Properties

Label 297.2.f.c.190.3
Level $297$
Weight $2$
Character 297.190
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 35x^{12} + 108x^{10} + 589x^{8} + 792x^{6} + 465x^{4} + 22x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.3
Root \(0.329643 - 1.01454i\) of defining polynomial
Character \(\chi\) \(=\) 297.190
Dual form 297.2.f.c.136.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.863017 - 0.627019i) q^{2} +(-0.266388 + 0.819857i) q^{4} +(0.993168 + 0.721579i) q^{5} +(-0.473654 + 1.45776i) q^{7} +(0.943455 + 2.90366i) q^{8} +1.30957 q^{10} +(3.00337 - 1.40704i) q^{11} +(-1.89482 + 1.37667i) q^{13} +(0.505269 + 1.55506i) q^{14} +(1.24004 + 0.900943i) q^{16} +(2.87322 + 2.08752i) q^{17} +(-0.884422 - 2.72197i) q^{19} +(-0.856159 + 0.622036i) q^{20} +(1.70972 - 3.09747i) q^{22} +2.29437 q^{23} +(-1.07938 - 3.32198i) q^{25} +(-0.772068 + 2.37618i) q^{26} +(-1.06898 - 0.776656i) q^{28} +(2.56257 - 7.88677i) q^{29} +(-3.91111 + 2.84159i) q^{31} -4.47108 q^{32} +3.78855 q^{34} +(-1.52230 + 1.10602i) q^{35} +(1.24401 - 3.82868i) q^{37} +(-2.47000 - 1.79456i) q^{38} +(-1.15821 + 3.56460i) q^{40} +(1.49582 + 4.60365i) q^{41} -7.52483 q^{43} +(0.353510 + 2.83715i) q^{44} +(1.98008 - 1.43861i) q^{46} +(-2.82775 - 8.70291i) q^{47} +(3.76241 + 2.73355i) q^{49} +(-3.01447 - 2.19014i) q^{50} +(-0.623915 - 1.92021i) q^{52} +(-5.00934 + 3.63950i) q^{53} +(3.99814 + 0.769743i) q^{55} -4.67969 q^{56} +(-2.73361 - 8.41319i) q^{58} +(3.36374 - 10.3525i) q^{59} +(0.496027 + 0.360385i) q^{61} +(-1.59363 + 4.90467i) q^{62} +(-6.33871 + 4.60534i) q^{64} -2.87526 q^{65} +8.65964 q^{67} +(-2.47686 + 1.79954i) q^{68} +(-0.620280 + 1.90903i) q^{70} +(-12.6352 - 9.18000i) q^{71} +(-4.68358 + 14.4146i) q^{73} +(-1.32705 - 4.08424i) q^{74} +2.46722 q^{76} +(0.628562 + 5.04463i) q^{77} +(1.57143 - 1.14171i) q^{79} +(0.581468 + 1.78958i) q^{80} +(4.17749 + 3.03513i) q^{82} +(4.31509 + 3.13509i) q^{83} +(1.34728 + 4.14651i) q^{85} +(-6.49406 + 4.71821i) q^{86} +(6.91910 + 7.39328i) q^{88} +5.84063 q^{89} +(-1.10936 - 3.41426i) q^{91} +(-0.611192 + 1.88106i) q^{92} +(-7.89728 - 5.73771i) q^{94} +(1.08574 - 3.34155i) q^{95} +(6.88134 - 4.99958i) q^{97} +4.96102 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{4} + 8 q^{7} - 12 q^{10} + 8 q^{13} - 2 q^{16} + 10 q^{19} - 24 q^{22} - 16 q^{25} - 30 q^{28} - 6 q^{31} + 32 q^{34} + 12 q^{37} - 40 q^{40} - 80 q^{43} - 12 q^{46} + 40 q^{49} + 12 q^{52}+ \cdots - 46 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.863017 0.627019i 0.610245 0.443369i −0.239255 0.970957i \(-0.576903\pi\)
0.849501 + 0.527587i \(0.176903\pi\)
\(3\) 0 0
\(4\) −0.266388 + 0.819857i −0.133194 + 0.409928i
\(5\) 0.993168 + 0.721579i 0.444158 + 0.322700i 0.787285 0.616589i \(-0.211486\pi\)
−0.343127 + 0.939289i \(0.611486\pi\)
\(6\) 0 0
\(7\) −0.473654 + 1.45776i −0.179024 + 0.550980i −0.999794 0.0202787i \(-0.993545\pi\)
0.820770 + 0.571259i \(0.193545\pi\)
\(8\) 0.943455 + 2.90366i 0.333562 + 1.02660i
\(9\) 0 0
\(10\) 1.30957 0.414121
\(11\) 3.00337 1.40704i 0.905551 0.424238i
\(12\) 0 0
\(13\) −1.89482 + 1.37667i −0.525530 + 0.381820i −0.818683 0.574246i \(-0.805295\pi\)
0.293153 + 0.956065i \(0.405295\pi\)
\(14\) 0.505269 + 1.55506i 0.135039 + 0.415607i
\(15\) 0 0
\(16\) 1.24004 + 0.900943i 0.310010 + 0.225236i
\(17\) 2.87322 + 2.08752i 0.696858 + 0.506297i 0.878908 0.476992i \(-0.158273\pi\)
−0.182049 + 0.983289i \(0.558273\pi\)
\(18\) 0 0
\(19\) −0.884422 2.72197i −0.202900 0.624463i −0.999793 0.0203420i \(-0.993524\pi\)
0.796893 0.604121i \(-0.206476\pi\)
\(20\) −0.856159 + 0.622036i −0.191443 + 0.139092i
\(21\) 0 0
\(22\) 1.70972 3.09747i 0.364514 0.660383i
\(23\) 2.29437 0.478410 0.239205 0.970969i \(-0.423113\pi\)
0.239205 + 0.970969i \(0.423113\pi\)
\(24\) 0 0
\(25\) −1.07938 3.32198i −0.215876 0.664397i
\(26\) −0.772068 + 2.37618i −0.151415 + 0.466007i
\(27\) 0 0
\(28\) −1.06898 0.776656i −0.202017 0.146774i
\(29\) 2.56257 7.88677i 0.475857 1.46454i −0.368943 0.929452i \(-0.620280\pi\)
0.844799 0.535084i \(-0.179720\pi\)
\(30\) 0 0
\(31\) −3.91111 + 2.84159i −0.702456 + 0.510364i −0.880731 0.473617i \(-0.842948\pi\)
0.178276 + 0.983981i \(0.442948\pi\)
\(32\) −4.47108 −0.790384
\(33\) 0 0
\(34\) 3.78855 0.649731
\(35\) −1.52230 + 1.10602i −0.257316 + 0.186951i
\(36\) 0 0
\(37\) 1.24401 3.82868i 0.204515 0.629432i −0.795218 0.606323i \(-0.792644\pi\)
0.999733 0.0231083i \(-0.00735626\pi\)
\(38\) −2.47000 1.79456i −0.400687 0.291116i
\(39\) 0 0
\(40\) −1.15821 + 3.56460i −0.183129 + 0.563612i
\(41\) 1.49582 + 4.60365i 0.233608 + 0.718970i 0.997303 + 0.0733934i \(0.0233829\pi\)
−0.763696 + 0.645577i \(0.776617\pi\)
\(42\) 0 0
\(43\) −7.52483 −1.14753 −0.573763 0.819022i \(-0.694517\pi\)
−0.573763 + 0.819022i \(0.694517\pi\)
\(44\) 0.353510 + 2.83715i 0.0532936 + 0.427717i
\(45\) 0 0
\(46\) 1.98008 1.43861i 0.291947 0.212112i
\(47\) −2.82775 8.70291i −0.412469 1.26945i −0.914495 0.404597i \(-0.867412\pi\)
0.502026 0.864853i \(-0.332588\pi\)
\(48\) 0 0
\(49\) 3.76241 + 2.73355i 0.537488 + 0.390508i
\(50\) −3.01447 2.19014i −0.426310 0.309732i
\(51\) 0 0
\(52\) −0.623915 1.92021i −0.0865214 0.266286i
\(53\) −5.00934 + 3.63950i −0.688085 + 0.499923i −0.876030 0.482256i \(-0.839817\pi\)
0.187945 + 0.982180i \(0.439817\pi\)
\(54\) 0 0
\(55\) 3.99814 + 0.769743i 0.539110 + 0.103792i
\(56\) −4.67969 −0.625350
\(57\) 0 0
\(58\) −2.73361 8.41319i −0.358941 1.10471i
\(59\) 3.36374 10.3525i 0.437922 1.34778i −0.452141 0.891946i \(-0.649340\pi\)
0.890063 0.455838i \(-0.150660\pi\)
\(60\) 0 0
\(61\) 0.496027 + 0.360385i 0.0635097 + 0.0461425i 0.619087 0.785322i \(-0.287503\pi\)
−0.555577 + 0.831465i \(0.687503\pi\)
\(62\) −1.59363 + 4.90467i −0.202391 + 0.622894i
\(63\) 0 0
\(64\) −6.33871 + 4.60534i −0.792338 + 0.575667i
\(65\) −2.87526 −0.356632
\(66\) 0 0
\(67\) 8.65964 1.05794 0.528972 0.848639i \(-0.322578\pi\)
0.528972 + 0.848639i \(0.322578\pi\)
\(68\) −2.47686 + 1.79954i −0.300363 + 0.218226i
\(69\) 0 0
\(70\) −0.620280 + 1.90903i −0.0741377 + 0.228172i
\(71\) −12.6352 9.18000i −1.49952 1.08947i −0.970572 0.240813i \(-0.922586\pi\)
−0.528950 0.848653i \(-0.677414\pi\)
\(72\) 0 0
\(73\) −4.68358 + 14.4146i −0.548172 + 1.68710i 0.165154 + 0.986268i \(0.447188\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(74\) −1.32705 4.08424i −0.154266 0.474783i
\(75\) 0 0
\(76\) 2.46722 0.283010
\(77\) 0.628562 + 5.04463i 0.0716313 + 0.574889i
\(78\) 0 0
\(79\) 1.57143 1.14171i 0.176800 0.128453i −0.495866 0.868399i \(-0.665149\pi\)
0.672666 + 0.739947i \(0.265149\pi\)
\(80\) 0.581468 + 1.78958i 0.0650101 + 0.200081i
\(81\) 0 0
\(82\) 4.17749 + 3.03513i 0.461327 + 0.335174i
\(83\) 4.31509 + 3.13509i 0.473642 + 0.344121i 0.798859 0.601518i \(-0.205437\pi\)
−0.325217 + 0.945639i \(0.605437\pi\)
\(84\) 0 0
\(85\) 1.34728 + 4.14651i 0.146133 + 0.449752i
\(86\) −6.49406 + 4.71821i −0.700272 + 0.508778i
\(87\) 0 0
\(88\) 6.91910 + 7.39328i 0.737579 + 0.788126i
\(89\) 5.84063 0.619105 0.309553 0.950882i \(-0.399821\pi\)
0.309553 + 0.950882i \(0.399821\pi\)
\(90\) 0 0
\(91\) −1.10936 3.41426i −0.116292 0.357911i
\(92\) −0.611192 + 1.88106i −0.0637212 + 0.196114i
\(93\) 0 0
\(94\) −7.89728 5.73771i −0.814542 0.591800i
\(95\) 1.08574 3.34155i 0.111394 0.342836i
\(96\) 0 0
\(97\) 6.88134 4.99958i 0.698694 0.507631i −0.180813 0.983518i \(-0.557873\pi\)
0.879507 + 0.475887i \(0.157873\pi\)
\(98\) 4.96102 0.501139
\(99\) 0 0
\(100\) 3.01108 0.301108
\(101\) 0.606954 0.440978i 0.0603942 0.0438789i −0.557179 0.830393i \(-0.688116\pi\)
0.617573 + 0.786514i \(0.288116\pi\)
\(102\) 0 0
\(103\) 3.33934 10.2774i 0.329035 1.01266i −0.640552 0.767915i \(-0.721294\pi\)
0.969586 0.244749i \(-0.0787057\pi\)
\(104\) −5.78506 4.20309i −0.567272 0.412147i
\(105\) 0 0
\(106\) −2.04111 + 6.28190i −0.198250 + 0.610152i
\(107\) −1.23326 3.79558i −0.119224 0.366932i 0.873581 0.486679i \(-0.161792\pi\)
−0.992804 + 0.119747i \(0.961792\pi\)
\(108\) 0 0
\(109\) −13.1110 −1.25580 −0.627902 0.778293i \(-0.716086\pi\)
−0.627902 + 0.778293i \(0.716086\pi\)
\(110\) 3.93311 1.84261i 0.375007 0.175686i
\(111\) 0 0
\(112\) −1.90070 + 1.38094i −0.179600 + 0.130487i
\(113\) 0.705985 + 2.17280i 0.0664135 + 0.204400i 0.978756 0.205028i \(-0.0657285\pi\)
−0.912343 + 0.409428i \(0.865728\pi\)
\(114\) 0 0
\(115\) 2.27870 + 1.65557i 0.212490 + 0.154383i
\(116\) 5.78338 + 4.20187i 0.536974 + 0.390134i
\(117\) 0 0
\(118\) −3.58826 11.0435i −0.330326 1.01664i
\(119\) −4.40400 + 3.19969i −0.403714 + 0.293315i
\(120\) 0 0
\(121\) 7.04048 8.45172i 0.640044 0.768338i
\(122\) 0.654048 0.0592147
\(123\) 0 0
\(124\) −1.28782 3.96351i −0.115650 0.355934i
\(125\) 3.22185 9.91584i 0.288171 0.886900i
\(126\) 0 0
\(127\) −1.28021 0.930131i −0.113601 0.0825357i 0.529534 0.848288i \(-0.322367\pi\)
−0.643135 + 0.765753i \(0.722367\pi\)
\(128\) 0.180503 0.555533i 0.0159544 0.0491026i
\(129\) 0 0
\(130\) −2.48140 + 1.80284i −0.217633 + 0.158119i
\(131\) 5.64250 0.492987 0.246494 0.969144i \(-0.420722\pi\)
0.246494 + 0.969144i \(0.420722\pi\)
\(132\) 0 0
\(133\) 4.38688 0.380391
\(134\) 7.47342 5.42976i 0.645605 0.469060i
\(135\) 0 0
\(136\) −3.35068 + 10.3123i −0.287318 + 0.884274i
\(137\) 17.5144 + 12.7249i 1.49635 + 1.08716i 0.971805 + 0.235784i \(0.0757659\pi\)
0.524549 + 0.851380i \(0.324234\pi\)
\(138\) 0 0
\(139\) −6.50795 + 20.0294i −0.551997 + 1.69887i 0.151748 + 0.988419i \(0.451510\pi\)
−0.703745 + 0.710452i \(0.748490\pi\)
\(140\) −0.501254 1.54270i −0.0423637 0.130382i
\(141\) 0 0
\(142\) −16.6604 −1.39811
\(143\) −3.75383 + 6.80074i −0.313911 + 0.568707i
\(144\) 0 0
\(145\) 8.23599 5.98379i 0.683961 0.496927i
\(146\) 4.99620 + 15.3767i 0.413489 + 1.27259i
\(147\) 0 0
\(148\) 2.80758 + 2.03983i 0.230782 + 0.167673i
\(149\) 11.3235 + 8.22699i 0.927655 + 0.673981i 0.945418 0.325861i \(-0.105654\pi\)
−0.0177624 + 0.999842i \(0.505654\pi\)
\(150\) 0 0
\(151\) −6.47911 19.9407i −0.527263 1.62275i −0.759798 0.650160i \(-0.774702\pi\)
0.232535 0.972588i \(-0.425298\pi\)
\(152\) 7.06925 5.13611i 0.573392 0.416594i
\(153\) 0 0
\(154\) 3.70554 + 3.95948i 0.298601 + 0.319064i
\(155\) −5.93482 −0.476696
\(156\) 0 0
\(157\) −5.41090 16.6530i −0.431837 1.32906i −0.896294 0.443461i \(-0.853751\pi\)
0.464457 0.885596i \(-0.346249\pi\)
\(158\) 0.640298 1.97063i 0.0509394 0.156775i
\(159\) 0 0
\(160\) −4.44054 3.22624i −0.351055 0.255057i
\(161\) −1.08674 + 3.34463i −0.0856469 + 0.263594i
\(162\) 0 0
\(163\) −0.154783 + 0.112456i −0.0121235 + 0.00880824i −0.593831 0.804590i \(-0.702385\pi\)
0.581707 + 0.813398i \(0.302385\pi\)
\(164\) −4.17280 −0.325841
\(165\) 0 0
\(166\) 5.68976 0.441611
\(167\) −0.775722 + 0.563595i −0.0600271 + 0.0436123i −0.617394 0.786654i \(-0.711812\pi\)
0.557367 + 0.830266i \(0.311812\pi\)
\(168\) 0 0
\(169\) −2.32208 + 7.14664i −0.178622 + 0.549742i
\(170\) 3.76267 + 2.73374i 0.288584 + 0.209668i
\(171\) 0 0
\(172\) 2.00452 6.16928i 0.152843 0.470403i
\(173\) 6.68664 + 20.5794i 0.508376 + 1.56462i 0.795021 + 0.606582i \(0.207460\pi\)
−0.286645 + 0.958037i \(0.592540\pi\)
\(174\) 0 0
\(175\) 5.35389 0.404716
\(176\) 4.99197 + 0.961079i 0.376284 + 0.0724440i
\(177\) 0 0
\(178\) 5.04056 3.66218i 0.377806 0.274492i
\(179\) −6.33539 19.4983i −0.473529 1.45737i −0.847931 0.530106i \(-0.822152\pi\)
0.374402 0.927266i \(-0.377848\pi\)
\(180\) 0 0
\(181\) 8.43682 + 6.12971i 0.627104 + 0.455618i 0.855396 0.517975i \(-0.173314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(182\) −3.09820 2.25097i −0.229654 0.166853i
\(183\) 0 0
\(184\) 2.16464 + 6.66207i 0.159579 + 0.491134i
\(185\) 3.99821 2.90487i 0.293954 0.213570i
\(186\) 0 0
\(187\) 11.5666 + 2.22685i 0.845831 + 0.162844i
\(188\) 7.88841 0.575322
\(189\) 0 0
\(190\) −1.15821 3.56460i −0.0840252 0.258603i
\(191\) −6.37924 + 19.6333i −0.461586 + 1.42061i 0.401640 + 0.915797i \(0.368440\pi\)
−0.863226 + 0.504817i \(0.831560\pi\)
\(192\) 0 0
\(193\) 4.84767 + 3.52204i 0.348943 + 0.253522i 0.748426 0.663219i \(-0.230810\pi\)
−0.399482 + 0.916741i \(0.630810\pi\)
\(194\) 2.80388 8.62945i 0.201307 0.619559i
\(195\) 0 0
\(196\) −3.24338 + 2.35646i −0.231670 + 0.168318i
\(197\) 1.41800 0.101028 0.0505141 0.998723i \(-0.483914\pi\)
0.0505141 + 0.998723i \(0.483914\pi\)
\(198\) 0 0
\(199\) 6.07350 0.430539 0.215269 0.976555i \(-0.430937\pi\)
0.215269 + 0.976555i \(0.430937\pi\)
\(200\) 8.62755 6.26828i 0.610060 0.443235i
\(201\) 0 0
\(202\) 0.247310 0.761143i 0.0174007 0.0535538i
\(203\) 10.2832 + 7.47119i 0.721740 + 0.524375i
\(204\) 0 0
\(205\) −1.83630 + 5.65155i −0.128253 + 0.394722i
\(206\) −3.56223 10.9634i −0.248192 0.763858i
\(207\) 0 0
\(208\) −3.58996 −0.248919
\(209\) −6.48617 6.93067i −0.448657 0.479405i
\(210\) 0 0
\(211\) −12.8992 + 9.37181i −0.888017 + 0.645182i −0.935360 0.353697i \(-0.884924\pi\)
0.0473435 + 0.998879i \(0.484924\pi\)
\(212\) −1.64944 5.07646i −0.113284 0.348652i
\(213\) 0 0
\(214\) −3.44422 2.50237i −0.235442 0.171059i
\(215\) −7.47342 5.42976i −0.509683 0.370306i
\(216\) 0 0
\(217\) −2.28983 7.04737i −0.155444 0.478406i
\(218\) −11.3150 + 8.22083i −0.766348 + 0.556785i
\(219\) 0 0
\(220\) −1.69614 + 3.07286i −0.114353 + 0.207172i
\(221\) −8.31807 −0.559534
\(222\) 0 0
\(223\) 8.12958 + 25.0203i 0.544397 + 1.67548i 0.722419 + 0.691456i \(0.243030\pi\)
−0.178022 + 0.984027i \(0.556970\pi\)
\(224\) 2.11775 6.51775i 0.141498 0.435485i
\(225\) 0 0
\(226\) 1.97166 + 1.43250i 0.131153 + 0.0952883i
\(227\) 0.859779 2.64613i 0.0570656 0.175630i −0.918461 0.395512i \(-0.870567\pi\)
0.975526 + 0.219882i \(0.0705672\pi\)
\(228\) 0 0
\(229\) −17.0058 + 12.3554i −1.12377 + 0.816470i −0.984777 0.173823i \(-0.944388\pi\)
−0.138998 + 0.990293i \(0.544388\pi\)
\(230\) 3.00463 0.198119
\(231\) 0 0
\(232\) 25.3181 1.66222
\(233\) −11.0308 + 8.01437i −0.722654 + 0.525039i −0.887231 0.461326i \(-0.847374\pi\)
0.164577 + 0.986364i \(0.447374\pi\)
\(234\) 0 0
\(235\) 3.47141 10.6839i 0.226450 0.696940i
\(236\) 7.59153 + 5.51557i 0.494167 + 0.359033i
\(237\) 0 0
\(238\) −1.79446 + 5.52278i −0.116318 + 0.357989i
\(239\) −6.26582 19.2842i −0.405302 1.24739i −0.920643 0.390407i \(-0.872334\pi\)
0.515340 0.856986i \(-0.327666\pi\)
\(240\) 0 0
\(241\) −26.3931 −1.70013 −0.850066 0.526676i \(-0.823438\pi\)
−0.850066 + 0.526676i \(0.823438\pi\)
\(242\) 0.776668 11.7085i 0.0499261 0.752651i
\(243\) 0 0
\(244\) −0.427599 + 0.310669i −0.0273742 + 0.0198885i
\(245\) 1.76424 + 5.42976i 0.112713 + 0.346895i
\(246\) 0 0
\(247\) 5.42308 + 3.94010i 0.345062 + 0.250702i
\(248\) −11.9409 8.67560i −0.758250 0.550901i
\(249\) 0 0
\(250\) −3.43691 10.5777i −0.217369 0.668993i
\(251\) 4.51620 3.28121i 0.285060 0.207108i −0.436062 0.899917i \(-0.643627\pi\)
0.721121 + 0.692809i \(0.243627\pi\)
\(252\) 0 0
\(253\) 6.89085 3.22827i 0.433224 0.202960i
\(254\) −1.68806 −0.105918
\(255\) 0 0
\(256\) −5.03489 15.4958i −0.314681 0.968488i
\(257\) −8.53233 + 26.2598i −0.532232 + 1.63804i 0.217322 + 0.976100i \(0.430268\pi\)
−0.749555 + 0.661943i \(0.769732\pi\)
\(258\) 0 0
\(259\) 4.99205 + 3.62694i 0.310191 + 0.225367i
\(260\) 0.765932 2.35730i 0.0475011 0.146193i
\(261\) 0 0
\(262\) 4.86957 3.53795i 0.300843 0.218575i
\(263\) −29.4556 −1.81631 −0.908156 0.418632i \(-0.862510\pi\)
−0.908156 + 0.418632i \(0.862510\pi\)
\(264\) 0 0
\(265\) −7.60130 −0.466944
\(266\) 3.78595 2.75065i 0.232132 0.168653i
\(267\) 0 0
\(268\) −2.30682 + 7.09967i −0.140912 + 0.433681i
\(269\) −14.7566 10.7213i −0.899723 0.653687i 0.0386718 0.999252i \(-0.487687\pi\)
−0.938395 + 0.345565i \(0.887687\pi\)
\(270\) 0 0
\(271\) −2.16675 + 6.66858i −0.131621 + 0.405087i −0.995049 0.0993842i \(-0.968313\pi\)
0.863428 + 0.504472i \(0.168313\pi\)
\(272\) 1.68218 + 5.17721i 0.101997 + 0.313915i
\(273\) 0 0
\(274\) 23.0940 1.39516
\(275\) −7.91593 8.45842i −0.477349 0.510062i
\(276\) 0 0
\(277\) 9.31029 6.76432i 0.559401 0.406429i −0.271838 0.962343i \(-0.587632\pi\)
0.831240 + 0.555914i \(0.187632\pi\)
\(278\) 6.94234 + 21.3663i 0.416374 + 1.28147i
\(279\) 0 0
\(280\) −4.64772 3.37677i −0.277755 0.201801i
\(281\) −9.16977 6.66223i −0.547022 0.397435i 0.279664 0.960098i \(-0.409777\pi\)
−0.826686 + 0.562663i \(0.809777\pi\)
\(282\) 0 0
\(283\) 1.41474 + 4.35413i 0.0840976 + 0.258826i 0.984259 0.176730i \(-0.0565519\pi\)
−0.900162 + 0.435556i \(0.856552\pi\)
\(284\) 10.8921 7.91361i 0.646330 0.469586i
\(285\) 0 0
\(286\) 1.02457 + 8.22288i 0.0605842 + 0.486229i
\(287\) −7.41950 −0.437959
\(288\) 0 0
\(289\) −1.35562 4.17217i −0.0797423 0.245422i
\(290\) 3.35585 10.3282i 0.197062 0.606495i
\(291\) 0 0
\(292\) −10.5703 7.67974i −0.618577 0.449423i
\(293\) −8.12850 + 25.0170i −0.474872 + 1.46151i 0.371258 + 0.928530i \(0.378927\pi\)
−0.846130 + 0.532977i \(0.821073\pi\)
\(294\) 0 0
\(295\) 10.8109 7.85460i 0.629436 0.457312i
\(296\) 12.2909 0.714391
\(297\) 0 0
\(298\) 14.9308 0.864920
\(299\) −4.34743 + 3.15859i −0.251418 + 0.182666i
\(300\) 0 0
\(301\) 3.56416 10.9694i 0.205435 0.632264i
\(302\) −18.0948 13.1466i −1.04124 0.756502i
\(303\) 0 0
\(304\) 1.35562 4.17217i 0.0777501 0.239290i
\(305\) 0.232592 + 0.715845i 0.0133182 + 0.0409892i
\(306\) 0 0
\(307\) −14.7093 −0.839504 −0.419752 0.907639i \(-0.637883\pi\)
−0.419752 + 0.907639i \(0.637883\pi\)
\(308\) −4.30332 0.828497i −0.245204 0.0472080i
\(309\) 0 0
\(310\) −5.12185 + 3.72124i −0.290901 + 0.211352i
\(311\) −2.40653 7.40655i −0.136462 0.419987i 0.859353 0.511384i \(-0.170867\pi\)
−0.995815 + 0.0913967i \(0.970867\pi\)
\(312\) 0 0
\(313\) −14.6754 10.6623i −0.829504 0.602670i 0.0899148 0.995949i \(-0.471341\pi\)
−0.919419 + 0.393279i \(0.871341\pi\)
\(314\) −15.1115 10.9791i −0.852789 0.619588i
\(315\) 0 0
\(316\) 0.517430 + 1.59249i 0.0291077 + 0.0895844i
\(317\) 15.7364 11.4331i 0.883843 0.642149i −0.0504227 0.998728i \(-0.516057\pi\)
0.934265 + 0.356579i \(0.116057\pi\)
\(318\) 0 0
\(319\) −3.40065 27.2925i −0.190400 1.52809i
\(320\) −9.61852 −0.537692
\(321\) 0 0
\(322\) 1.15928 + 3.56788i 0.0646039 + 0.198830i
\(323\) 3.14102 9.66706i 0.174771 0.537890i
\(324\) 0 0
\(325\) 6.61851 + 4.80863i 0.367129 + 0.266735i
\(326\) −0.0630679 + 0.194103i −0.00349301 + 0.0107504i
\(327\) 0 0
\(328\) −11.9562 + 8.68668i −0.660170 + 0.479642i
\(329\) 14.0261 0.773283
\(330\) 0 0
\(331\) −20.6236 −1.13358 −0.566788 0.823863i \(-0.691814\pi\)
−0.566788 + 0.823863i \(0.691814\pi\)
\(332\) −3.71981 + 2.70260i −0.204151 + 0.148325i
\(333\) 0 0
\(334\) −0.316077 + 0.972784i −0.0172949 + 0.0532284i
\(335\) 8.60048 + 6.24862i 0.469895 + 0.341398i
\(336\) 0 0
\(337\) −1.01877 + 3.13545i −0.0554959 + 0.170799i −0.974963 0.222369i \(-0.928621\pi\)
0.919467 + 0.393168i \(0.128621\pi\)
\(338\) 2.47708 + 7.62366i 0.134735 + 0.414673i
\(339\) 0 0
\(340\) −3.75845 −0.203830
\(341\) −7.74828 + 14.0374i −0.419593 + 0.760169i
\(342\) 0 0
\(343\) −14.4472 + 10.4965i −0.780077 + 0.566759i
\(344\) −7.09934 21.8495i −0.382771 1.17805i
\(345\) 0 0
\(346\) 18.6743 + 13.5677i 1.00394 + 0.729404i
\(347\) −6.50317 4.72483i −0.349109 0.253642i 0.399386 0.916783i \(-0.369223\pi\)
−0.748495 + 0.663140i \(0.769223\pi\)
\(348\) 0 0
\(349\) 0.924934 + 2.84665i 0.0495106 + 0.152378i 0.972755 0.231835i \(-0.0744729\pi\)
−0.923245 + 0.384213i \(0.874473\pi\)
\(350\) 4.62050 3.35699i 0.246976 0.179439i
\(351\) 0 0
\(352\) −13.4283 + 6.29099i −0.715732 + 0.335311i
\(353\) 9.91473 0.527708 0.263854 0.964563i \(-0.415006\pi\)
0.263854 + 0.964563i \(0.415006\pi\)
\(354\) 0 0
\(355\) −5.92477 18.2346i −0.314454 0.967791i
\(356\) −1.55587 + 4.78848i −0.0824610 + 0.253789i
\(357\) 0 0
\(358\) −17.6934 12.8550i −0.935123 0.679407i
\(359\) −4.69829 + 14.4598i −0.247966 + 0.763161i 0.747168 + 0.664635i \(0.231413\pi\)
−0.995134 + 0.0985263i \(0.968587\pi\)
\(360\) 0 0
\(361\) 8.74440 6.35318i 0.460232 0.334378i
\(362\) 11.1246 0.584694
\(363\) 0 0
\(364\) 3.09472 0.162207
\(365\) −15.0529 + 10.9365i −0.787902 + 0.572445i
\(366\) 0 0
\(367\) −0.428907 + 1.32004i −0.0223888 + 0.0689056i −0.961627 0.274361i \(-0.911534\pi\)
0.939238 + 0.343267i \(0.111534\pi\)
\(368\) 2.84512 + 2.06710i 0.148312 + 0.107755i
\(369\) 0 0
\(370\) 1.62912 5.01391i 0.0846938 0.260661i
\(371\) −2.93281 9.02625i −0.152264 0.468620i
\(372\) 0 0
\(373\) 19.1341 0.990725 0.495362 0.868686i \(-0.335035\pi\)
0.495362 + 0.868686i \(0.335035\pi\)
\(374\) 11.3784 5.33064i 0.588364 0.275641i
\(375\) 0 0
\(376\) 22.6024 16.4216i 1.16563 0.846879i
\(377\) 6.00187 + 18.4718i 0.309112 + 0.951348i
\(378\) 0 0
\(379\) 0.383874 + 0.278900i 0.0197183 + 0.0143262i 0.597601 0.801794i \(-0.296121\pi\)
−0.577882 + 0.816120i \(0.696121\pi\)
\(380\) 2.45037 + 1.78030i 0.125701 + 0.0913273i
\(381\) 0 0
\(382\) 6.80504 + 20.9438i 0.348176 + 1.07158i
\(383\) 16.8630 12.2517i 0.861658 0.626031i −0.0666775 0.997775i \(-0.521240\pi\)
0.928336 + 0.371743i \(0.121240\pi\)
\(384\) 0 0
\(385\) −3.01583 + 5.46373i −0.153701 + 0.278457i
\(386\) 6.39201 0.325345
\(387\) 0 0
\(388\) 2.26584 + 6.97354i 0.115031 + 0.354028i
\(389\) 0.823795 2.53538i 0.0417681 0.128549i −0.927998 0.372585i \(-0.878472\pi\)
0.969766 + 0.244036i \(0.0784715\pi\)
\(390\) 0 0
\(391\) 6.59224 + 4.78954i 0.333384 + 0.242217i
\(392\) −4.38763 + 13.5037i −0.221609 + 0.682042i
\(393\) 0 0
\(394\) 1.22376 0.889112i 0.0616521 0.0447928i
\(395\) 2.38453 0.119979
\(396\) 0 0
\(397\) −15.5756 −0.781716 −0.390858 0.920451i \(-0.627822\pi\)
−0.390858 + 0.920451i \(0.627822\pi\)
\(398\) 5.24153 3.80820i 0.262734 0.190888i
\(399\) 0 0
\(400\) 1.65444 5.09185i 0.0827222 0.254593i
\(401\) 6.67194 + 4.84745i 0.333181 + 0.242070i 0.741779 0.670644i \(-0.233982\pi\)
−0.408598 + 0.912714i \(0.633982\pi\)
\(402\) 0 0
\(403\) 3.49893 10.7686i 0.174294 0.536423i
\(404\) 0.199854 + 0.615086i 0.00994309 + 0.0306017i
\(405\) 0 0
\(406\) 13.5592 0.672930
\(407\) −1.65087 13.2493i −0.0818306 0.656745i
\(408\) 0 0
\(409\) −3.25502 + 2.36491i −0.160950 + 0.116937i −0.665345 0.746536i \(-0.731716\pi\)
0.504395 + 0.863473i \(0.331716\pi\)
\(410\) 1.95887 + 6.02878i 0.0967417 + 0.297740i
\(411\) 0 0
\(412\) 7.53646 + 5.47556i 0.371295 + 0.269761i
\(413\) 13.4982 + 9.80702i 0.664203 + 0.482572i
\(414\) 0 0
\(415\) 2.02339 + 6.22735i 0.0993243 + 0.305689i
\(416\) 8.47192 6.15521i 0.415370 0.301784i
\(417\) 0 0
\(418\) −9.94333 1.91434i −0.486344 0.0936335i
\(419\) 32.0411 1.56531 0.782654 0.622456i \(-0.213865\pi\)
0.782654 + 0.622456i \(0.213865\pi\)
\(420\) 0 0
\(421\) 7.87554 + 24.2384i 0.383830 + 1.18131i 0.937325 + 0.348455i \(0.113294\pi\)
−0.553495 + 0.832852i \(0.686706\pi\)
\(422\) −5.25592 + 16.1761i −0.255854 + 0.787439i
\(423\) 0 0
\(424\) −15.2939 11.1117i −0.742739 0.539631i
\(425\) 3.83341 11.7980i 0.185948 0.572288i
\(426\) 0 0
\(427\) −0.760297 + 0.552388i −0.0367934 + 0.0267320i
\(428\) 3.44035 0.166296
\(429\) 0 0
\(430\) −9.85425 −0.475214
\(431\) −16.7429 + 12.1644i −0.806477 + 0.585940i −0.912807 0.408391i \(-0.866090\pi\)
0.106330 + 0.994331i \(0.466090\pi\)
\(432\) 0 0
\(433\) −4.45957 + 13.7251i −0.214313 + 0.659588i 0.784889 + 0.619637i \(0.212720\pi\)
−0.999202 + 0.0399509i \(0.987280\pi\)
\(434\) −6.39499 4.64623i −0.306969 0.223026i
\(435\) 0 0
\(436\) 3.49260 10.7491i 0.167265 0.514790i
\(437\) −2.02919 6.24521i −0.0970694 0.298749i
\(438\) 0 0
\(439\) 8.95399 0.427351 0.213675 0.976905i \(-0.431457\pi\)
0.213675 + 0.976905i \(0.431457\pi\)
\(440\) 1.53700 + 12.3355i 0.0732736 + 0.588070i
\(441\) 0 0
\(442\) −7.17864 + 5.21559i −0.341453 + 0.248080i
\(443\) 3.16988 + 9.75589i 0.150606 + 0.463516i 0.997689 0.0679433i \(-0.0216437\pi\)
−0.847084 + 0.531460i \(0.821644\pi\)
\(444\) 0 0
\(445\) 5.80073 + 4.21448i 0.274981 + 0.199785i
\(446\) 22.7042 + 16.4955i 1.07507 + 0.781086i
\(447\) 0 0
\(448\) −3.71111 11.4216i −0.175333 0.539621i
\(449\) 16.5355 12.0137i 0.780359 0.566964i −0.124728 0.992191i \(-0.539806\pi\)
0.905087 + 0.425227i \(0.139806\pi\)
\(450\) 0 0
\(451\) 10.9700 + 11.7218i 0.516558 + 0.551958i
\(452\) −1.96945 −0.0926351
\(453\) 0 0
\(454\) −0.917168 2.82275i −0.0430448 0.132478i
\(455\) 1.36188 4.19142i 0.0638457 0.196497i
\(456\) 0 0
\(457\) 31.1364 + 22.6219i 1.45650 + 1.05821i 0.984258 + 0.176739i \(0.0565550\pi\)
0.472242 + 0.881469i \(0.343445\pi\)
\(458\) −6.92921 + 21.3259i −0.323781 + 0.996494i
\(459\) 0 0
\(460\) −1.96435 + 1.42718i −0.0915882 + 0.0665427i
\(461\) 19.5409 0.910110 0.455055 0.890463i \(-0.349620\pi\)
0.455055 + 0.890463i \(0.349620\pi\)
\(462\) 0 0
\(463\) −16.5263 −0.768042 −0.384021 0.923324i \(-0.625461\pi\)
−0.384021 + 0.923324i \(0.625461\pi\)
\(464\) 10.2832 7.47119i 0.477386 0.346841i
\(465\) 0 0
\(466\) −4.49464 + 13.8331i −0.208210 + 0.640805i
\(467\) 23.7147 + 17.2297i 1.09739 + 0.797297i 0.980631 0.195864i \(-0.0627510\pi\)
0.116754 + 0.993161i \(0.462751\pi\)
\(468\) 0 0
\(469\) −4.10167 + 12.6236i −0.189398 + 0.582906i
\(470\) −3.70312 11.3970i −0.170812 0.525705i
\(471\) 0 0
\(472\) 33.2337 1.52971
\(473\) −22.5999 + 10.5877i −1.03914 + 0.486824i
\(474\) 0 0
\(475\) −8.08771 + 5.87607i −0.371090 + 0.269613i
\(476\) −1.45012 4.46301i −0.0664661 0.204562i
\(477\) 0 0
\(478\) −17.4991 12.7138i −0.800389 0.581517i
\(479\) −12.5305 9.10393i −0.572533 0.415969i 0.263492 0.964662i \(-0.415126\pi\)
−0.836024 + 0.548692i \(0.815126\pi\)
\(480\) 0 0
\(481\) 2.91365 + 8.96728i 0.132851 + 0.408873i
\(482\) −22.7777 + 16.5490i −1.03750 + 0.753786i
\(483\) 0 0
\(484\) 5.05371 + 8.02362i 0.229714 + 0.364710i
\(485\) 10.4419 0.474143
\(486\) 0 0
\(487\) −1.19788 3.68670i −0.0542811 0.167060i 0.920241 0.391353i \(-0.127993\pi\)
−0.974522 + 0.224293i \(0.927993\pi\)
\(488\) −0.578454 + 1.78030i −0.0261854 + 0.0805903i
\(489\) 0 0
\(490\) 4.92713 + 3.57977i 0.222585 + 0.161717i
\(491\) 2.24264 6.90215i 0.101209 0.311490i −0.887613 0.460590i \(-0.847638\pi\)
0.988822 + 0.149101i \(0.0476378\pi\)
\(492\) 0 0
\(493\) 23.8266 17.3110i 1.07310 0.779649i
\(494\) 7.15072 0.321726
\(495\) 0 0
\(496\) −7.41004 −0.332721
\(497\) 19.3669 14.0709i 0.868725 0.631165i
\(498\) 0 0
\(499\) 11.0928 34.1400i 0.496580 1.52832i −0.317900 0.948124i \(-0.602978\pi\)
0.814480 0.580192i \(-0.197022\pi\)
\(500\) 7.27131 + 5.28292i 0.325183 + 0.236259i
\(501\) 0 0
\(502\) 1.84018 5.66348i 0.0821311 0.252774i
\(503\) 4.52869 + 13.9379i 0.201924 + 0.621459i 0.999826 + 0.0186711i \(0.00594354\pi\)
−0.797901 + 0.602788i \(0.794056\pi\)
\(504\) 0 0
\(505\) 0.921008 0.0409843
\(506\) 3.92274 7.10675i 0.174387 0.315933i
\(507\) 0 0
\(508\) 1.10361 0.801818i 0.0489647 0.0355749i
\(509\) −0.124689 0.383752i −0.00552673 0.0170095i 0.948255 0.317509i \(-0.102847\pi\)
−0.953782 + 0.300500i \(0.902847\pi\)
\(510\) 0 0
\(511\) −18.7946 13.6550i −0.831422 0.604064i
\(512\) −13.1162 9.52950i −0.579661 0.421148i
\(513\) 0 0
\(514\) 9.10185 + 28.0126i 0.401465 + 1.23558i
\(515\) 10.7325 7.79761i 0.472930 0.343604i
\(516\) 0 0
\(517\) −20.7381 22.1593i −0.912061 0.974565i
\(518\) 6.58239 0.289214
\(519\) 0 0
\(520\) −2.71267 8.34875i −0.118959 0.366117i
\(521\) −3.50114 + 10.7754i −0.153388 + 0.472079i −0.997994 0.0633089i \(-0.979835\pi\)
0.844606 + 0.535388i \(0.179835\pi\)
\(522\) 0 0
\(523\) 11.6876 + 8.49154i 0.511063 + 0.371309i 0.813227 0.581947i \(-0.197709\pi\)
−0.302164 + 0.953256i \(0.597709\pi\)
\(524\) −1.50309 + 4.62604i −0.0656629 + 0.202090i
\(525\) 0 0
\(526\) −25.4207 + 18.4692i −1.10840 + 0.805297i
\(527\) −17.1693 −0.747908
\(528\) 0 0
\(529\) −17.7359 −0.771124
\(530\) −6.56005 + 4.76616i −0.284950 + 0.207029i
\(531\) 0 0
\(532\) −1.16861 + 3.59661i −0.0506657 + 0.155933i
\(533\) −9.17202 6.66387i −0.397284 0.288644i
\(534\) 0 0
\(535\) 1.51398 4.65954i 0.0654549 0.201449i
\(536\) 8.16998 + 25.1446i 0.352890 + 1.08608i
\(537\) 0 0
\(538\) −19.4576 −0.838877
\(539\) 15.1461 + 2.91601i 0.652391 + 0.125602i
\(540\) 0 0
\(541\) 18.9044 13.7349i 0.812765 0.590509i −0.101866 0.994798i \(-0.532481\pi\)
0.914631 + 0.404290i \(0.132481\pi\)
\(542\) 2.31138 + 7.11370i 0.0992823 + 0.305559i
\(543\) 0 0
\(544\) −12.8464 9.33346i −0.550785 0.400169i
\(545\) −13.0214 9.46060i −0.557776 0.405248i
\(546\) 0 0
\(547\) 1.13277 + 3.48630i 0.0484337 + 0.149063i 0.972348 0.233535i \(-0.0750293\pi\)
−0.923915 + 0.382598i \(0.875029\pi\)
\(548\) −15.0982 + 10.9695i −0.644965 + 0.468594i
\(549\) 0 0
\(550\) −12.1352 2.33633i −0.517446 0.0996213i
\(551\) −23.7339 −1.01110
\(552\) 0 0
\(553\) 0.920023 + 2.83154i 0.0391234 + 0.120409i
\(554\) 3.79359 11.6755i 0.161174 0.496043i
\(555\) 0 0
\(556\) −14.6876 10.6712i −0.622893 0.452558i
\(557\) 10.6998 32.9306i 0.453365 1.39531i −0.419680 0.907672i \(-0.637858\pi\)
0.873044 0.487641i \(-0.162142\pi\)
\(558\) 0 0
\(559\) 14.2582 10.3592i 0.603059 0.438148i
\(560\) −2.88418 −0.121879
\(561\) 0 0
\(562\) −12.0910 −0.510028
\(563\) 31.1564 22.6364i 1.31309 0.954012i 0.313095 0.949722i \(-0.398634\pi\)
0.999991 0.00429056i \(-0.00136573\pi\)
\(564\) 0 0
\(565\) −0.866684 + 2.66738i −0.0364617 + 0.112218i
\(566\) 3.95107 + 2.87062i 0.166076 + 0.120661i
\(567\) 0 0
\(568\) 14.7348 45.3492i 0.618260 1.90281i
\(569\) −7.93065 24.4080i −0.332470 1.02324i −0.967955 0.251124i \(-0.919200\pi\)
0.635485 0.772114i \(-0.280800\pi\)
\(570\) 0 0
\(571\) 22.4284 0.938600 0.469300 0.883039i \(-0.344506\pi\)
0.469300 + 0.883039i \(0.344506\pi\)
\(572\) −4.57566 4.88924i −0.191318 0.204429i
\(573\) 0 0
\(574\) −6.40316 + 4.65217i −0.267263 + 0.194178i
\(575\) −2.47649 7.62187i −0.103277 0.317854i
\(576\) 0 0
\(577\) −16.4972 11.9859i −0.686786 0.498979i 0.188816 0.982013i \(-0.439535\pi\)
−0.875602 + 0.483033i \(0.839535\pi\)
\(578\) −3.78595 2.75065i −0.157475 0.114412i
\(579\) 0 0
\(580\) 2.71189 + 8.34634i 0.112605 + 0.346563i
\(581\) −6.61406 + 4.80539i −0.274397 + 0.199361i
\(582\) 0 0
\(583\) −9.92398 + 17.9791i −0.411009 + 0.744618i
\(584\) −46.2738 −1.91482
\(585\) 0 0
\(586\) 8.67107 + 26.6868i 0.358198 + 1.10242i
\(587\) −2.07403 + 6.38320i −0.0856043 + 0.263463i −0.984691 0.174307i \(-0.944232\pi\)
0.899087 + 0.437770i \(0.144232\pi\)
\(588\) 0 0
\(589\) 11.1938 + 8.13276i 0.461232 + 0.335104i
\(590\) 4.40504 13.5573i 0.181352 0.558145i
\(591\) 0 0
\(592\) 4.99205 3.62694i 0.205172 0.149066i
\(593\) −12.4707 −0.512110 −0.256055 0.966662i \(-0.582423\pi\)
−0.256055 + 0.966662i \(0.582423\pi\)
\(594\) 0 0
\(595\) −6.68275 −0.273966
\(596\) −9.76138 + 7.09206i −0.399842 + 0.290502i
\(597\) 0 0
\(598\) −1.77141 + 5.45184i −0.0724384 + 0.222942i
\(599\) −4.35794 3.16623i −0.178061 0.129369i 0.495185 0.868788i \(-0.335100\pi\)
−0.673246 + 0.739419i \(0.735100\pi\)
\(600\) 0 0
\(601\) 12.5533 38.6351i 0.512059 1.57596i −0.276510 0.961011i \(-0.589178\pi\)
0.788569 0.614946i \(-0.210822\pi\)
\(602\) −3.80206 11.7015i −0.154961 0.476919i
\(603\) 0 0
\(604\) 18.0744 0.735439
\(605\) 13.0910 3.31372i 0.532224 0.134722i
\(606\) 0 0
\(607\) −30.1803 + 21.9272i −1.22498 + 0.889999i −0.996504 0.0835505i \(-0.973374\pi\)
−0.228475 + 0.973550i \(0.573374\pi\)
\(608\) 3.95432 + 12.1702i 0.160369 + 0.493565i
\(609\) 0 0
\(610\) 0.649579 + 0.471947i 0.0263007 + 0.0191086i
\(611\) 17.3391 + 12.5976i 0.701465 + 0.509644i
\(612\) 0 0
\(613\) −2.35013 7.23295i −0.0949208 0.292136i 0.892312 0.451419i \(-0.149082\pi\)
−0.987233 + 0.159283i \(0.949082\pi\)
\(614\) −12.6944 + 9.22301i −0.512304 + 0.372210i
\(615\) 0 0
\(616\) −14.0549 + 6.58451i −0.566286 + 0.265298i
\(617\) −38.2642 −1.54046 −0.770229 0.637767i \(-0.779858\pi\)
−0.770229 + 0.637767i \(0.779858\pi\)
\(618\) 0 0
\(619\) 9.54846 + 29.3871i 0.383785 + 1.18117i 0.937358 + 0.348368i \(0.113264\pi\)
−0.553573 + 0.832801i \(0.686736\pi\)
\(620\) 1.58096 4.86570i 0.0634929 0.195411i
\(621\) 0 0
\(622\) −6.72093 4.88304i −0.269485 0.195792i
\(623\) −2.76643 + 8.51421i −0.110835 + 0.341115i
\(624\) 0 0
\(625\) −3.77433 + 2.74221i −0.150973 + 0.109689i
\(626\) −19.3506 −0.773407
\(627\) 0 0
\(628\) 15.0945 0.602336
\(629\) 11.5668 8.40375i 0.461197 0.335079i
\(630\) 0 0
\(631\) 1.73983 5.35465i 0.0692616 0.213165i −0.910435 0.413653i \(-0.864253\pi\)
0.979696 + 0.200488i \(0.0642527\pi\)
\(632\) 4.79771 + 3.48574i 0.190843 + 0.138655i
\(633\) 0 0
\(634\) 6.41196 19.7340i 0.254652 0.783737i
\(635\) −0.600306 1.84755i −0.0238224 0.0733179i
\(636\) 0 0
\(637\) −10.8923 −0.431569
\(638\) −20.0477 21.4216i −0.793698 0.848091i
\(639\) 0 0
\(640\) 0.580131 0.421490i 0.0229317 0.0166609i
\(641\) −13.0681 40.2195i −0.516159 1.58857i −0.781163 0.624327i \(-0.785373\pi\)
0.265004 0.964247i \(-0.414627\pi\)
\(642\) 0 0
\(643\) 9.80010 + 7.12019i 0.386478 + 0.280793i 0.764011 0.645203i \(-0.223227\pi\)
−0.377533 + 0.925996i \(0.623227\pi\)
\(644\) −2.45263 1.78194i −0.0966471 0.0702182i
\(645\) 0 0
\(646\) −3.35068 10.3123i −0.131831 0.405733i
\(647\) −33.3540 + 24.2331i −1.31128 + 0.952703i −0.311286 + 0.950316i \(0.600760\pi\)
−0.999997 + 0.00238648i \(0.999240\pi\)
\(648\) 0 0
\(649\) −4.46385 35.8254i −0.175221 1.40627i
\(650\) 8.72698 0.342301
\(651\) 0 0
\(652\) −0.0509658 0.156856i −0.00199597 0.00614297i
\(653\) 4.25924 13.1086i 0.166677 0.512979i −0.832479 0.554056i \(-0.813079\pi\)
0.999156 + 0.0410778i \(0.0130792\pi\)
\(654\) 0 0
\(655\) 5.60395 + 4.07151i 0.218964 + 0.159087i
\(656\) −2.29275 + 7.05637i −0.0895170 + 0.275505i
\(657\) 0 0
\(658\) 12.1048 8.79462i 0.471892 0.342850i
\(659\) 7.42881 0.289385 0.144693 0.989477i \(-0.453781\pi\)
0.144693 + 0.989477i \(0.453781\pi\)
\(660\) 0 0
\(661\) −10.6949 −0.415984 −0.207992 0.978130i \(-0.566693\pi\)
−0.207992 + 0.978130i \(0.566693\pi\)
\(662\) −17.7985 + 12.9314i −0.691760 + 0.502593i
\(663\) 0 0
\(664\) −5.03214 + 15.4873i −0.195285 + 0.601026i
\(665\) 4.35691 + 3.16548i 0.168954 + 0.122752i
\(666\) 0 0
\(667\) 5.87948 18.0952i 0.227654 0.700648i
\(668\) −0.255424 0.786115i −0.00988266 0.0304157i
\(669\) 0 0
\(670\) 11.3404 0.438117
\(671\) 1.99683 + 0.384439i 0.0770867 + 0.0148411i
\(672\) 0 0
\(673\) 15.7103 11.4142i 0.605588 0.439986i −0.242270 0.970209i \(-0.577892\pi\)
0.847858 + 0.530223i \(0.177892\pi\)
\(674\) 1.08677 + 3.34474i 0.0418609 + 0.128834i
\(675\) 0 0
\(676\) −5.24065 3.80755i −0.201563 0.146444i
\(677\) 26.2504 + 19.0720i 1.00888 + 0.732997i 0.963975 0.265994i \(-0.0857001\pi\)
0.0449095 + 0.998991i \(0.485700\pi\)
\(678\) 0 0
\(679\) 4.02880 + 12.3994i 0.154611 + 0.475844i
\(680\) −10.7689 + 7.82409i −0.412970 + 0.300040i
\(681\) 0 0
\(682\) 2.11482 + 16.9729i 0.0809807 + 0.649924i
\(683\) 20.5244 0.785344 0.392672 0.919679i \(-0.371551\pi\)
0.392672 + 0.919679i \(0.371551\pi\)
\(684\) 0 0
\(685\) 8.21267 + 25.2760i 0.313790 + 0.965747i
\(686\) −5.88669 + 18.1174i −0.224755 + 0.691724i
\(687\) 0 0
\(688\) −9.33110 6.77944i −0.355745 0.258464i
\(689\) 4.48142 13.7924i 0.170729 0.525449i
\(690\) 0 0
\(691\) 23.9062 17.3688i 0.909433 0.660742i −0.0314381 0.999506i \(-0.510009\pi\)
0.940871 + 0.338764i \(0.110009\pi\)
\(692\) −18.6534 −0.709094
\(693\) 0 0
\(694\) −8.57491 −0.325499
\(695\) −20.9163 + 15.1966i −0.793400 + 0.576439i
\(696\) 0 0
\(697\) −5.31239 + 16.3499i −0.201221 + 0.619295i
\(698\) 2.58314 + 1.87676i 0.0977733 + 0.0710365i
\(699\) 0 0
\(700\) −1.42621 + 4.38943i −0.0539057 + 0.165905i
\(701\) −6.24195 19.2108i −0.235755 0.725580i −0.997020 0.0771395i \(-0.975421\pi\)
0.761265 0.648441i \(-0.224579\pi\)
\(702\) 0 0
\(703\) −11.5218 −0.434553
\(704\) −12.5576 + 22.7504i −0.473282 + 0.857436i
\(705\) 0 0
\(706\) 8.55658 6.21672i 0.322031 0.233969i
\(707\) 0.355352 + 1.09366i 0.0133644 + 0.0411314i
\(708\) 0 0
\(709\) −8.44613 6.13647i −0.317201 0.230460i 0.417779 0.908549i \(-0.362809\pi\)
−0.734980 + 0.678089i \(0.762809\pi\)
\(710\) −16.5466 12.0218i −0.620983 0.451171i
\(711\) 0 0
\(712\) 5.51037 + 16.9592i 0.206510 + 0.635572i
\(713\) −8.97353 + 6.51965i −0.336061 + 0.244163i
\(714\) 0 0
\(715\) −8.63546 + 4.04560i −0.322948 + 0.151297i
\(716\) 17.6735 0.660489
\(717\) 0 0
\(718\) 5.01189 + 15.4250i 0.187042 + 0.575656i
\(719\) 5.23808 16.1212i 0.195348 0.601218i −0.804625 0.593784i \(-0.797634\pi\)
0.999972 0.00743448i \(-0.00236649\pi\)
\(720\) 0 0
\(721\) 13.4003 + 9.73588i 0.499053 + 0.362583i
\(722\) 3.56301 10.9658i 0.132601 0.408105i
\(723\) 0 0
\(724\) −7.27295 + 5.28411i −0.270297 + 0.196382i
\(725\) −28.9657 −1.07576
\(726\) 0 0
\(727\) −26.2077 −0.971991 −0.485996 0.873961i \(-0.661543\pi\)
−0.485996 + 0.873961i \(0.661543\pi\)
\(728\) 8.86719 6.44239i 0.328640 0.238771i
\(729\) 0 0
\(730\) −6.13346 + 18.8768i −0.227010 + 0.698663i
\(731\) −21.6205 15.7082i −0.799663 0.580989i
\(732\) 0 0
\(733\) −5.18559 + 15.9596i −0.191534 + 0.589481i 0.808465 + 0.588544i \(0.200299\pi\)
−1.00000 0.000937776i \(0.999701\pi\)
\(734\) 0.457536 + 1.40815i 0.0168880 + 0.0519758i
\(735\) 0 0
\(736\) −10.2583 −0.378127
\(737\) 26.0081 12.1845i 0.958022 0.448820i
\(738\) 0 0
\(739\) −7.71218 + 5.60322i −0.283697 + 0.206118i −0.720528 0.693425i \(-0.756101\pi\)
0.436831 + 0.899543i \(0.356101\pi\)
\(740\) 1.31650 + 4.05178i 0.0483957 + 0.148947i
\(741\) 0 0
\(742\) −8.19069 5.95089i −0.300690 0.218464i
\(743\) −2.22765 1.61848i −0.0817246 0.0593764i 0.546173 0.837673i \(-0.316084\pi\)
−0.627897 + 0.778296i \(0.716084\pi\)
\(744\) 0 0
\(745\) 5.30970 + 16.3416i 0.194532 + 0.598709i
\(746\) 16.5130 11.9974i 0.604585 0.439257i
\(747\) 0 0
\(748\) −4.90689 + 8.88972i −0.179414 + 0.325040i
\(749\) 6.11716 0.223516
\(750\) 0 0
\(751\) 10.7058 + 32.9491i 0.390661 + 1.20233i 0.932289 + 0.361713i \(0.117808\pi\)
−0.541628 + 0.840618i \(0.682192\pi\)
\(752\) 4.33430 13.3396i 0.158056 0.486445i
\(753\) 0 0
\(754\) 16.7619 + 12.1782i 0.610433 + 0.443505i
\(755\) 7.95391 24.4796i 0.289472 0.890905i
\(756\) 0 0
\(757\) −3.15478 + 2.29208i −0.114663 + 0.0833072i −0.643639 0.765329i \(-0.722576\pi\)
0.528976 + 0.848637i \(0.322576\pi\)
\(758\) 0.506165 0.0183848
\(759\) 0 0
\(760\) 10.7271 0.389112
\(761\) 1.77801 1.29180i 0.0644527 0.0468276i −0.555092 0.831789i \(-0.687317\pi\)
0.619545 + 0.784961i \(0.287317\pi\)
\(762\) 0 0
\(763\) 6.21006 19.1126i 0.224819 0.691923i
\(764\) −14.3971 10.4601i −0.520870 0.378434i
\(765\) 0 0
\(766\) 6.87102 21.1468i 0.248260 0.764065i
\(767\) 7.87832 + 24.2470i 0.284470 + 0.875507i
\(768\) 0 0
\(769\) 39.6598 1.43017 0.715085 0.699037i \(-0.246388\pi\)
0.715085 + 0.699037i \(0.246388\pi\)
\(770\) 0.823143 + 6.60627i 0.0296640 + 0.238074i
\(771\) 0 0
\(772\) −4.17893 + 3.03617i −0.150403 + 0.109274i
\(773\) −4.55217 14.0102i −0.163730 0.503910i 0.835210 0.549931i \(-0.185346\pi\)
−0.998940 + 0.0460208i \(0.985346\pi\)
\(774\) 0 0
\(775\) 13.6613 + 9.92549i 0.490727 + 0.356534i
\(776\) 21.0093 + 15.2641i 0.754190 + 0.547951i
\(777\) 0 0
\(778\) −0.878782 2.70461i −0.0315059 0.0969650i
\(779\) 11.2081 8.14314i 0.401571 0.291758i
\(780\) 0 0
\(781\) −50.8648 9.79275i −1.82009 0.350412i
\(782\) 8.69234 0.310838
\(783\) 0 0
\(784\) 2.20277 + 6.77944i 0.0786705 + 0.242123i
\(785\) 6.64255 20.4437i 0.237083 0.729665i
\(786\) 0 0
\(787\) 0.426247 + 0.309686i 0.0151941 + 0.0110391i 0.595356 0.803462i \(-0.297011\pi\)
−0.580162 + 0.814501i \(0.697011\pi\)
\(788\) −0.377738 + 1.16256i −0.0134563 + 0.0414144i
\(789\) 0 0
\(790\) 2.05789 1.49515i 0.0732165 0.0531949i
\(791\) −3.50180 −0.124510
\(792\) 0 0
\(793\) −1.43601 −0.0509943
\(794\) −13.4420 + 9.76618i −0.477039 + 0.346589i
\(795\) 0 0
\(796\) −1.61790 + 4.97940i −0.0573451 + 0.176490i
\(797\) −4.55735 3.31111i −0.161429 0.117285i 0.504138 0.863623i \(-0.331810\pi\)
−0.665567 + 0.746338i \(0.731810\pi\)
\(798\) 0 0
\(799\) 10.0427 30.9083i 0.355286 1.09346i
\(800\) 4.82599 + 14.8529i 0.170625 + 0.525128i
\(801\) 0 0
\(802\) 8.79744 0.310649
\(803\) 6.21535 + 49.8824i 0.219335 + 1.76031i
\(804\) 0 0
\(805\) −3.49273 + 2.53762i −0.123103 + 0.0894393i
\(806\) −3.73248 11.4874i −0.131471 0.404626i
\(807\) 0 0
\(808\) 1.85308 + 1.34634i 0.0651912 + 0.0473642i
\(809\) 19.1292 + 13.8982i 0.672549 + 0.488635i 0.870877 0.491500i \(-0.163551\pi\)
−0.198329 + 0.980136i \(0.563551\pi\)
\(810\) 0 0
\(811\) −4.98249 15.3345i −0.174959 0.538468i 0.824673 0.565610i \(-0.191359\pi\)
−0.999632 + 0.0271423i \(0.991359\pi\)
\(812\) −8.86463 + 6.44053i −0.311087 + 0.226018i
\(813\) 0 0
\(814\) −9.73231 10.3993i −0.341117 0.364495i
\(815\) −0.234871 −0.00822718
\(816\) 0 0
\(817\) 6.65512 + 20.4824i 0.232833 + 0.716587i
\(818\) −1.32629 + 4.08191i −0.0463728 + 0.142721i
\(819\) 0 0
\(820\) −4.14430 3.01101i −0.144725 0.105149i
\(821\) −6.40533 + 19.7136i −0.223548 + 0.688009i 0.774888 + 0.632098i \(0.217806\pi\)
−0.998436 + 0.0559105i \(0.982194\pi\)
\(822\) 0 0
\(823\) 21.3970 15.5458i 0.745852 0.541893i −0.148686 0.988884i \(-0.547504\pi\)
0.894538 + 0.446991i \(0.147504\pi\)
\(824\) 32.9926 1.14935
\(825\) 0 0
\(826\) 17.7984 0.619285
\(827\) 42.3796 30.7905i 1.47368 1.07069i 0.494156 0.869373i \(-0.335477\pi\)
0.979526 0.201319i \(-0.0645227\pi\)
\(828\) 0 0
\(829\) 8.69589 26.7632i 0.302021 0.929525i −0.678751 0.734368i \(-0.737479\pi\)
0.980772 0.195156i \(-0.0625215\pi\)
\(830\) 5.65089 + 4.10561i 0.196145 + 0.142508i
\(831\) 0 0
\(832\) 5.67070 17.4526i 0.196596 0.605061i
\(833\) 5.10391 + 15.7082i 0.176840 + 0.544257i
\(834\) 0 0
\(835\) −1.17710 −0.0407352
\(836\) 7.40999 3.47148i 0.256280 0.120064i
\(837\) 0 0
\(838\) 27.6520 20.0904i 0.955223 0.694010i
\(839\) 13.5192 + 41.6078i 0.466735 + 1.43646i 0.856788 + 0.515669i \(0.172457\pi\)
−0.390053 + 0.920792i \(0.627543\pi\)
\(840\) 0 0
\(841\) −32.1729 23.3750i −1.10941 0.806033i
\(842\) 21.9947 + 15.9801i 0.757986 + 0.550709i
\(843\) 0 0
\(844\) −4.24736 13.0720i −0.146200 0.449958i
\(845\) −7.46309 + 5.42225i −0.256738 + 0.186531i
\(846\) 0 0
\(847\) 8.98580 + 14.2665i 0.308756 + 0.490202i
\(848\) −9.49076 −0.325914
\(849\) 0 0
\(850\) −4.08928 12.5855i −0.140261 0.431679i
\(851\) 2.85423 8.78442i 0.0978418 0.301126i
\(852\) 0 0
\(853\) 17.0427 + 12.3822i 0.583530 + 0.423960i 0.839995 0.542594i \(-0.182558\pi\)
−0.256465 + 0.966554i \(0.582558\pi\)
\(854\) −0.309792 + 0.953442i −0.0106009 + 0.0326261i
\(855\) 0 0
\(856\) 9.85753 7.16191i 0.336923 0.244789i
\(857\) 18.8828 0.645025 0.322512 0.946565i \(-0.395473\pi\)
0.322512 + 0.946565i \(0.395473\pi\)
\(858\) 0 0
\(859\) −43.0833 −1.46998 −0.734992 0.678075i \(-0.762814\pi\)
−0.734992 + 0.678075i \(0.762814\pi\)
\(860\) 6.44245 4.68072i 0.219686 0.159611i
\(861\) 0 0
\(862\) −6.82208 + 20.9962i −0.232361 + 0.715134i
\(863\) −12.9855 9.43449i −0.442030 0.321154i 0.344411 0.938819i \(-0.388079\pi\)
−0.786441 + 0.617665i \(0.788079\pi\)
\(864\) 0 0
\(865\) −8.20867 + 25.2637i −0.279103 + 0.858992i
\(866\) 4.75723 + 14.6413i 0.161657 + 0.497530i
\(867\) 0 0
\(868\) 6.38781 0.216817
\(869\) 3.11316 5.64005i 0.105607 0.191326i
\(870\) 0 0
\(871\) −16.4085 + 11.9215i −0.555981 + 0.403944i
\(872\) −12.3696 38.0698i −0.418888 1.28920i
\(873\) 0 0
\(874\) −5.66709 4.11738i −0.191692 0.139273i
\(875\) 12.9288 + 9.39335i 0.437074 + 0.317553i
\(876\) 0 0
\(877\) 4.75721 + 14.6412i 0.160640 + 0.494398i 0.998689 0.0511972i \(-0.0163037\pi\)
−0.838049 + 0.545595i \(0.816304\pi\)
\(878\) 7.72745 5.61432i 0.260789 0.189474i
\(879\) 0 0
\(880\) 4.26437 + 4.55661i 0.143752 + 0.153603i
\(881\) −3.84430 −0.129518 −0.0647589 0.997901i \(-0.520628\pi\)
−0.0647589 + 0.997901i \(0.520628\pi\)
\(882\) 0 0
\(883\) 6.15742 + 18.9506i 0.207214 + 0.637738i 0.999615 + 0.0277382i \(0.00883048\pi\)
−0.792402 + 0.610000i \(0.791170\pi\)
\(884\) 2.21583 6.81963i 0.0745265 0.229369i
\(885\) 0 0
\(886\) 8.85279 + 6.43193i 0.297415 + 0.216085i
\(887\) −3.59194 + 11.0549i −0.120606 + 0.371186i −0.993075 0.117483i \(-0.962517\pi\)
0.872469 + 0.488669i \(0.162517\pi\)
\(888\) 0 0
\(889\) 1.96228 1.42568i 0.0658128 0.0478158i
\(890\) 7.64868 0.256384
\(891\) 0 0
\(892\) −22.6787 −0.759338
\(893\) −21.1881 + 15.3941i −0.709034 + 0.515143i
\(894\) 0 0
\(895\) 7.77747 23.9366i 0.259972 0.800112i
\(896\) 0.724335 + 0.526260i 0.0241983 + 0.0175811i
\(897\) 0 0
\(898\) 6.73758 20.7361i 0.224836 0.691974i
\(899\) 12.3885 + 38.1277i 0.413178 + 1.27163i
\(900\) 0 0
\(901\) −21.9904 −0.732608
\(902\) 16.8171 + 3.23772i 0.559949 + 0.107804i
\(903\) 0 0
\(904\) −5.64300 + 4.09988i −0.187683 + 0.136360i
\(905\) 3.95611 + 12.1757i 0.131506 + 0.404733i
\(906\) 0 0
\(907\) −24.3910 17.7211i −0.809891 0.588420i 0.103908 0.994587i \(-0.466865\pi\)
−0.913799 + 0.406167i \(0.866865\pi\)
\(908\) 1.94041 + 1.40979i 0.0643948 + 0.0467856i
\(909\) 0 0
\(910\) −1.45278 4.47119i −0.0481591 0.148218i
\(911\) −18.8165 + 13.6710i −0.623419 + 0.452941i −0.854114 0.520086i \(-0.825900\pi\)
0.230695 + 0.973026i \(0.425900\pi\)
\(912\) 0 0
\(913\) 17.3710 + 3.34436i 0.574896 + 0.110682i
\(914\) 41.0556 1.35800
\(915\) 0 0
\(916\) −5.59955 17.2337i −0.185014 0.569416i
\(917\) −2.67259 + 8.22539i −0.0882567 + 0.271626i
\(918\) 0 0
\(919\) −19.1223 13.8932i −0.630787 0.458294i 0.225886 0.974154i \(-0.427472\pi\)
−0.856673 + 0.515860i \(0.827472\pi\)
\(920\) −2.65736 + 8.17851i −0.0876105 + 0.269637i
\(921\) 0 0
\(922\) 16.8641 12.2525i 0.555391 0.403515i
\(923\) 36.5793 1.20402
\(924\) 0 0
\(925\) −14.0616 −0.462342
\(926\) −14.2625 + 10.3623i −0.468694 + 0.340526i
\(927\) 0 0
\(928\) −11.4574 + 35.2624i −0.376109 + 1.15755i
\(929\) −44.0297 31.9895i −1.44457 1.04954i −0.987063 0.160335i \(-0.948743\pi\)
−0.457506 0.889206i \(-0.651257\pi\)
\(930\) 0 0
\(931\) 4.11309 12.6588i 0.134801 0.414875i
\(932\) −3.63216 11.1786i −0.118975 0.366168i
\(933\) 0 0
\(934\) 31.2696 1.02317
\(935\) 9.88070 + 10.5578i 0.323133 + 0.345278i
\(936\) 0 0
\(937\) −21.9192 + 15.9253i −0.716070 + 0.520255i −0.885126 0.465351i \(-0.845928\pi\)
0.169056 + 0.985606i \(0.445928\pi\)
\(938\) 4.37545 + 13.4662i 0.142863 + 0.439689i
\(939\) 0 0
\(940\) 7.83452 + 5.69211i 0.255534 + 0.185656i
\(941\) −29.7676 21.6274i −0.970396 0.705034i −0.0148540 0.999890i \(-0.504728\pi\)
−0.955542 + 0.294856i \(0.904728\pi\)
\(942\) 0 0
\(943\) 3.43196 + 10.5625i 0.111760 + 0.343962i
\(944\) 13.4982 9.80702i 0.439329 0.319191i
\(945\) 0 0
\(946\) −12.8654 + 23.3079i −0.418289 + 0.757806i
\(947\) 59.0290 1.91819 0.959093 0.283093i \(-0.0913604\pi\)
0.959093 + 0.283093i \(0.0913604\pi\)
\(948\) 0 0
\(949\) −10.9696 33.7609i −0.356087 1.09592i
\(950\) −3.29543 + 10.1423i −0.106918 + 0.329060i
\(951\) 0 0
\(952\) −13.4458 9.76894i −0.435781 0.316613i
\(953\) 12.3238 37.9287i 0.399206 1.22863i −0.526431 0.850218i \(-0.676470\pi\)
0.925637 0.378413i \(-0.123530\pi\)
\(954\) 0 0
\(955\) −20.5026 + 14.8960i −0.663449 + 0.482024i
\(956\) 17.4794 0.565325
\(957\) 0 0
\(958\) −16.5224 −0.533814
\(959\) −26.8456 + 19.5045i −0.866890 + 0.629832i
\(960\) 0 0
\(961\) −2.35738 + 7.25526i −0.0760445 + 0.234041i
\(962\) 8.13718 + 5.91201i 0.262353 + 0.190611i
\(963\) 0 0
\(964\) 7.03081 21.6386i 0.226447 0.696932i
\(965\) 2.27312 + 6.99596i 0.0731745 + 0.225208i
\(966\) 0 0
\(967\) −22.3285 −0.718037 −0.359019 0.933330i \(-0.616889\pi\)
−0.359019 + 0.933330i \(0.616889\pi\)
\(968\) 31.1833 + 12.4693i 1.00227 + 0.400779i
\(969\) 0 0
\(970\) 9.01156 6.54728i 0.289344 0.210220i
\(971\) 5.35373 + 16.4771i 0.171809 + 0.528775i 0.999473 0.0324490i \(-0.0103307\pi\)
−0.827664 + 0.561224i \(0.810331\pi\)
\(972\) 0 0
\(973\) −26.1155 18.9740i −0.837223 0.608278i
\(974\) −3.34542 2.43059i −0.107194 0.0778811i
\(975\) 0 0
\(976\) 0.290408 + 0.893783i 0.00929573 + 0.0286093i
\(977\) −16.2968 + 11.8404i −0.521382 + 0.378806i −0.817124 0.576461i \(-0.804433\pi\)
0.295742 + 0.955268i \(0.404433\pi\)
\(978\) 0 0
\(979\) 17.5416 8.21799i 0.560631 0.262648i
\(980\) −4.92160 −0.157215
\(981\) 0 0
\(982\) −2.39234 7.36286i −0.0763425 0.234958i
\(983\) 7.71806 23.7537i 0.246168 0.757627i −0.749274 0.662260i \(-0.769598\pi\)
0.995442 0.0953671i \(-0.0304025\pi\)
\(984\) 0 0
\(985\) 1.40831 + 1.02320i 0.0448726 + 0.0326018i
\(986\) 9.70841 29.8794i 0.309179 0.951555i
\(987\) 0 0
\(988\) −4.67496 + 3.39655i −0.148730 + 0.108059i
\(989\) −17.2648 −0.548987
\(990\) 0 0
\(991\) −3.49555 −0.111040 −0.0555199 0.998458i \(-0.517682\pi\)
−0.0555199 + 0.998458i \(0.517682\pi\)
\(992\) 17.4869 12.7050i 0.555209 0.403383i
\(993\) 0 0
\(994\) 7.89127 24.2868i 0.250296 0.770331i
\(995\) 6.03201 + 4.38251i 0.191227 + 0.138935i
\(996\) 0 0
\(997\) 2.27585 7.00435i 0.0720770 0.221830i −0.908528 0.417823i \(-0.862793\pi\)
0.980605 + 0.195993i \(0.0627931\pi\)
\(998\) −11.8332 36.4188i −0.374573 1.15282i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.f.c.190.3 yes 16
3.2 odd 2 inner 297.2.f.c.190.2 yes 16
9.2 odd 6 891.2.n.g.190.3 32
9.4 even 3 891.2.n.g.784.3 32
9.5 odd 6 891.2.n.g.784.2 32
9.7 even 3 891.2.n.g.190.2 32
11.2 odd 10 3267.2.a.bh.1.6 8
11.4 even 5 inner 297.2.f.c.136.3 yes 16
11.9 even 5 3267.2.a.bg.1.3 8
33.2 even 10 3267.2.a.bh.1.3 8
33.20 odd 10 3267.2.a.bg.1.6 8
33.26 odd 10 inner 297.2.f.c.136.2 16
99.4 even 15 891.2.n.g.136.2 32
99.59 odd 30 891.2.n.g.136.3 32
99.70 even 15 891.2.n.g.433.3 32
99.92 odd 30 891.2.n.g.433.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.c.136.2 16 33.26 odd 10 inner
297.2.f.c.136.3 yes 16 11.4 even 5 inner
297.2.f.c.190.2 yes 16 3.2 odd 2 inner
297.2.f.c.190.3 yes 16 1.1 even 1 trivial
891.2.n.g.136.2 32 99.4 even 15
891.2.n.g.136.3 32 99.59 odd 30
891.2.n.g.190.2 32 9.7 even 3
891.2.n.g.190.3 32 9.2 odd 6
891.2.n.g.433.2 32 99.92 odd 30
891.2.n.g.433.3 32 99.70 even 15
891.2.n.g.784.2 32 9.5 odd 6
891.2.n.g.784.3 32 9.4 even 3
3267.2.a.bg.1.3 8 11.9 even 5
3267.2.a.bg.1.6 8 33.20 odd 10
3267.2.a.bh.1.3 8 33.2 even 10
3267.2.a.bh.1.6 8 11.2 odd 10