.80880i) q^{28} +(0.0230611 - 0.0709748i) q^{29} +(3.02440 - 2.19736i) q^{31} +3.54393 q^{32} -2.03336 q^{34} +(11.1891 - 8.12939i) q^{35} +(-0.381966 + 1.17557i) q^{37} +(0.891228 + 0.647515i) q^{38} +(1.54508 - 4.75528i) q^{40} +(-2.87964 - 8.86262i) q^{41} -0.456334 q^{43} +(-4.93940 - 3.91344i) q^{44} +(0.956334 - 0.694818i) q^{46} +(0.678546 + 2.08835i) q^{47} +(-3.74627 - 2.72182i) q^{49} +(-2.92748 - 2.12694i) q^{50} +(-0.811424 - 2.49731i) q^{52} +(-0.729941 + 0.530333i) q^{53} +(-11.2017 + 7.44538i) q^{55} -4.20469 q^{56} +(0.00729022 + 0.0224370i) q^{58} +(2.47885 - 7.62911i) q^{59} +(-4.66942 - 3.39253i) q^{61} +(-0.365195 + 1.12395i) q^{62} +(4.61173 - 3.35062i) q^{64} -5.60448 q^{65} -5.85410 q^{67} +(-9.88733 + 7.18357i) q^{68} +(-1.35108 + 4.15821i) q^{70} +(-7.66424 - 5.56839i) q^{71} +(4.34379 - 13.3688i) q^{73} +(-0.120749 - 0.371629i) q^{74} +6.62123 q^{76} +(8.86559 + 7.02412i) q^{77} +(8.89129 - 6.45990i) q^{79} +(-4.27387 - 13.1536i) q^{80} +(2.38327 + 1.73155i) q^{82} +(-1.10689 - 0.804203i) q^{83} +(8.06071 + 24.8083i) q^{85} +(0.116708 - 0.0847935i) q^{86} +(4.08555 + 0.170482i) q^{88} +10.3758 q^{89} +(1.45640 + 4.48235i) q^{91} +(2.19554 - 6.75719i) q^{92} +(-0.561585 - 0.408015i) q^{94} +(4.36707 - 13.4405i) q^{95} +(6.67190 - 4.84742i) q^{97} +1.46387 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{4} + 12 q^{10} - 10 q^{16} - 2 q^{19} - 36 q^{22} + 32 q^{25} + 42 q^{28} - 26 q^{31} - 48 q^{34} - 24 q^{37} - 20 q^{40} + 24 q^{43} - 16 q^{46} + 24 q^{49} - 40 q^{52} - 16 q^{55} + 106 q^{58}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.255752 + 0.185814i −0.180844 + 0.131391i −0.674524 0.738253i \(-0.735651\pi\)
0.493681 + 0.869643i \(0.335651\pi\)
\(3\) 0 0
\(4\) −0.587152 + 1.80707i −0.293576 + 0.903534i
\(5\) 3.28092 + 2.38373i 1.46727 + 1.06603i 0.981393 + 0.192008i \(0.0614999\pi\)
0.485877 + 0.874027i \(0.338500\pi\)
\(6\) 0 0
\(7\) 1.05386 3.24346i 0.398323 1.22591i −0.528021 0.849231i \(-0.677066\pi\)
0.926343 0.376680i \(-0.122934\pi\)
\(8\) −0.380991 1.17257i −0.134701 0.414566i
\(9\) 0 0
\(10\) −1.28203 −0.405414
\(11\) −1.15551 + 3.10883i −0.348400 + 0.937346i
\(12\) 0 0
\(13\) −1.11803 + 0.812299i −0.310087 + 0.225291i −0.731934 0.681376i \(-0.761382\pi\)
0.421847 + 0.906667i \(0.361382\pi\)
\(14\) 0.333154 + 1.02534i 0.0890391 + 0.274034i
\(15\) 0 0
\(16\) −2.75905 2.00457i −0.689762 0.501142i
\(17\) 5.20368 + 3.78070i 1.26208 + 0.916954i 0.998858 0.0477820i \(-0.0152153\pi\)
0.263221 + 0.964736i \(0.415215\pi\)
\(18\) 0 0
\(19\) −1.07684 3.31419i −0.247045 0.760326i −0.995293 0.0969076i \(-0.969105\pi\)
0.748248 0.663419i \(-0.230895\pi\)
\(20\) −6.23395 + 4.52923i −1.39395 + 1.01277i
\(21\) 0 0
\(22\) −0.282141 1.00980i −0.0601526 0.215290i
\(23\) −3.73931 −0.779700 −0.389850 0.920878i \(-0.627473\pi\)
−0.389850 + 0.920878i \(0.627473\pi\)
\(24\) 0 0
\(25\) 3.53718 + 10.8863i 0.707437 + 2.17727i
\(26\) 0.135002 0.415494i 0.0264761 0.0814850i
\(27\) 0 0
\(28\) 5.24237 + 3.80880i 0.990715 + 0.719796i
\(29\) 0.0230611 0.0709748i 0.00428234 0.0131797i −0.948893 0.315599i \(-0.897794\pi\)
0.953175 + 0.302420i \(0.0977944\pi\)
\(30\) 0 0
\(31\) 3.02440 2.19736i 0.543198 0.394657i −0.282073 0.959393i \(-0.591022\pi\)
0.825271 + 0.564736i \(0.191022\pi\)
\(32\) 3.54393 0.626485
\(33\) 0 0
\(34\) −2.03336 −0.348718
\(35\) 11.1891 8.12939i 1.89131 1.37412i
\(36\) 0 0
\(37\) −0.381966 + 1.17557i −0.0627948 + 0.193263i −0.977532 0.210787i \(-0.932398\pi\)
0.914737 + 0.404049i \(0.132398\pi\)
\(38\) 0.891228 + 0.647515i 0.144576 + 0.105041i
\(39\) 0 0
\(40\) 1.54508 4.75528i 0.244299 0.751876i
\(41\) −2.87964 8.86262i −0.449724 1.38411i −0.877219 0.480091i \(-0.840604\pi\)
0.427494 0.904018i \(-0.359396\pi\)
\(42\) 0 0
\(43\) −0.456334 −0.0695903 −0.0347952 0.999394i \(-0.511078\pi\)
−0.0347952 + 0.999394i \(0.511078\pi\)
\(44\) −4.93940 3.91344i −0.744643 0.589973i
\(45\) 0 0
\(46\) 0.956334 0.694818i 0.141004 0.102445i
\(47\) 0.678546 + 2.08835i 0.0989761 + 0.304617i 0.988270 0.152720i \(-0.0488033\pi\)
−0.889293 + 0.457337i \(0.848803\pi\)
\(48\) 0 0
\(49\) −3.74627 2.72182i −0.535181 0.388832i
\(50\) −2.92748 2.12694i −0.414008 0.300794i
\(51\) 0 0
\(52\) −0.811424 2.49731i −0.112524 0.346314i
\(53\) −0.729941 + 0.530333i −0.100265 + 0.0728469i −0.636788 0.771039i \(-0.719737\pi\)
0.536523 + 0.843886i \(0.319737\pi\)
\(54\) 0 0
\(55\) −11.2017 + 7.44538i −1.51044 + 1.00393i
\(56\) −4.20469 −0.561876
\(57\) 0 0
\(58\) 0.00729022 + 0.0224370i 0.000957253 + 0.00294612i
\(59\) 2.47885 7.62911i 0.322718 0.993225i −0.649742 0.760155i \(-0.725123\pi\)
0.972460 0.233070i \(-0.0748771\pi\)
\(60\) 0 0
\(61\) −4.66942 3.39253i −0.597858 0.434369i 0.247260 0.968949i \(-0.420470\pi\)
−0.845118 + 0.534580i \(0.820470\pi\)
\(62\) −0.365195 + 1.12395i −0.0463798 + 0.142742i
\(63\) 0 0
\(64\) 4.61173 3.35062i 0.576466 0.418827i
\(65\) −5.60448 −0.695150
\(66\) 0 0
\(67\) −5.85410 −0.715192 −0.357596 0.933876i \(-0.616404\pi\)
−0.357596 + 0.933876i \(0.616404\pi\)
\(68\) −9.88733 + 7.18357i −1.19901 + 0.871135i
\(69\) 0 0
\(70\) −1.35108 + 4.15821i −0.161485 + 0.497001i
\(71\) −7.66424 5.56839i −0.909577 0.660847i 0.0313305 0.999509i \(-0.490026\pi\)
−0.940908 + 0.338662i \(0.890026\pi\)
\(72\) 0 0
\(73\) 4.34379 13.3688i 0.508403 1.56470i −0.286571 0.958059i \(-0.592516\pi\)
0.794974 0.606643i \(-0.207484\pi\)
\(74\) −0.120749 0.371629i −0.0140368 0.0432010i
\(75\) 0 0
\(76\) 6.62123 0.759507
\(77\) 8.86559 + 7.02412i 1.01033 + 0.800473i
\(78\) 0 0
\(79\) 8.89129 6.45990i 1.00035 0.726795i 0.0381851 0.999271i \(-0.487842\pi\)
0.962163 + 0.272475i \(0.0878423\pi\)
\(80\) −4.27387 13.1536i −0.477834 1.47062i
\(81\) 0 0
\(82\) 2.38327 + 1.73155i 0.263189 + 0.191218i
\(83\) −1.10689 0.804203i −0.121497 0.0882728i 0.525377 0.850869i \(-0.323924\pi\)
−0.646874 + 0.762597i \(0.723924\pi\)
\(84\) 0 0
\(85\) 8.06071 + 24.8083i 0.874306 + 2.69084i
\(86\) 0.116708 0.0847935i 0.0125850 0.00914352i
\(87\) 0 0
\(88\) 4.08555 + 0.170482i 0.435521 + 0.0181735i
\(89\) 10.3758 1.09983 0.549915 0.835221i \(-0.314660\pi\)
0.549915 + 0.835221i \(0.314660\pi\)
\(90\) 0 0
\(91\) 1.45640 + 4.48235i 0.152672 + 0.469878i
\(92\) 2.19554 6.75719i 0.228901 0.704486i
\(93\) 0 0
\(94\) −0.561585 0.408015i −0.0579230 0.0420836i
\(95\) 4.36707 13.4405i 0.448052 1.37896i
\(96\) 0 0
\(97\) 6.67190 4.84742i 0.677428 0.492181i −0.195075 0.980788i \(-0.562495\pi\)
0.872504 + 0.488608i \(0.162495\pi\)
\(98\) 1.46387 0.147873
\(99\) 0 0
\(100\) −21.7492 −2.17492
\(101\) −9.02893 + 6.55990i −0.898412 + 0.652734i −0.938058 0.346479i \(-0.887377\pi\)
0.0396458 + 0.999214i \(0.487377\pi\)
\(102\) 0 0
\(103\) 2.43488 7.49380i 0.239916 0.738386i −0.756515 0.653976i \(-0.773100\pi\)
0.996431 0.0844097i \(-0.0269004\pi\)
\(104\) 1.37844 + 1.00149i 0.135167 + 0.0982046i
\(105\) 0 0
\(106\) 0.0881400 0.271267i 0.00856091 0.0263478i
\(107\) 4.11132 + 12.6533i 0.397456 + 1.22325i 0.927032 + 0.374982i \(0.122351\pi\)
−0.529575 + 0.848263i \(0.677649\pi\)
\(108\) 0 0
\(109\) 9.70501 0.929571 0.464786 0.885423i \(-0.346131\pi\)
0.464786 + 0.885423i \(0.346131\pi\)
\(110\) 1.48140 3.98561i 0.141246 0.380013i
\(111\) 0 0
\(112\) −9.40938 + 6.83632i −0.889103 + 0.645971i
\(113\) 1.83406 + 5.64465i 0.172534 + 0.531004i 0.999512 0.0312296i \(-0.00994231\pi\)
−0.826979 + 0.562233i \(0.809942\pi\)
\(114\) 0 0
\(115\) −12.2684 8.91349i −1.14403 0.831187i
\(116\) 0.114716 + 0.0833460i 0.0106511 + 0.00773848i
\(117\) 0 0
\(118\) 0.783629 + 2.41176i 0.0721389 + 0.222021i
\(119\) 17.7465 12.8936i 1.62682 1.18195i
\(120\) 0 0
\(121\) −8.32959 7.18456i −0.757236 0.653142i
\(122\) 1.82459 0.165191
\(123\) 0 0
\(124\) 2.19499 + 6.75548i 0.197116 + 0.606660i
\(125\) −8.07883 + 24.8641i −0.722593 + 2.22391i
\(126\) 0 0
\(127\) 5.48073 + 3.98199i 0.486337 + 0.353344i 0.803774 0.594935i \(-0.202822\pi\)
−0.317437 + 0.948279i \(0.602822\pi\)
\(128\) −2.74714 + 8.45481i −0.242815 + 0.747307i
\(129\) 0 0
\(130\) 1.43335 1.04139i 0.125713 0.0913361i
\(131\) −9.05370 −0.791026 −0.395513 0.918460i \(-0.629433\pi\)
−0.395513 + 0.918460i \(0.629433\pi\)
\(132\) 0 0
\(133\) −11.8843 −1.03050
\(134\) 1.49720 1.08778i 0.129338 0.0939696i
\(135\) 0 0
\(136\) 2.45057 7.54209i 0.210135 0.646729i
\(137\) −8.25718 5.99919i −0.705459 0.512546i 0.176247 0.984346i \(-0.443604\pi\)
−0.881705 + 0.471800i \(0.843604\pi\)
\(138\) 0 0
\(139\) 2.18461 6.72355i 0.185296 0.570284i −0.814657 0.579943i \(-0.803075\pi\)
0.999953 + 0.00965948i \(0.00307476\pi\)
\(140\) 8.12064 + 24.9927i 0.686319 + 2.11227i
\(141\) 0 0
\(142\) 2.99483 0.251320
\(143\) −1.23340 4.41439i −0.103142 0.369150i
\(144\) 0 0
\(145\) 0.244846 0.177891i 0.0203334 0.0147730i
\(146\) 1.37319 + 4.22624i 0.113646 + 0.349766i
\(147\) 0 0
\(148\) −1.90006 1.38048i −0.156184 0.113475i
\(149\) −3.43045 2.49237i −0.281033 0.204183i 0.438335 0.898812i \(-0.355568\pi\)
−0.719368 + 0.694629i \(0.755568\pi\)
\(150\) 0 0
\(151\) 3.41969 + 10.5247i 0.278291 + 0.856490i 0.988330 + 0.152328i \(0.0486771\pi\)
−0.710039 + 0.704162i \(0.751323\pi\)
\(152\) −3.47585 + 2.52535i −0.281928 + 0.204833i
\(153\) 0 0
\(154\) −3.57257 0.149076i −0.287886 0.0120129i
\(155\) 15.1607 1.21774
\(156\) 0 0
\(157\) −3.48875 10.7373i −0.278432 0.856926i −0.988291 0.152582i \(-0.951241\pi\)
0.709859 0.704344i \(-0.248759\pi\)
\(158\) −1.07362 + 3.30426i −0.0854125 + 0.262873i
\(159\) 0 0
\(160\) 11.6274 + 8.44777i 0.919223 + 0.667855i
\(161\) −3.94072 + 12.1283i −0.310572 + 0.955843i
\(162\) 0 0
\(163\) −10.0155 + 7.27670i −0.784475 + 0.569955i −0.906319 0.422595i \(-0.861119\pi\)
0.121843 + 0.992549i \(0.461119\pi\)
\(164\) 17.7061 1.38262
\(165\) 0 0
\(166\) 0.432521 0.0335702
\(167\) −4.04817 + 2.94117i −0.313257 + 0.227594i −0.733293 0.679913i \(-0.762018\pi\)
0.420036 + 0.907508i \(0.362018\pi\)
\(168\) 0 0
\(169\) −3.42705 + 10.5474i −0.263619 + 0.811337i
\(170\) −6.67128 4.84697i −0.511664 0.371745i
\(171\) 0 0
\(172\) 0.267938 0.824628i 0.0204301 0.0628773i
\(173\) 2.00743 + 6.17824i 0.152622 + 0.469723i 0.997912 0.0645849i \(-0.0205723\pi\)
−0.845290 + 0.534308i \(0.820572\pi\)
\(174\) 0 0
\(175\) 39.0371 2.95092
\(176\) 9.41996 6.26110i 0.710056 0.471948i
\(177\) 0 0
\(178\) −2.65362 + 1.92797i −0.198897 + 0.144507i
\(179\) 3.79797 + 11.6890i 0.283874 + 0.873673i 0.986734 + 0.162345i \(0.0519059\pi\)
−0.702860 + 0.711328i \(0.748094\pi\)
\(180\) 0 0
\(181\) 4.86040 + 3.53129i 0.361271 + 0.262479i 0.753582 0.657354i \(-0.228324\pi\)
−0.392311 + 0.919833i \(0.628324\pi\)
\(182\) −1.20536 0.875747i −0.0893474 0.0649147i
\(183\) 0 0
\(184\) 1.42464 + 4.38460i 0.105026 + 0.323237i
\(185\) −4.05544 + 2.94645i −0.298162 + 0.216627i
\(186\) 0 0
\(187\) −17.7664 + 11.8087i −1.29921 + 0.863538i
\(188\) −4.17220 −0.304289
\(189\) 0 0
\(190\) 1.38055 + 4.24889i 0.100155 + 0.308247i
\(191\) −0.637974 + 1.96348i −0.0461622 + 0.142073i −0.971481 0.237118i \(-0.923797\pi\)
0.925319 + 0.379190i \(0.123797\pi\)
\(192\) 0 0
\(193\) −8.82865 6.41439i −0.635500 0.461718i 0.222801 0.974864i \(-0.428480\pi\)
−0.858301 + 0.513146i \(0.828480\pi\)
\(194\) −0.805628 + 2.47947i −0.0578407 + 0.178015i
\(195\) 0 0
\(196\) 7.11814 5.17163i 0.508439 0.369402i
\(197\) −20.4184 −1.45475 −0.727376 0.686239i \(-0.759261\pi\)
−0.727376 + 0.686239i \(0.759261\pi\)
\(198\) 0 0
\(199\) 5.57032 0.394869 0.197435 0.980316i \(-0.436739\pi\)
0.197435 + 0.980316i \(0.436739\pi\)
\(200\) 11.4173 8.29519i 0.807329 0.586559i
\(201\) 0 0
\(202\) 1.09024 3.35541i 0.0767089 0.236086i
\(203\) −0.205900 0.149595i −0.0144514 0.0104995i
\(204\) 0 0
\(205\) 11.6782 35.9418i 0.815641 2.51028i
\(206\) 0.769731 + 2.36899i 0.0536297 + 0.165055i
\(207\) 0 0
\(208\) 4.71302 0.326789
\(209\) 11.5475 + 0.481856i 0.798759 + 0.0333307i
\(210\) 0 0
\(211\) −17.6404 + 12.8165i −1.21441 + 0.882324i −0.995624 0.0934481i \(-0.970211\pi\)
−0.218790 + 0.975772i \(0.570211\pi\)
\(212\) −0.529762 1.63044i −0.0363842 0.111979i
\(213\) 0 0
\(214\) −3.40265 2.47217i −0.232600 0.168994i
\(215\) −1.49720 1.08778i −0.102108 0.0741857i
\(216\) 0 0
\(217\) −3.93972 12.1252i −0.267446 0.823114i
\(218\) −2.48207 + 1.80333i −0.168107 + 0.122137i
\(219\) 0 0
\(220\) −6.87719 24.6138i −0.463660 1.65947i
\(221\) −8.88895 −0.597936
\(222\) 0 0
\(223\) 4.05386 + 12.4765i 0.271467 + 0.835489i 0.990133 + 0.140133i \(0.0447531\pi\)
−0.718666 + 0.695356i \(0.755247\pi\)
\(224\) 3.73482 11.4946i 0.249543 0.768015i
\(225\) 0 0
\(226\) −1.51792 1.10283i −0.100970 0.0733593i
\(227\) 7.09314 21.8304i 0.470788 1.44894i −0.380766 0.924671i \(-0.624340\pi\)
0.851555 0.524266i \(-0.175660\pi\)
\(228\) 0 0
\(229\) −20.2570 + 14.7176i −1.33862 + 0.972565i −0.339127 + 0.940741i \(0.610132\pi\)
−0.999493 + 0.0318242i \(0.989868\pi\)
\(230\) 4.79391 0.316101
\(231\) 0 0
\(232\) −0.0920089 −0.00604068
\(233\) −12.3212 + 8.95184i −0.807185 + 0.586455i −0.913013 0.407930i \(-0.866251\pi\)
0.105828 + 0.994384i \(0.466251\pi\)
\(234\) 0 0
\(235\) −2.75180 + 8.46917i −0.179508 + 0.552468i
\(236\) 12.3309 + 8.95889i 0.802670 + 0.583174i
\(237\) 0 0
\(238\) −2.14288 + 6.59511i −0.138902 + 0.427497i
\(239\) −7.70731 23.7206i −0.498544 1.53436i −0.811360 0.584547i \(-0.801272\pi\)
0.312816 0.949814i \(-0.398728\pi\)
\(240\) 0 0
\(241\) −11.2183 −0.722634 −0.361317 0.932443i \(-0.617673\pi\)
−0.361317 + 0.932443i \(0.617673\pi\)
\(242\) 3.46530 + 0.289705i 0.222758 + 0.0186229i
\(243\) 0 0
\(244\) 8.87220 6.44603i 0.567984 0.412665i
\(245\) −5.80311 17.8601i −0.370747 1.14104i
\(246\) 0 0
\(247\) 3.89606 + 2.83065i 0.247900 + 0.180110i
\(248\) −3.72882 2.70915i −0.236780 0.172031i
\(249\) 0 0
\(250\) −2.55393 7.86019i −0.161525 0.497122i
\(251\) 3.72882 2.70915i 0.235361 0.171000i −0.463853 0.885912i \(-0.653533\pi\)
0.699214 + 0.714912i \(0.253533\pi\)
\(252\) 0 0
\(253\) 4.32081 11.6249i 0.271647 0.730849i
\(254\) −2.14162 −0.134377
\(255\) 0 0
\(256\) 2.65461 + 8.17004i 0.165913 + 0.510628i
\(257\) 2.05355 6.32019i 0.128097 0.394243i −0.866355 0.499428i \(-0.833544\pi\)
0.994453 + 0.105185i \(0.0335436\pi\)
\(258\) 0 0
\(259\) 3.41037 + 2.47778i 0.211910 + 0.153962i
\(260\) 3.29068 10.1277i 0.204079 0.628092i
\(261\) 0 0
\(262\) 2.31550 1.68231i 0.143052 0.103933i
\(263\) −0.256029 −0.0157874 −0.00789371 0.999969i \(-0.502513\pi\)
−0.00789371 + 0.999969i \(0.502513\pi\)
\(264\) 0 0
\(265\) −3.65904 −0.224773
\(266\) 3.03942 2.20827i 0.186359 0.135398i
\(267\) 0 0
\(268\) 3.43725 10.5788i 0.209963 0.646201i
\(269\) 22.0359 + 16.0100i 1.34355 + 0.976148i 0.999305 + 0.0372682i \(0.0118656\pi\)
0.344247 + 0.938879i \(0.388134\pi\)
\(270\) 0 0
\(271\) 0.961217 2.95832i 0.0583898 0.179705i −0.917608 0.397487i \(-0.869882\pi\)
0.975997 + 0.217782i \(0.0698822\pi\)
\(272\) −6.77856 20.8623i −0.411010 1.26496i
\(273\) 0 0
\(274\) 3.22652 0.194921
\(275\) −37.9310 1.58279i −2.28732 0.0954455i
\(276\) 0 0
\(277\) −5.75675 + 4.18253i −0.345890 + 0.251304i −0.747143 0.664664i \(-0.768575\pi\)
0.401253 + 0.915967i \(0.368575\pi\)
\(278\) 0.690613 + 2.12549i 0.0414202 + 0.127478i
\(279\) 0 0
\(280\) −13.7952 10.0228i −0.824424 0.598979i
\(281\) −1.53900 1.11815i −0.0918090 0.0667031i 0.540934 0.841065i \(-0.318071\pi\)
−0.632743 + 0.774362i \(0.718071\pi\)
\(282\) 0 0
\(283\) 4.19735 + 12.9181i 0.249507 + 0.767903i 0.994862 + 0.101236i \(0.0322797\pi\)
−0.745356 + 0.666667i \(0.767720\pi\)
\(284\) 14.5625 10.5803i 0.864128 0.627826i
\(285\) 0 0
\(286\) 1.13570 + 0.899805i 0.0671554 + 0.0532066i
\(287\) −31.7803 −1.87593
\(288\) 0 0
\(289\) 7.53136 + 23.1791i 0.443021 + 1.36348i
\(290\) −0.0295650 + 0.0909918i −0.00173612 + 0.00534322i
\(291\) 0 0
\(292\) 21.6079 + 15.6991i 1.26451 + 0.918718i
\(293\) −8.38365 + 25.8022i −0.489778 + 1.50738i 0.335161 + 0.942161i \(0.391209\pi\)
−0.824939 + 0.565222i \(0.808791\pi\)
\(294\) 0 0
\(295\) 26.3186 19.1216i 1.53233 1.11330i
\(296\) 1.52396 0.0885786
\(297\) 0 0
\(298\) 1.34046 0.0776508
\(299\) 4.18068 3.03744i 0.241775 0.175660i
\(300\) 0 0
\(301\) −0.480914 + 1.48010i −0.0277194 + 0.0853116i
\(302\) −2.83024 2.05629i −0.162862 0.118326i
\(303\) 0 0
\(304\) −3.67244 + 11.3026i −0.210629 + 0.648249i
\(305\) −7.23312 22.2612i −0.414167 1.27468i
\(306\) 0 0
\(307\) −2.18209 −0.124539 −0.0622694 0.998059i \(-0.519834\pi\)
−0.0622694 + 0.998059i \(0.519834\pi\)
\(308\) −17.8985 + 11.8965i −1.01986 + 0.677866i
\(309\) 0 0
\(310\) −3.87737 + 2.81708i −0.220220 + 0.159999i
\(311\) −2.37887 7.32140i −0.134893 0.415159i 0.860680 0.509146i \(-0.170039\pi\)
−0.995573 + 0.0939874i \(0.970039\pi\)
\(312\) 0 0
\(313\) 10.9182 + 7.93251i 0.617131 + 0.448372i 0.851918 0.523675i \(-0.175439\pi\)
−0.234787 + 0.972047i \(0.575439\pi\)
\(314\) 2.88739 + 2.09781i 0.162945 + 0.118386i
\(315\) 0 0
\(316\) 6.45294 + 19.8601i 0.363006 + 1.11722i
\(317\) −18.7326 + 13.6101i −1.05213 + 0.764417i −0.972616 0.232417i \(-0.925337\pi\)
−0.0795134 + 0.996834i \(0.525337\pi\)
\(318\) 0 0
\(319\) 0.194001 + 0.153705i 0.0108620 + 0.00860583i
\(320\) 23.1177 1.29232
\(321\) 0 0
\(322\) −1.24577 3.83407i −0.0694238 0.213664i
\(323\) 6.92637 21.3172i 0.385394 1.18612i
\(324\) 0 0
\(325\) −12.7977 9.29804i −0.709886 0.515762i
\(326\) 1.20937 3.72205i 0.0669807 0.206145i
\(327\) 0 0
\(328\) −9.29492 + 6.75316i −0.513226 + 0.372881i
\(329\) 7.48857 0.412858
\(330\) 0 0
\(331\) 17.4367 0.958406 0.479203 0.877704i \(-0.340926\pi\)
0.479203 + 0.877704i \(0.340926\pi\)
\(332\) 2.10316 1.52804i 0.115426 0.0838620i
\(333\) 0 0
\(334\) 0.488815 1.50442i 0.0267468 0.0823180i
\(335\) −19.2068 13.9546i −1.04938 0.762420i
\(336\) 0 0
\(337\) 2.93939 9.04651i 0.160119 0.492795i −0.838525 0.544863i \(-0.816581\pi\)
0.998644 + 0.0520687i \(0.0165815\pi\)
\(338\) −1.08338 3.33430i −0.0589282 0.181362i
\(339\) 0 0
\(340\) −49.5632 −2.68794
\(341\) 3.33647 + 11.9414i 0.180680 + 0.646663i
\(342\) 0 0
\(343\) 6.53718 4.74954i 0.352975 0.256451i
\(344\) 0.173859 + 0.535084i 0.00937387 + 0.0288498i
\(345\) 0 0
\(346\) −1.66141 1.20708i −0.0893179 0.0648933i
\(347\) 18.0841 + 13.1389i 0.970807 + 0.705333i 0.955635 0.294552i \(-0.0951704\pi\)
0.0151720 + 0.999885i \(0.495170\pi\)
\(348\) 0 0
\(349\) −7.59976 23.3896i −0.406806 1.25202i −0.919378 0.393375i \(-0.871307\pi\)
0.512572 0.858644i \(-0.328693\pi\)
\(350\) −9.98379 + 7.25365i −0.533656 + 0.387724i
\(351\) 0 0
\(352\) −4.09505 + 11.0175i −0.218267 + 0.587233i
\(353\) −7.66599 −0.408019 −0.204010 0.978969i \(-0.565397\pi\)
−0.204010 + 0.978969i \(0.565397\pi\)
\(354\) 0 0
\(355\) −11.8722 36.5389i −0.630111 1.93928i
\(356\) −6.09216 + 18.7497i −0.322884 + 0.993734i
\(357\) 0 0
\(358\) −3.14331 2.28375i −0.166129 0.120700i
\(359\) 5.86366 18.0465i 0.309472 0.952457i −0.668498 0.743714i \(-0.733063\pi\)
0.977970 0.208743i \(-0.0669373\pi\)
\(360\) 0 0
\(361\) 5.54709 4.03020i 0.291952 0.212116i
\(362\) −1.89922 −0.0998208
\(363\) 0 0
\(364\) −8.95504 −0.469372
\(365\) 46.1192 33.5076i 2.41399 1.75387i
\(366\) 0 0
\(367\) −9.41521 + 28.9770i −0.491470 + 1.51259i 0.330916 + 0.943660i \(0.392642\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(368\) 10.3169 + 7.49570i 0.537808 + 0.390740i
\(369\) 0 0
\(370\) 0.489692 1.50712i 0.0254579 0.0783513i
\(371\) 0.950855 + 2.92643i 0.0493659 + 0.151933i
\(372\) 0 0
\(373\) 29.3360 1.51896 0.759480 0.650530i \(-0.225453\pi\)
0.759480 + 0.650530i \(0.225453\pi\)
\(374\) 2.34957 6.32135i 0.121493 0.326869i
\(375\) 0 0
\(376\) 2.19022 1.59129i 0.112952 0.0820643i
\(377\) 0.0318697 + 0.0980847i 0.00164137 + 0.00505162i
\(378\) 0 0
\(379\) −29.1894 21.2073i −1.49936 1.08935i −0.970637 0.240551i \(-0.922672\pi\)
−0.528721 0.848796i \(-0.677328\pi\)
\(380\) 21.7237 + 15.7832i 1.11440 + 0.809661i
\(381\) 0 0
\(382\) −0.201680 0.620708i −0.0103189 0.0317582i
\(383\) −17.3575 + 12.6109i −0.886925 + 0.644388i −0.935074 0.354452i \(-0.884668\pi\)
0.0481498 + 0.998840i \(0.484668\pi\)
\(384\) 0 0
\(385\) 12.3437 + 44.1787i 0.629092 + 2.25156i
\(386\) 3.44982 0.175591
\(387\) 0 0
\(388\) 4.84220 + 14.9027i 0.245825 + 0.756572i
\(389\) 0.0153125 0.0471270i 0.000776374 0.00238943i −0.950668 0.310211i \(-0.899600\pi\)
0.951444 + 0.307822i \(0.0996001\pi\)
\(390\) 0 0
\(391\) −19.4582 14.1372i −0.984043 0.714949i
\(392\) −1.76423 + 5.42975i −0.0891072 + 0.274244i
\(393\) 0 0
\(394\) 5.22204 3.79404i 0.263083 0.191141i
\(395\) 44.5702 2.24257
\(396\) 0 0
\(397\) 0.432880 0.0217256 0.0108628 0.999941i \(-0.496542\pi\)
0.0108628 + 0.999941i \(0.496542\pi\)
\(398\) −1.42462 + 1.03504i −0.0714096 + 0.0518821i
\(399\) 0 0
\(400\) 12.0631 37.1264i 0.603156 1.85632i
\(401\) 15.5206 + 11.2764i 0.775063 + 0.563116i 0.903493 0.428602i \(-0.140994\pi\)
−0.128430 + 0.991719i \(0.540994\pi\)
\(402\) 0 0
\(403\) −1.59647 + 4.91344i −0.0795259 + 0.244756i
\(404\) −6.55283 20.1675i −0.326016 1.00337i
\(405\) 0 0
\(406\) 0.0804563 0.00399298
\(407\) −3.21328 2.54585i −0.159276 0.126193i
\(408\) 0 0
\(409\) 25.6325 18.6231i 1.26745 0.920853i 0.268347 0.963322i \(-0.413523\pi\)
0.999098 + 0.0424695i \(0.0135225\pi\)
\(410\) 3.69179 + 11.3621i 0.182324 + 0.561136i
\(411\) 0 0
\(412\) 12.1122 + 8.80000i 0.596723 + 0.433545i
\(413\) −22.1323 16.0801i −1.08906 0.791248i
\(414\) 0 0
\(415\) −1.71462 5.27705i −0.0841672 0.259040i
\(416\) −3.96224 + 2.87873i −0.194265 + 0.141142i
\(417\) 0 0
\(418\) −3.04283 + 2.02246i −0.148830 + 0.0989218i
\(419\) −10.6473 −0.520155 −0.260077 0.965588i \(-0.583748\pi\)
−0.260077 + 0.965588i \(0.583748\pi\)
\(420\) 0 0
\(421\) 0.669464 + 2.06040i 0.0326277 + 0.100418i 0.966044 0.258377i \(-0.0831878\pi\)
−0.933416 + 0.358795i \(0.883188\pi\)
\(422\) 2.13007 6.55568i 0.103690 0.319125i
\(423\) 0 0
\(424\) 0.899954 + 0.653855i 0.0437056 + 0.0317540i
\(425\) −22.7515 + 70.0220i −1.10361 + 3.39657i
\(426\) 0 0
\(427\) −15.9245 + 11.5698i −0.770639 + 0.559902i
\(428\) −25.2794 −1.22193
\(429\) 0 0
\(430\) 0.585035 0.0282129
\(431\) −26.3798 + 19.1661i −1.27067 + 0.923197i −0.999229 0.0392570i \(-0.987501\pi\)
−0.271443 + 0.962454i \(0.587501\pi\)
\(432\) 0 0
\(433\) −7.68894 + 23.6641i −0.369507 + 1.13723i 0.577604 + 0.816317i \(0.303988\pi\)
−0.947110 + 0.320908i \(0.896012\pi\)
\(434\) 3.26063 + 2.36899i 0.156515 + 0.113715i
\(435\) 0 0
\(436\) −5.69832 + 17.5376i −0.272900 + 0.839899i
\(437\) 4.02665 + 12.3928i 0.192621 + 0.592827i
\(438\) 0 0
\(439\) −17.6523 −0.842500 −0.421250 0.906945i \(-0.638409\pi\)
−0.421250 + 0.906945i \(0.638409\pi\)
\(440\) 12.9980 + 10.2982i 0.619654 + 0.490946i
\(441\) 0 0
\(442\) 2.27336 1.65169i 0.108133 0.0785631i
\(443\) 9.04672 + 27.8429i 0.429822 + 1.32286i 0.898300 + 0.439382i \(0.144803\pi\)
−0.468478 + 0.883475i \(0.655197\pi\)
\(444\) 0 0
\(445\) 34.0421 + 24.7330i 1.61375 + 1.17246i
\(446\) −3.35510 2.43762i −0.158868 0.115425i
\(447\) 0 0
\(448\) −6.00746 18.4890i −0.283826 0.873525i
\(449\) 11.9284 8.66649i 0.562936 0.408997i −0.269596 0.962973i \(-0.586890\pi\)
0.832532 + 0.553976i \(0.186890\pi\)
\(450\) 0 0
\(451\) 30.8798 + 1.28855i 1.45407 + 0.0606756i
\(452\) −11.2771 −0.530432
\(453\) 0 0
\(454\) 2.24233 + 6.90118i 0.105238 + 0.323888i
\(455\) −5.90635 + 18.1779i −0.276894 + 0.852192i
\(456\) 0 0
\(457\) 8.21662 + 5.96973i 0.384357 + 0.279252i 0.763139 0.646234i \(-0.223657\pi\)
−0.378782 + 0.925486i \(0.623657\pi\)
\(458\) 2.44602 7.52809i 0.114295 0.351764i
\(459\) 0 0
\(460\) 23.3107 16.9362i 1.08687 0.789655i
\(461\) 4.17865 0.194619 0.0973095 0.995254i \(-0.468976\pi\)
0.0973095 + 0.995254i \(0.468976\pi\)
\(462\) 0 0
\(463\) −9.50797 −0.441873 −0.220937 0.975288i \(-0.570911\pi\)
−0.220937 + 0.975288i \(0.570911\pi\)
\(464\) −0.205900 + 0.149595i −0.00955868 + 0.00694479i
\(465\) 0 0
\(466\) 1.48777 4.57889i 0.0689197 0.212113i
\(467\) 28.2253 + 20.5069i 1.30611 + 0.948944i 0.999995 0.00305082i \(-0.000971107\pi\)
0.306114 + 0.951995i \(0.400971\pi\)
\(468\) 0 0
\(469\) −6.16942 + 18.9875i −0.284877 + 0.876763i
\(470\) −0.869917 2.67733i −0.0401263 0.123496i
\(471\) 0 0
\(472\) −9.89008 −0.455228
\(473\) 0.527299 1.41866i 0.0242452 0.0652302i
\(474\) 0 0
\(475\) 32.2703 23.4458i 1.48066 1.07577i
\(476\) 12.8797 + 39.6396i 0.590340 + 1.81688i
\(477\) 0 0
\(478\) 6.37879 + 4.63446i 0.291759 + 0.211975i
\(479\) −8.58551 6.23774i −0.392282 0.285010i 0.374108 0.927385i \(-0.377949\pi\)
−0.766390 + 0.642376i \(0.777949\pi\)
\(480\) 0 0
\(481\) −0.527864 1.62460i −0.0240685 0.0740753i
\(482\) 2.86910 2.08452i 0.130684 0.0949473i
\(483\) 0 0
\(484\) 17.8737 10.8337i 0.812442 0.492441i
\(485\) 33.4449 1.51865
\(486\) 0 0
\(487\) −10.4706 32.2252i −0.474468 1.46026i −0.846673 0.532113i \(-0.821398\pi\)
0.372205 0.928151i \(-0.378602\pi\)
\(488\) −2.19897 + 6.76775i −0.0995429 + 0.306361i
\(489\) 0 0
\(490\) 4.80283 + 3.48946i 0.216970 + 0.157638i
\(491\) 5.40461 16.6337i 0.243907 0.750667i −0.751908 0.659268i \(-0.770866\pi\)
0.995814 0.0913990i \(-0.0291339\pi\)
\(492\) 0 0
\(493\) 0.388337 0.282143i 0.0174898 0.0127071i
\(494\) −1.52240 −0.0684960
\(495\) 0 0
\(496\) −12.7492 −0.572457
\(497\) −26.1379 + 18.9903i −1.17244 + 0.851831i
\(498\) 0 0
\(499\) −1.82716 + 5.62341i −0.0817948 + 0.251739i −0.983588 0.180429i \(-0.942251\pi\)
0.901793 + 0.432168i \(0.142251\pi\)
\(500\) −40.1876 29.1980i −1.79724 1.30577i
\(501\) 0 0
\(502\) −0.450253 + 1.38574i −0.0200958 + 0.0618485i
\(503\) 9.46873 + 29.1417i 0.422190 + 1.29937i 0.905660 + 0.424005i \(0.139376\pi\)
−0.483470 + 0.875361i \(0.660624\pi\)
\(504\) 0 0
\(505\) −45.2602 −2.01405
\(506\) 1.05501 + 3.77595i 0.0469010 + 0.167861i
\(507\) 0 0
\(508\) −10.4137 + 7.56603i −0.462035 + 0.335688i
\(509\) −12.4985 38.4665i −0.553987 1.70500i −0.698604 0.715508i \(-0.746195\pi\)
0.144618 0.989488i \(-0.453805\pi\)
\(510\) 0 0
\(511\) −38.7834 28.1778i −1.71568 1.24651i
\(512\) −16.5812 12.0470i −0.732793 0.532406i
\(513\) 0 0
\(514\) 0.649183 + 1.99798i 0.0286342 + 0.0881271i
\(515\) 25.8518 18.7824i 1.13917 0.827653i
\(516\) 0 0
\(517\) −7.27638 0.303629i −0.320015 0.0133536i
\(518\) −1.33262 −0.0585517
\(519\) 0 0
\(520\) 2.13525 + 6.57164i 0.0936371 + 0.288185i
\(521\) 8.37094 25.7631i 0.366738 1.12870i −0.582148 0.813083i \(-0.697788\pi\)
0.948886 0.315620i \(-0.102212\pi\)
\(522\) 0 0
\(523\) −12.4413 9.03910i −0.544018 0.395252i 0.281557 0.959544i \(-0.409149\pi\)
−0.825575 + 0.564292i \(0.809149\pi\)
\(524\) 5.31590 16.3607i 0.232226 0.714719i
\(525\) 0 0
\(526\) 0.0654798 0.0475738i 0.00285505 0.00207432i
\(527\) 24.0456 1.04744
\(528\) 0 0
\(529\) −9.01756 −0.392068
\(530\) 0.935806 0.679903i 0.0406488 0.0295331i
\(531\) 0 0
\(532\) 6.97787 21.4757i 0.302529 0.931089i
\(533\) 10.4186 + 7.56958i 0.451281 + 0.327875i
\(534\) 0 0
\(535\) −16.6732 + 51.3149i −0.720846 + 2.21853i
\(536\) 2.23036 + 6.86434i 0.0963369 + 0.296494i
\(537\) 0 0
\(538\) −8.61060 −0.371229
\(539\) 12.7905 8.50139i 0.550927 0.366181i
\(540\) 0 0
\(541\) −19.3592 + 14.0653i −0.832319 + 0.604715i −0.920214 0.391415i \(-0.871986\pi\)
0.0878957 + 0.996130i \(0.471986\pi\)
\(542\) 0.303866 + 0.935204i 0.0130522 + 0.0401704i
\(543\) 0 0
\(544\) 18.4415 + 13.3985i 0.790673 + 0.574458i
\(545\) 31.8413 + 23.1341i 1.36393 + 0.990955i
\(546\) 0 0
\(547\) −6.79463 20.9117i −0.290518 0.894121i −0.984690 0.174313i \(-0.944230\pi\)
0.694173 0.719808i \(-0.255770\pi\)
\(548\) 15.6892 11.3989i 0.670208 0.486935i
\(549\) 0 0
\(550\) 9.99501 6.64332i 0.426189 0.283272i
\(551\) −0.260057 −0.0110788
\(552\) 0 0
\(553\) −11.5822 35.6463i −0.492525 1.51584i
\(554\) 0.695125 2.13937i 0.0295330 0.0908933i
\(555\) 0 0
\(556\) 10.8672 + 7.89549i 0.460872 + 0.334843i
\(557\) 11.4341 35.1905i 0.484477 1.49107i −0.348259 0.937398i \(-0.613227\pi\)
0.832736 0.553670i \(-0.186773\pi\)
\(558\) 0 0
\(559\) 0.510197 0.370680i 0.0215791 0.0156781i
\(560\) −47.1673 −1.99318
\(561\) 0 0
\(562\) 0.601369 0.0253672
\(563\) −13.5355 + 9.83411i −0.570453 + 0.414458i −0.835270 0.549840i \(-0.814689\pi\)
0.264817 + 0.964299i \(0.414689\pi\)
\(564\) 0 0
\(565\) −7.43790 + 22.8915i −0.312915 + 0.963053i
\(566\) −3.47385 2.52390i −0.146017 0.106088i
\(567\) 0 0
\(568\) −3.60932 + 11.1084i −0.151444 + 0.466096i
\(569\) 11.8830 + 36.5721i 0.498162 + 1.53318i 0.811971 + 0.583698i \(0.198395\pi\)
−0.313809 + 0.949486i \(0.601605\pi\)
\(570\) 0 0
\(571\) 22.4984 0.941530 0.470765 0.882259i \(-0.343978\pi\)
0.470765 + 0.882259i \(0.343978\pi\)
\(572\) 8.70130 + 0.363088i 0.363820 + 0.0151815i
\(573\) 0 0
\(574\) 8.12785 5.90523i 0.339250 0.246480i
\(575\) −13.2266 40.7074i −0.551589 1.69762i
\(576\) 0 0
\(577\) 32.9059 + 23.9076i 1.36989 + 0.995284i 0.997746 + 0.0671101i \(0.0213779\pi\)
0.372146 + 0.928174i \(0.378622\pi\)
\(578\) −6.23317 4.52866i −0.259266 0.188368i
\(579\) 0 0
\(580\) 0.177699 + 0.546903i 0.00737857 + 0.0227089i
\(581\) −3.77491 + 2.74263i −0.156610 + 0.113784i
\(582\) 0 0
\(583\) −0.805259 2.88206i −0.0333504 0.119363i
\(584\) −17.3308 −0.717155
\(585\) 0 0
\(586\) −2.65029 8.15676i −0.109483 0.336953i
\(587\) −7.38326 + 22.7233i −0.304740 + 0.937892i 0.675034 + 0.737786i \(0.264129\pi\)
−0.979774 + 0.200106i \(0.935871\pi\)
\(588\) 0 0
\(589\) −10.5393 7.65721i −0.434262 0.315510i
\(590\) −3.17796 + 9.78074i −0.130834 + 0.402667i
\(591\) 0 0
\(592\) 3.41037 2.47778i 0.140165 0.101836i
\(593\) −36.6237 −1.50395 −0.751977 0.659190i \(-0.770900\pi\)
−0.751977 + 0.659190i \(0.770900\pi\)
\(594\) 0 0
\(595\) 88.9596 3.64699
\(596\) 6.51807 4.73566i 0.266991 0.193980i
\(597\) 0 0
\(598\) −0.504815 + 1.55366i −0.0206434 + 0.0635339i
\(599\) −25.1879 18.3001i −1.02915 0.747720i −0.0610100 0.998137i \(-0.519432\pi\)
−0.968138 + 0.250417i \(0.919432\pi\)
\(600\) 0 0
\(601\) 6.46577 19.8996i 0.263744 0.811721i −0.728236 0.685326i \(-0.759660\pi\)
0.991980 0.126394i \(-0.0403405\pi\)
\(602\) −0.152030 0.467899i −0.00619626 0.0190701i
\(603\) 0 0
\(604\) −21.0268 −0.855568
\(605\) −10.2027 43.4274i −0.414798 1.76558i
\(606\) 0 0
\(607\) −12.7376 + 9.25441i −0.517003 + 0.375625i −0.815474 0.578794i \(-0.803524\pi\)
0.298471 + 0.954419i \(0.403524\pi\)
\(608\) −3.81626 11.7453i −0.154770 0.476333i
\(609\) 0 0
\(610\) 5.98634 + 4.34933i 0.242380 + 0.176099i
\(611\) −2.45500 1.78366i −0.0993188 0.0721593i
\(612\) 0 0
\(613\) −0.750717 2.31047i −0.0303212 0.0933190i 0.934751 0.355304i \(-0.115623\pi\)
−0.965072 + 0.261985i \(0.915623\pi\)
\(614\) 0.558074 0.405464i 0.0225220 0.0163632i
\(615\) 0 0
\(616\) 4.85857 13.0717i 0.195757 0.526672i
\(617\) 42.9992 1.73108 0.865542 0.500837i \(-0.166974\pi\)
0.865542 + 0.500837i \(0.166974\pi\)
\(618\) 0 0
\(619\) 10.6058 + 32.6411i 0.426281 + 1.31196i 0.901762 + 0.432232i \(0.142274\pi\)
−0.475481 + 0.879726i \(0.657726\pi\)
\(620\) −8.90164 + 27.3964i −0.357498 + 1.10027i
\(621\) 0 0
\(622\) 1.96882 + 1.43043i 0.0789425 + 0.0573551i
\(623\) 10.9346 33.6534i 0.438087 1.34829i
\(624\) 0 0
\(625\) −39.4728 + 28.6787i −1.57891 + 1.14715i
\(626\) −4.26631 −0.170516
\(627\) 0 0
\(628\) 21.4514 0.856003
\(629\) −6.43211 + 4.67320i −0.256465 + 0.186333i
\(630\) 0 0
\(631\) −4.45465 + 13.7100i −0.177337 + 0.545786i −0.999732 0.0231295i \(-0.992637\pi\)
0.822396 + 0.568916i \(0.192637\pi\)
\(632\) −10.9622 7.96449i −0.436052 0.316810i
\(633\) 0 0
\(634\) 2.26196 6.96159i 0.0898338 0.276480i
\(635\) 8.48987 + 26.1291i 0.336910 + 1.03690i
\(636\) 0 0
\(637\) 6.39939 0.253553
\(638\) −0.0781766 0.00326216i −0.00309504 0.000129150i
\(639\) 0 0
\(640\) −29.1671 + 21.1911i −1.15293 + 0.837653i
\(641\) −9.59782 29.5391i −0.379091 1.16672i −0.940677 0.339304i \(-0.889808\pi\)
0.561586 0.827419i \(-0.310192\pi\)
\(642\) 0 0
\(643\) 4.29223 + 3.11849i 0.169269 + 0.122981i 0.669194 0.743087i \(-0.266639\pi\)
−0.499926 + 0.866068i \(0.666639\pi\)
\(644\) −19.6029 14.2423i −0.772461 0.561225i
\(645\) 0 0
\(646\) 2.18961 + 6.73892i 0.0861490 + 0.265139i
\(647\) 10.3325 7.50697i 0.406211 0.295130i −0.365855 0.930672i \(-0.619223\pi\)
0.772066 + 0.635542i \(0.219223\pi\)
\(648\) 0 0
\(649\) 20.8532 + 16.5218i 0.818561 + 0.648538i
\(650\) 5.00073 0.196145
\(651\) 0 0
\(652\) −7.26886 22.3712i −0.284670 0.876125i
\(653\) 0.580580 1.78684i 0.0227199 0.0699246i −0.939054 0.343770i \(-0.888296\pi\)
0.961774 + 0.273846i \(0.0882958\pi\)
\(654\) 0 0
\(655\) −29.7045 21.5815i −1.16065 0.843261i
\(656\) −9.82065 + 30.2248i −0.383432 + 1.18008i
\(657\) 0 0
\(658\) −1.91521 + 1.39148i −0.0746628 + 0.0542457i
\(659\) 24.3868 0.949976 0.474988 0.879992i \(-0.342452\pi\)
0.474988 + 0.879992i \(0.342452\pi\)
\(660\) 0 0
\(661\) 46.3444 1.80259 0.901295 0.433206i \(-0.142618\pi\)
0.901295 + 0.433206i \(0.142618\pi\)
\(662\) −4.45945 + 3.23998i −0.173322 + 0.125926i
\(663\) 0 0
\(664\) −0.521269 + 1.60430i −0.0202292 + 0.0622589i
\(665\) −38.9913 28.3288i −1.51202 1.09854i
\(666\) 0 0
\(667\) −0.0862326 + 0.265397i −0.00333894 + 0.0102762i
\(668\) −2.93800 9.04224i −0.113675 0.349855i
\(669\) 0 0
\(670\) 7.50514 0.289949
\(671\) 15.9424 10.5963i 0.615448 0.409066i
\(672\) 0 0
\(673\) −1.67073 + 1.21386i −0.0644019 + 0.0467907i −0.619520 0.784981i \(-0.712673\pi\)
0.555119 + 0.831771i \(0.312673\pi\)
\(674\) 0.929218 + 2.85984i 0.0357921 + 0.110157i
\(675\) 0 0
\(676\) −17.0476 12.3858i −0.655678 0.476378i
\(677\) −35.7836 25.9983i −1.37527 0.999195i −0.997304 0.0733768i \(-0.976622\pi\)
−0.377969 0.925818i \(-0.623378\pi\)
\(678\) 0 0
\(679\) −8.69112 26.7485i −0.333535 1.02651i
\(680\) 26.0184 18.9035i 0.997761 0.724915i
\(681\) 0 0
\(682\) −3.07219 2.43407i −0.117640 0.0932053i
\(683\) −9.13079 −0.349380 −0.174690 0.984623i \(-0.555892\pi\)
−0.174690 + 0.984623i \(0.555892\pi\)
\(684\) 0 0
\(685\) −12.7907 39.3657i −0.488707 1.50409i
\(686\) −0.789362 + 2.42941i −0.0301380 + 0.0927551i
\(687\) 0 0
\(688\) 1.25905 + 0.914753i 0.0480008 + 0.0348746i
\(689\) 0.385310 1.18586i 0.0146791 0.0451777i
\(690\) 0 0
\(691\) −35.0395 + 25.4577i −1.33296 + 0.968455i −0.333293 + 0.942823i \(0.608160\pi\)
−0.999671 + 0.0256317i \(0.991840\pi\)
\(692\) −12.3432 −0.469217
\(693\) 0 0
\(694\) −7.06644 −0.268238
\(695\) 23.1946 16.8519i 0.879822 0.639228i
\(696\) 0 0
\(697\) 18.5221 57.0053i 0.701576 2.15923i
\(698\) 6.28978 + 4.56979i 0.238072 + 0.172969i
\(699\) 0 0
\(700\) −22.9207 + 70.5426i −0.866321 + 2.66626i
\(701\) −5.97820 18.3990i −0.225794 0.694921i −0.998210 0.0598049i \(-0.980952\pi\)
0.772417 0.635116i \(-0.219048\pi\)
\(702\) 0 0
\(703\) 4.30738 0.162456
\(704\) 5.08759 + 18.2087i 0.191746 + 0.686268i
\(705\) 0 0
\(706\) 1.96059 1.42445i 0.0737877 0.0536099i
\(707\) 11.7615 + 36.1982i 0.442337 + 1.36137i
\(708\) 0 0
\(709\) 3.24539 + 2.35791i 0.121883 + 0.0885533i 0.647057 0.762442i \(-0.276000\pi\)
−0.525174 + 0.850995i \(0.676000\pi\)
\(710\) 9.82578 + 7.13885i 0.368755 + 0.267916i
\(711\) 0 0
\(712\) −3.95308 12.1663i −0.148148 0.455952i
\(713\) −11.3092 + 8.21660i −0.423532 + 0.307714i
\(714\) 0 0
\(715\) 6.47603 17.4233i 0.242190 0.651596i
\(716\) −23.3527 −0.872732
\(717\) 0 0
\(718\) 1.85366 + 5.70497i 0.0691778 + 0.212907i
\(719\) 1.76766 5.44030i 0.0659227 0.202889i −0.912669 0.408699i \(-0.865983\pi\)
0.978592 + 0.205810i \(0.0659827\pi\)
\(720\) 0 0
\(721\) −21.7398 15.7949i −0.809632 0.588232i
\(722\) −0.669809 + 2.06146i −0.0249277 + 0.0767196i
\(723\) 0 0
\(724\) −9.23508 + 6.70968i −0.343219 + 0.249363i
\(725\) 0.854226 0.0317252
\(726\) 0 0
\(727\) 26.1198 0.968730 0.484365 0.874866i \(-0.339051\pi\)
0.484365 + 0.874866i \(0.339051\pi\)
\(728\) 4.70099 3.41547i 0.174230 0.126586i
\(729\) 0 0
\(730\) −5.56887 + 17.1392i −0.206113 + 0.634352i
\(731\) −2.37462 1.72526i −0.0878285 0.0638111i
\(732\) 0 0
\(733\) −3.61891 + 11.1379i −0.133668 + 0.411386i −0.995380 0.0960099i \(-0.969392\pi\)
0.861713 + 0.507396i \(0.169392\pi\)
\(734\) −2.97640 9.16041i −0.109861 0.338117i
\(735\) 0 0
\(736\) −13.2519 −0.488470
\(737\) 6.76448 18.1994i 0.249173 0.670383i
\(738\) 0 0
\(739\) 10.0031 7.26770i 0.367971 0.267347i −0.388398 0.921492i \(-0.626971\pi\)
0.756369 + 0.654145i \(0.226971\pi\)
\(740\) −2.94327 9.05846i −0.108197 0.332996i
\(741\) 0 0
\(742\) −0.786955 0.571757i −0.0288900 0.0209898i
\(743\) −15.3240 11.1335i −0.562182 0.408449i 0.270075 0.962839i \(-0.412952\pi\)
−0.832257 + 0.554390i \(0.812952\pi\)
\(744\) 0 0
\(745\) −5.31390 16.3545i −0.194686 0.599183i
\(746\) −7.50273 + 5.45105i −0.274694 + 0.199577i
\(747\) 0 0
\(748\) −10.9075 39.0387i −0.398819 1.42740i
\(749\) 45.3734 1.65791
\(750\) 0 0
\(751\) −7.64734 23.5361i −0.279056 0.858845i −0.988118 0.153699i \(-0.950881\pi\)
0.709062 0.705146i \(-0.249119\pi\)
\(752\) 2.31409 7.12205i 0.0843864 0.259715i
\(753\) 0 0
\(754\) −0.0263763 0.0191635i −0.000960567 0.000697893i
\(755\) −13.8683 + 42.6824i −0.504721 + 1.55337i
\(756\) 0 0
\(757\) −12.1358 + 8.81721i −0.441085 + 0.320467i −0.786066 0.618143i \(-0.787885\pi\)
0.344981 + 0.938610i \(0.387885\pi\)
\(758\) 11.4059 0.414279
\(759\) 0 0
\(760\) −17.4237 −0.632024
\(761\) −20.8422 + 15.1428i −0.755531 + 0.548925i −0.897536 0.440941i \(-0.854645\pi\)
0.142005 + 0.989866i \(0.454645\pi\)
\(762\) 0 0
\(763\) 10.2277 31.4778i 0.370269 1.13957i
\(764\) −3.17356 2.30572i −0.114815 0.0834182i
\(765\) 0 0
\(766\) 2.09590 6.45053i 0.0757281 0.233067i
\(767\) 3.42568 + 10.5432i 0.123694 + 0.380692i
\(768\) 0 0
\(769\) −0.639008 −0.0230432 −0.0115216 0.999934i \(-0.503668\pi\)
−0.0115216 + 0.999934i \(0.503668\pi\)
\(770\) −11.3660 9.00514i −0.409601 0.324523i
\(771\) 0 0
\(772\) 16.7750 12.1877i 0.603745 0.438647i
\(773\) 7.97807 + 24.5540i 0.286951 + 0.883145i 0.985807 + 0.167883i \(0.0536929\pi\)
−0.698856 + 0.715263i \(0.746307\pi\)
\(774\) 0 0
\(775\) 34.6190 + 25.1522i 1.24355 + 0.903493i
\(776\) −8.22587 5.97644i −0.295291 0.214542i
\(777\) 0 0
\(778\) 0.00484068 + 0.0148981i 0.000173547 + 0.000534122i
\(779\) −26.2714 + 19.0873i −0.941272 + 0.683874i
\(780\) 0 0
\(781\) 26.1673 17.3924i 0.936338 0.622350i
\(782\) 7.60336 0.271895
\(783\) 0 0
\(784\) 4.88006 + 15.0193i 0.174288 + 0.536403i
\(785\) 14.1484 43.5443i 0.504978 1.55416i
\(786\) 0 0
\(787\) 39.4754 + 28.6806i 1.40715 + 1.02235i 0.993730 + 0.111810i \(0.0356647\pi\)
0.413417 + 0.910542i \(0.364335\pi\)
\(788\) 11.9887 36.8975i 0.427081 1.31442i
\(789\) 0 0
\(790\) −11.3989 + 8.28178i −0.405555 + 0.294653i
\(791\) 20.2410 0.719687
\(792\) 0 0
\(793\) 7.97632 0.283248
\(794\) −0.110710 + 0.0804352i −0.00392894 + 0.00285454i
\(795\) 0 0
\(796\) −3.27062 + 10.0659i −0.115924 + 0.356778i
\(797\) 42.2081 + 30.6660i 1.49509 + 1.08625i 0.972287 + 0.233791i \(0.0751130\pi\)
0.522801 + 0.852455i \(0.324887\pi\)
\(798\) 0 0
\(799\) −4.36448 + 13.4325i −0.154404 + 0.475207i
\(800\) 12.5355 + 38.5804i 0.443199 + 1.36402i
\(801\) 0 0
\(802\) −6.06474 −0.214153
\(803\) 36.5420 + 28.9519i 1.28954 + 1.02169i
\(804\) 0 0
\(805\) −41.8397 + 30.3983i −1.47466 + 1.07140i
\(806\) −0.504687 1.55327i −0.0177768 0.0547115i
\(807\) 0 0
\(808\) 11.1319 + 8.08778i 0.391618 + 0.284527i
\(809\) 25.5517 + 18.5644i 0.898351 + 0.652690i 0.938042 0.346522i \(-0.112637\pi\)
−0.0396909 + 0.999212i \(0.512637\pi\)
\(810\) 0 0
\(811\) 8.82436 + 27.1586i 0.309865 + 0.953667i 0.977817 + 0.209462i \(0.0671714\pi\)
−0.667951 + 0.744205i \(0.732829\pi\)
\(812\) 0.391224 0.284241i 0.0137293 0.00997490i
\(813\) 0 0
\(814\) 1.29486 + 0.0540318i 0.0453847 + 0.00189381i
\(815\) −50.2057 −1.75863
\(816\) 0 0
\(817\) 0.491401 + 1.51238i 0.0171919 + 0.0529114i
\(818\) −3.09511 + 9.52577i −0.108218 + 0.333061i
\(819\) 0 0
\(820\) 58.0924 + 42.2066i 2.02868 + 1.47392i
\(821\) 14.8884 45.8218i 0.519609 1.59919i −0.255129 0.966907i \(-0.582118\pi\)
0.774737 0.632283i \(-0.217882\pi\)
\(822\) 0 0
\(823\) −21.9250 + 15.9294i −0.764258 + 0.555266i −0.900213 0.435449i \(-0.856590\pi\)
0.135956 + 0.990715i \(0.456590\pi\)
\(824\) −9.71467 −0.338427
\(825\) 0 0
\(826\) 8.64828 0.300912
\(827\) 2.48207 1.80333i 0.0863100 0.0627079i −0.543793 0.839219i \(-0.683012\pi\)
0.630103 + 0.776511i \(0.283012\pi\)
\(828\) 0 0
\(829\) 8.89545 27.3774i 0.308952 0.950855i −0.669221 0.743063i \(-0.733372\pi\)
0.978173 0.207792i \(-0.0666278\pi\)
\(830\) 1.41907 + 1.03101i 0.0492565 + 0.0357870i
\(831\) 0 0
\(832\) −2.43437 + 7.49221i −0.0843965 + 0.259746i
\(833\) −9.20400 28.3270i −0.318900 0.981472i
\(834\) 0 0
\(835\) −20.2927 −0.702256
\(836\) −7.65090 + 20.5843i −0.264612 + 0.711921i
\(837\) 0 0
\(838\) 2.72306 1.97842i 0.0940666 0.0683434i
\(839\) 10.6458 + 32.7643i 0.367533 + 1.13115i 0.948380 + 0.317137i \(0.102722\pi\)
−0.580847 + 0.814013i \(0.697278\pi\)
\(840\) 0 0
\(841\) 23.4570 + 17.0425i 0.808862 + 0.587672i
\(842\) −0.554068 0.402554i −0.0190944 0.0138729i
\(843\) 0 0
\(844\) −12.8027 39.4026i −0.440687 1.35629i
\(845\) −36.3859 + 26.4359i −1.25171 + 0.909424i
\(846\) 0 0
\(847\) −32.0811 + 19.4451i −1.10232 + 0.668142i
\(848\) 3.07703 0.105666
\(849\) 0 0
\(850\) −7.19236 22.1358i −0.246696 0.759252i
\(851\) 1.42829 4.39582i 0.0489611 0.150687i
\(852\) 0 0
\(853\) −32.3254 23.4858i −1.10680 0.804139i −0.124645 0.992201i \(-0.539779\pi\)
−0.982157 + 0.188063i \(0.939779\pi\)
\(854\) 1.92287 5.91799i 0.0657993 0.202509i
\(855\) 0 0
\(856\) 13.2706 9.64162i 0.453578 0.329544i
\(857\) 5.82947 0.199131 0.0995654 0.995031i \(-0.468255\pi\)
0.0995654 + 0.995031i \(0.468255\pi\)
\(858\) 0 0
\(859\) 13.1832 0.449804 0.224902 0.974381i \(-0.427794\pi\)
0.224902 + 0.974381i \(0.427794\pi\)
\(860\) 2.84477 2.06684i 0.0970058 0.0704788i
\(861\) 0 0
\(862\) 3.18535 9.80351i 0.108494 0.333909i
\(863\) −15.5600 11.3050i −0.529668 0.384826i 0.290565 0.956855i \(-0.406157\pi\)
−0.820234 + 0.572029i \(0.806157\pi\)
\(864\) 0 0
\(865\) −8.14102 + 25.0555i −0.276803 + 0.851911i
\(866\) −2.43068 7.48085i −0.0825977 0.254210i
\(867\) 0 0
\(868\) 24.2243 0.822227
\(869\) 9.80872 + 35.1059i 0.332738 + 1.19089i
\(870\) 0 0
\(871\) 6.54508 4.75528i 0.221772 0.161127i
\(872\) −3.69752 11.3798i −0.125214 0.385369i
\(873\) 0 0
\(874\) −3.33258 2.42126i −0.112726 0.0819003i
\(875\) 72.1316 + 52.4067i 2.43849 + 1.77167i
\(876\) 0 0
\(877\) 5.49723 + 16.9187i 0.185628 + 0.571305i 0.999959 0.00909649i \(-0.00289554\pi\)
−0.814330 + 0.580402i \(0.802896\pi\)
\(878\) 4.51461 3.28006i 0.152361 0.110697i
\(879\) 0 0
\(880\) 45.8309 + 1.91243i 1.54496 + 0.0644681i
\(881\) −9.68529 −0.326306 −0.163153 0.986601i \(-0.552166\pi\)
−0.163153 + 0.986601i \(0.552166\pi\)
\(882\) 0 0
\(883\) −13.4731 41.4658i −0.453404 1.39544i −0.872998 0.487723i \(-0.837827\pi\)
0.419594 0.907712i \(-0.362173\pi\)
\(884\) 5.21917 16.0629i 0.175540 0.540255i
\(885\) 0 0
\(886\) −7.48733 5.43986i −0.251542 0.182756i
\(887\) −13.8884 + 42.7442i −0.466328 + 1.43521i 0.390977 + 0.920400i \(0.372137\pi\)
−0.857305 + 0.514809i \(0.827863\pi\)
\(888\) 0 0
\(889\) 18.6913 13.5801i 0.626888 0.455461i
\(890\) −13.3021 −0.445886
\(891\) 0 0
\(892\) −24.9261 −0.834589
\(893\) 6.19049 4.49766i 0.207157 0.150508i
\(894\) 0 0
\(895\) −15.4024 + 47.4038i −0.514846 + 1.58453i
\(896\) 24.5277 + 17.8204i 0.819414 + 0.595339i
\(897\) 0 0
\(898\) −1.44035 + 4.43294i −0.0480651 + 0.147929i
\(899\) −0.0862108 0.265330i −0.00287529 0.00884924i
\(900\) 0 0
\(901\) −5.80341 −0.193340
\(902\) −8.13699 + 5.40836i −0.270932 + 0.180079i
\(903\) 0 0
\(904\) 5.91998 4.30112i 0.196896 0.143053i
\(905\) 7.52896 + 23.1717i 0.250271 + 0.770255i
\(906\) 0 0
\(907\) 24.4120 + 17.7364i 0.810589 + 0.588927i 0.914001 0.405711i \(-0.132976\pi\)
−0.103413 + 0.994639i \(0.532976\pi\)
\(908\) 35.2843 + 25.6356i 1.17095 + 0.850747i
\(909\) 0 0
\(910\) −1.86715 5.74650i −0.0618955 0.190495i
\(911\) −10.7648 + 7.82112i −0.356655 + 0.259125i −0.751656 0.659556i \(-0.770744\pi\)
0.395000 + 0.918681i \(0.370744\pi\)
\(912\) 0 0
\(913\) 3.77915 2.51186i 0.125072 0.0831306i
\(914\) −3.21068 −0.106200
\(915\) 0 0
\(916\) −14.7017 45.2472i −0.485759 1.49501i
\(917\) −9.54136 + 29.3653i −0.315084 + 0.969727i
\(918\) 0 0
\(919\) −31.6854 23.0208i −1.04520 0.759385i −0.0739092 0.997265i \(-0.523547\pi\)
−0.971295 + 0.237880i \(0.923547\pi\)
\(920\) −5.77755 + 17.7815i −0.190480 + 0.586238i
\(921\) 0 0
\(922\) −1.06870 + 0.776453i −0.0351956 + 0.0255711i
\(923\) 13.0921 0.430931
\(924\) 0 0
\(925\) −14.1487 −0.465208
\(926\) 2.43168 1.76672i 0.0799099 0.0580580i
\(927\) 0 0
\(928\) 0.0817270 0.251530i 0.00268282 0.00825687i
\(929\) 25.9588 + 18.8601i 0.851679 + 0.618781i 0.925609 0.378482i \(-0.123554\pi\)
−0.0739292 + 0.997263i \(0.523554\pi\)
\(930\) 0 0
\(931\) −4.98648 + 15.3468i −0.163425 + 0.502971i
\(932\) −8.94220 27.5213i −0.292911 0.901489i
\(933\) 0 0
\(934\) −11.0291 −0.360884
\(935\) −86.4389 3.60693i −2.82686 0.117959i
\(936\) 0 0
\(937\) 4.15646 3.01984i 0.135786 0.0986540i −0.517819 0.855490i \(-0.673256\pi\)
0.653605 + 0.756836i \(0.273256\pi\)
\(938\) −1.95032 6.00246i −0.0636801 0.195987i
\(939\) 0 0
\(940\) −13.6886 9.94539i −0.446475 0.324383i
\(941\) −18.2632 13.2690i −0.595364 0.432557i 0.248866 0.968538i \(-0.419942\pi\)
−0.844230 + 0.535981i \(0.819942\pi\)
\(942\) 0 0
\(943\) 10.7679 + 33.1401i 0.350650 + 1.07919i
\(944\) −22.1323 + 16.0801i −0.720345 + 0.523362i
\(945\) 0 0
\(946\) 0.128751 + 0.460805i 0.00418604 + 0.0149821i
\(947\) −37.5922 −1.22158 −0.610792 0.791791i \(-0.709149\pi\)
−0.610792 + 0.791791i \(0.709149\pi\)
\(948\) 0 0
\(949\) 6.00298 + 18.4753i 0.194865 + 0.599732i
\(950\) −3.89663 + 11.9926i −0.126423 + 0.389091i
\(951\) 0 0
\(952\) −21.8799 15.8967i −0.709131 0.515214i
\(953\) −13.3423 + 41.0634i −0.432199 + 1.33017i 0.463730 + 0.885976i \(0.346511\pi\)
−0.895930 + 0.444196i \(0.853489\pi\)
\(954\) 0 0
\(955\) −6.77354 + 4.92127i −0.219187 + 0.159248i
\(956\) 47.3902 1.53271
\(957\) 0 0
\(958\) 3.35482 0.108389
\(959\) −28.1601 + 20.4595i −0.909336 + 0.660671i
\(960\) 0 0
\(961\) −5.26090 + 16.1914i −0.169706 + 0.522303i
\(962\) 0.436876 + 0.317409i 0.0140854 + 0.0102337i
\(963\) 0 0
\(964\) 6.58684 20.2722i 0.212148 0.652924i
\(965\) −13.6759 42.0901i −0.440243 1.35493i
\(966\) 0 0
\(967\) −19.4808 −0.626460 −0.313230 0.949677i \(-0.601411\pi\)
−0.313230 + 0.949677i \(0.601411\pi\)
\(968\) −5.25090 + 12.5043i −0.168770 + 0.401903i
\(969\) 0 0
\(970\) −8.55357 + 6.21453i −0.274639 + 0.199537i
\(971\) −13.1483 40.4662i −0.421948 1.29862i −0.905887 0.423520i \(-0.860794\pi\)
0.483939 0.875102i \(-0.339206\pi\)
\(972\) 0 0
\(973\) −19.5052 14.1714i −0.625309 0.454314i
\(974\) 8.66578 + 6.29606i 0.277670 + 0.201739i
\(975\) 0 0
\(976\) 6.08260 + 18.7203i 0.194699 + 0.599223i
\(977\) 32.4439 23.5719i 1.03797 0.754132i 0.0680848 0.997680i \(-0.478311\pi\)
0.969889 + 0.243547i \(0.0783112\pi\)
\(978\) 0 0
\(979\) −11.9893 + 32.2565i −0.383180 + 1.03092i
\(980\) 35.6818 1.13981
\(981\) 0 0
\(982\) 1.70854 + 5.25834i 0.0545217 + 0.167800i
\(983\) −0.673401 + 2.07252i −0.0214782 + 0.0661030i −0.961221 0.275779i \(-0.911064\pi\)
0.939743 + 0.341882i \(0.111064\pi\)
\(984\) 0 0
\(985\) −66.9912 48.6719i −2.13452 1.55082i
\(986\) −0.0468915 + 0.144317i −0.00149333 + 0.00459599i
\(987\) 0 0
\(988\) −7.40276 + 5.37842i −0.235513 + 0.171110i
\(989\) 1.70638 0.0542596
\(990\) 0 0
\(991\) −7.93293 −0.251998 −0.125999 0.992030i \(-0.540214\pi\)
−0.125999 + 0.992030i \(0.540214\pi\)
\(992\) 10.7183 7.78728i 0.340306 0.247246i
\(993\) 0 0
\(994\) 3.15614 9.71359i 0.100107 0.308096i
\(995\) 18.2758 + 13.2781i 0.579380 + 0.420944i
\(996\) 0 0
\(997\) 0.623596 1.91923i 0.0197495 0.0607826i −0.940696 0.339251i \(-0.889827\pi\)
0.960446 + 0.278468i \(0.0898266\pi\)
\(998\) −0.577612 1.77771i −0.0182840 0.0562724i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.f.b.190.2 yes 16
3.2 odd 2 inner 297.2.f.b.190.3 yes 16
9.2 odd 6 891.2.n.h.190.2 32
9.4 even 3 891.2.n.h.784.2 32
9.5 odd 6 891.2.n.h.784.3 32
9.7 even 3 891.2.n.h.190.3 32
11.2 odd 10 3267.2.a.bi.1.4 8
11.4 even 5 inner 297.2.f.b.136.2 16
11.9 even 5 3267.2.a.bj.1.5 8
33.2 even 10 3267.2.a.bi.1.5 8
33.20 odd 10 3267.2.a.bj.1.4 8
33.26 odd 10 inner 297.2.f.b.136.3 yes 16
99.4 even 15 891.2.n.h.136.3 32
99.59 odd 30 891.2.n.h.136.2 32
99.70 even 15 891.2.n.h.433.2 32
99.92 odd 30 891.2.n.h.433.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.b.136.2 16 11.4 even 5 inner
297.2.f.b.136.3 yes 16 33.26 odd 10 inner
297.2.f.b.190.2 yes 16 1.1 even 1 trivial
297.2.f.b.190.3 yes 16 3.2 odd 2 inner
891.2.n.h.136.2 32 99.59 odd 30
891.2.n.h.136.3 32 99.4 even 15
891.2.n.h.190.2 32 9.2 odd 6
891.2.n.h.190.3 32 9.7 even 3
891.2.n.h.433.2 32 99.70 even 15
891.2.n.h.433.3 32 99.92 odd 30
891.2.n.h.784.2 32 9.4 even 3
891.2.n.h.784.3 32 9.5 odd 6
3267.2.a.bi.1.4 8 11.2 odd 10
3267.2.a.bi.1.5 8 33.2 even 10
3267.2.a.bj.1.4 8 33.20 odd 10
3267.2.a.bj.1.5 8 11.9 even 5