Properties

Label 891.2.n.g.136.2
Level $891$
Weight $2$
Character 891.136
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 136.2
Character \(\chi\) \(=\) 891.136
Dual form 891.2.n.g.190.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.974523 + 0.433886i) q^{2} +(-0.576823 + 0.640627i) q^{4} +(-1.12149 - 0.499319i) q^{5} +(1.49928 + 0.318682i) q^{7} +(0.943455 - 2.90366i) q^{8} +1.30957 q^{10} +(-2.72022 + 1.89748i) q^{11} +(-0.244819 + 2.32930i) q^{13} +(-1.59935 + 0.339953i) q^{14} +(0.160219 + 1.52438i) q^{16} +(2.87322 - 2.08752i) q^{17} +(-0.884422 + 2.72197i) q^{19} +(0.966779 - 0.430438i) q^{20} +(1.82763 - 3.02940i) q^{22} +(-1.14719 - 1.98698i) q^{23} +(-2.33723 - 2.59576i) q^{25} +(-0.772068 - 2.37618i) q^{26} +(-1.06898 + 0.776656i) q^{28} +(-8.11142 - 1.72414i) q^{29} +(-0.505332 + 4.80791i) q^{31} +(2.23554 + 3.87207i) q^{32} +(-1.89428 + 3.28098i) q^{34} +(-1.52230 - 1.10602i) q^{35} +(1.24401 + 3.82868i) q^{37} +(-0.319134 - 3.03636i) q^{38} +(-2.50793 + 2.78534i) q^{40} +(-4.73479 + 1.00641i) q^{41} +(3.76241 - 6.51669i) q^{43} +(0.353510 - 2.83715i) q^{44} +(1.98008 + 1.43861i) q^{46} +(-6.12307 - 6.80035i) q^{47} +(-4.24853 - 1.89157i) q^{49} +(3.40395 + 1.51554i) q^{50} +(-1.35100 - 1.50043i) q^{52} +(-5.00934 - 3.63950i) q^{53} +(3.99814 - 0.769743i) q^{55} +(2.33985 - 4.05273i) q^{56} +(8.65285 - 1.83922i) q^{58} +(7.28368 - 8.08935i) q^{59} +(0.0640888 + 0.609764i) q^{61} +(-1.59363 - 4.90467i) q^{62} +(-6.33871 - 4.60534i) q^{64} +(1.43763 - 2.49004i) q^{65} +(-4.32982 - 7.49947i) q^{67} +(-0.320020 + 3.04479i) q^{68} +(1.96341 + 0.417335i) q^{70} +(-12.6352 + 9.18000i) q^{71} +(-4.68358 - 14.4146i) q^{73} +(-2.87353 - 3.19138i) q^{74} +(-1.23361 - 2.13668i) q^{76} +(-4.68306 + 1.97797i) q^{77} +(-1.77447 + 0.790044i) q^{79} +(0.581468 - 1.78958i) q^{80} +(4.17749 - 3.03513i) q^{82} +(0.557528 + 5.30452i) q^{83} +(-4.26463 + 0.906474i) q^{85} +(-0.839060 + 7.98312i) q^{86} +(2.94322 + 9.68876i) q^{88} +5.84063 q^{89} +(-1.10936 + 3.41426i) q^{91} +(1.93464 + 0.411220i) q^{92} +(8.91764 + 3.97039i) q^{94} +(2.35100 - 2.61105i) q^{95} +(-7.77043 + 3.45962i) q^{97} +4.96102 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 8 q^{7} - 24 q^{10} - 8 q^{13} + 2 q^{16} + 20 q^{19} + 24 q^{22} + 16 q^{25} - 60 q^{28} + 6 q^{31} - 32 q^{34} + 24 q^{37} + 40 q^{40} + 80 q^{43} - 24 q^{46} - 40 q^{49} - 12 q^{52}+ \cdots + 46 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.974523 + 0.433886i −0.689092 + 0.306803i −0.721245 0.692680i \(-0.756430\pi\)
0.0321538 + 0.999483i \(0.489763\pi\)
\(3\) 0 0
\(4\) −0.576823 + 0.640627i −0.288412 + 0.320313i
\(5\) −1.12149 0.499319i −0.501546 0.223302i 0.140339 0.990103i \(-0.455181\pi\)
−0.641885 + 0.766801i \(0.721847\pi\)
\(6\) 0 0
\(7\) 1.49928 + 0.318682i 0.566675 + 0.120450i 0.482335 0.875987i \(-0.339789\pi\)
0.0843394 + 0.996437i \(0.473122\pi\)
\(8\) 0.943455 2.90366i 0.333562 1.02660i
\(9\) 0 0
\(10\) 1.30957 0.414121
\(11\) −2.72022 + 1.89748i −0.820176 + 0.572111i
\(12\) 0 0
\(13\) −0.244819 + 2.32930i −0.0679007 + 0.646032i 0.906653 + 0.421877i \(0.138629\pi\)
−0.974554 + 0.224154i \(0.928038\pi\)
\(14\) −1.59935 + 0.339953i −0.427445 + 0.0908563i
\(15\) 0 0
\(16\) 0.160219 + 1.52438i 0.0400547 + 0.381095i
\(17\) 2.87322 2.08752i 0.696858 0.506297i −0.182049 0.983289i \(-0.558273\pi\)
0.878908 + 0.476992i \(0.158273\pi\)
\(18\) 0 0
\(19\) −0.884422 + 2.72197i −0.202900 + 0.624463i 0.796893 + 0.604121i \(0.206476\pi\)
−0.999793 + 0.0203420i \(0.993524\pi\)
\(20\) 0.966779 0.430438i 0.216178 0.0962488i
\(21\) 0 0
\(22\) 1.82763 3.02940i 0.389651 0.645870i
\(23\) −1.14719 1.98698i −0.239205 0.414315i 0.721282 0.692642i \(-0.243553\pi\)
−0.960486 + 0.278327i \(0.910220\pi\)
\(24\) 0 0
\(25\) −2.33723 2.59576i −0.467447 0.519152i
\(26\) −0.772068 2.37618i −0.151415 0.466007i
\(27\) 0 0
\(28\) −1.06898 + 0.776656i −0.202017 + 0.146774i
\(29\) −8.11142 1.72414i −1.50625 0.320164i −0.620458 0.784240i \(-0.713053\pi\)
−0.885796 + 0.464076i \(0.846387\pi\)
\(30\) 0 0
\(31\) −0.505332 + 4.80791i −0.0907603 + 0.863526i 0.850530 + 0.525927i \(0.176282\pi\)
−0.941290 + 0.337599i \(0.890385\pi\)
\(32\) 2.23554 + 3.87207i 0.395192 + 0.684492i
\(33\) 0 0
\(34\) −1.89428 + 3.28098i −0.324866 + 0.562684i
\(35\) −1.52230 1.10602i −0.257316 0.186951i
\(36\) 0 0
\(37\) 1.24401 + 3.82868i 0.204515 + 0.629432i 0.999733 + 0.0231083i \(0.00735626\pi\)
−0.795218 + 0.606323i \(0.792644\pi\)
\(38\) −0.319134 3.03636i −0.0517704 0.492563i
\(39\) 0 0
\(40\) −2.50793 + 2.78534i −0.396538 + 0.440400i
\(41\) −4.73479 + 1.00641i −0.739450 + 0.157175i −0.562212 0.826993i \(-0.690050\pi\)
−0.177238 + 0.984168i \(0.556716\pi\)
\(42\) 0 0
\(43\) 3.76241 6.51669i 0.573763 0.993786i −0.422412 0.906404i \(-0.638816\pi\)
0.996175 0.0873824i \(-0.0278502\pi\)
\(44\) 0.353510 2.83715i 0.0532936 0.427717i
\(45\) 0 0
\(46\) 1.98008 + 1.43861i 0.291947 + 0.212112i
\(47\) −6.12307 6.80035i −0.893141 0.991933i 0.106856 0.994274i \(-0.465921\pi\)
−0.999997 + 0.00234105i \(0.999255\pi\)
\(48\) 0 0
\(49\) −4.24853 1.89157i −0.606933 0.270224i
\(50\) 3.40395 + 1.51554i 0.481391 + 0.214329i
\(51\) 0 0
\(52\) −1.35100 1.50043i −0.187349 0.208073i
\(53\) −5.00934 3.63950i −0.688085 0.499923i 0.187945 0.982180i \(-0.439817\pi\)
−0.876030 + 0.482256i \(0.839817\pi\)
\(54\) 0 0
\(55\) 3.99814 0.769743i 0.539110 0.103792i
\(56\) 2.33985 4.05273i 0.312675 0.541569i
\(57\) 0 0
\(58\) 8.65285 1.83922i 1.13617 0.241501i
\(59\) 7.28368 8.08935i 0.948254 1.05314i −0.0502645 0.998736i \(-0.516006\pi\)
0.998519 0.0544072i \(-0.0173269\pi\)
\(60\) 0 0
\(61\) 0.0640888 + 0.609764i 0.00820573 + 0.0780723i 0.997858 0.0654118i \(-0.0208361\pi\)
−0.989653 + 0.143484i \(0.954169\pi\)
\(62\) −1.59363 4.90467i −0.202391 0.622894i
\(63\) 0 0
\(64\) −6.33871 4.60534i −0.792338 0.575667i
\(65\) 1.43763 2.49004i 0.178316 0.308852i
\(66\) 0 0
\(67\) −4.32982 7.49947i −0.528972 0.916206i −0.999429 0.0337834i \(-0.989244\pi\)
0.470457 0.882423i \(-0.344089\pi\)
\(68\) −0.320020 + 3.04479i −0.0388082 + 0.369235i
\(69\) 0 0
\(70\) 1.96341 + 0.417335i 0.234672 + 0.0498810i
\(71\) −12.6352 + 9.18000i −1.49952 + 1.08947i −0.528950 + 0.848653i \(0.677414\pi\)
−0.970572 + 0.240813i \(0.922586\pi\)
\(72\) 0 0
\(73\) −4.68358 14.4146i −0.548172 1.68710i −0.713326 0.700832i \(-0.752812\pi\)
0.165154 0.986268i \(-0.447188\pi\)
\(74\) −2.87353 3.19138i −0.334041 0.370990i
\(75\) 0 0
\(76\) −1.23361 2.13668i −0.141505 0.245094i
\(77\) −4.68306 + 1.97797i −0.533684 + 0.225410i
\(78\) 0 0
\(79\) −1.77447 + 0.790044i −0.199643 + 0.0888869i −0.504123 0.863632i \(-0.668184\pi\)
0.304480 + 0.952519i \(0.401517\pi\)
\(80\) 0.581468 1.78958i 0.0650101 0.200081i
\(81\) 0 0
\(82\) 4.17749 3.03513i 0.461327 0.335174i
\(83\) 0.557528 + 5.30452i 0.0611966 + 0.582247i 0.981556 + 0.191174i \(0.0612294\pi\)
−0.920360 + 0.391073i \(0.872104\pi\)
\(84\) 0 0
\(85\) −4.26463 + 0.906474i −0.462564 + 0.0983209i
\(86\) −0.839060 + 7.98312i −0.0904782 + 0.860842i
\(87\) 0 0
\(88\) 2.94322 + 9.68876i 0.313748 + 1.03283i
\(89\) 5.84063 0.619105 0.309553 0.950882i \(-0.399821\pi\)
0.309553 + 0.950882i \(0.399821\pi\)
\(90\) 0 0
\(91\) −1.10936 + 3.41426i −0.116292 + 0.357911i
\(92\) 1.93464 + 0.411220i 0.201700 + 0.0428727i
\(93\) 0 0
\(94\) 8.91764 + 3.97039i 0.919785 + 0.409514i
\(95\) 2.35100 2.61105i 0.241208 0.267888i
\(96\) 0 0
\(97\) −7.77043 + 3.45962i −0.788968 + 0.351271i −0.761345 0.648347i \(-0.775461\pi\)
−0.0276232 + 0.999618i \(0.508794\pi\)
\(98\) 4.96102 0.501139
\(99\) 0 0
\(100\) 3.01108 0.301108
\(101\) −0.685375 + 0.305149i −0.0681973 + 0.0303634i −0.440552 0.897727i \(-0.645217\pi\)
0.372355 + 0.928091i \(0.378551\pi\)
\(102\) 0 0
\(103\) 7.23084 8.03066i 0.712476 0.791285i −0.272834 0.962061i \(-0.587961\pi\)
0.985310 + 0.170777i \(0.0546276\pi\)
\(104\) 6.53251 + 2.90846i 0.640566 + 0.285198i
\(105\) 0 0
\(106\) 6.46084 + 1.37329i 0.627532 + 0.133386i
\(107\) −1.23326 + 3.79558i −0.119224 + 0.366932i −0.992804 0.119747i \(-0.961792\pi\)
0.873581 + 0.486679i \(0.161792\pi\)
\(108\) 0 0
\(109\) −13.1110 −1.25580 −0.627902 0.778293i \(-0.716086\pi\)
−0.627902 + 0.778293i \(0.716086\pi\)
\(110\) −3.56230 + 2.48487i −0.339652 + 0.236923i
\(111\) 0 0
\(112\) −0.245579 + 2.33653i −0.0232051 + 0.220781i
\(113\) −2.23469 + 0.474998i −0.210222 + 0.0446841i −0.311819 0.950142i \(-0.600938\pi\)
0.101597 + 0.994826i \(0.467605\pi\)
\(114\) 0 0
\(115\) 0.294417 + 2.80120i 0.0274546 + 0.261213i
\(116\) 5.78338 4.20187i 0.536974 0.390134i
\(117\) 0 0
\(118\) −3.58826 + 11.0435i −0.330326 + 1.01664i
\(119\) 4.97302 2.21413i 0.455876 0.202969i
\(120\) 0 0
\(121\) 3.79917 10.3231i 0.345379 0.938463i
\(122\) −0.327024 0.566422i −0.0296073 0.0512814i
\(123\) 0 0
\(124\) −2.78859 3.09704i −0.250423 0.278123i
\(125\) 3.22185 + 9.91584i 0.288171 + 0.886900i
\(126\) 0 0
\(127\) −1.28021 + 0.930131i −0.113601 + 0.0825357i −0.643135 0.765753i \(-0.722367\pi\)
0.529534 + 0.848288i \(0.322367\pi\)
\(128\) −0.571357 0.121446i −0.0505013 0.0107344i
\(129\) 0 0
\(130\) −0.320607 + 3.05037i −0.0281191 + 0.267535i
\(131\) −2.82125 4.88655i −0.246494 0.426940i 0.716057 0.698042i \(-0.245945\pi\)
−0.962551 + 0.271102i \(0.912612\pi\)
\(132\) 0 0
\(133\) −2.19344 + 3.79915i −0.190195 + 0.329428i
\(134\) 7.47342 + 5.42976i 0.645605 + 0.469060i
\(135\) 0 0
\(136\) −3.35068 10.3123i −0.287318 0.884274i
\(137\) 2.26293 + 21.5304i 0.193335 + 1.83946i 0.475043 + 0.879963i \(0.342433\pi\)
−0.281707 + 0.959500i \(0.590901\pi\)
\(138\) 0 0
\(139\) −14.0920 + 15.6507i −1.19527 + 1.32748i −0.263397 + 0.964687i \(0.584843\pi\)
−0.931870 + 0.362792i \(0.881824\pi\)
\(140\) 1.58665 0.337252i 0.134096 0.0285030i
\(141\) 0 0
\(142\) 8.33021 14.4283i 0.699056 1.21080i
\(143\) −3.75383 6.80074i −0.313911 0.568707i
\(144\) 0 0
\(145\) 8.23599 + 5.98379i 0.683961 + 0.496927i
\(146\) 10.8185 + 12.0152i 0.895349 + 0.994386i
\(147\) 0 0
\(148\) −3.17033 1.41152i −0.260600 0.116027i
\(149\) −12.7865 5.69292i −1.04751 0.466383i −0.190505 0.981686i \(-0.561012\pi\)
−0.857008 + 0.515304i \(0.827679\pi\)
\(150\) 0 0
\(151\) −14.0296 15.5814i −1.14171 1.26800i −0.958553 0.284913i \(-0.908035\pi\)
−0.183156 0.983084i \(-0.558631\pi\)
\(152\) 7.06925 + 5.13611i 0.573392 + 0.416594i
\(153\) 0 0
\(154\) 3.70554 3.95948i 0.298601 0.319064i
\(155\) 2.96741 5.13970i 0.238348 0.412831i
\(156\) 0 0
\(157\) 17.1274 3.64054i 1.36691 0.290547i 0.534720 0.845029i \(-0.320417\pi\)
0.832195 + 0.554483i \(0.187084\pi\)
\(158\) 1.38647 1.53983i 0.110302 0.122502i
\(159\) 0 0
\(160\) −0.573737 5.45874i −0.0453579 0.431551i
\(161\) −1.08674 3.34463i −0.0856469 0.263594i
\(162\) 0 0
\(163\) −0.154783 0.112456i −0.0121235 0.00880824i 0.581707 0.813398i \(-0.302385\pi\)
−0.593831 + 0.804590i \(0.702385\pi\)
\(164\) 2.08640 3.61376i 0.162921 0.282187i
\(165\) 0 0
\(166\) −2.84488 4.92747i −0.220805 0.382446i
\(167\) −0.100227 + 0.953592i −0.00775576 + 0.0737912i −0.997715 0.0675609i \(-0.978478\pi\)
0.989959 + 0.141352i \(0.0451450\pi\)
\(168\) 0 0
\(169\) 7.35021 + 1.56234i 0.565401 + 0.120180i
\(170\) 3.76267 2.73374i 0.288584 0.209668i
\(171\) 0 0
\(172\) 2.00452 + 6.16928i 0.152843 + 0.470403i
\(173\) 14.4789 + 16.0805i 1.10081 + 1.22258i 0.973007 + 0.230777i \(0.0741267\pi\)
0.127805 + 0.991799i \(0.459207\pi\)
\(174\) 0 0
\(175\) −2.67695 4.63661i −0.202358 0.350495i
\(176\) −3.32830 3.84263i −0.250880 0.289649i
\(177\) 0 0
\(178\) −5.69183 + 2.53416i −0.426620 + 0.189944i
\(179\) −6.33539 + 19.4983i −0.473529 + 1.45737i 0.374402 + 0.927266i \(0.377848\pi\)
−0.847931 + 0.530106i \(0.822152\pi\)
\(180\) 0 0
\(181\) 8.43682 6.12971i 0.627104 0.455618i −0.228292 0.973593i \(-0.573314\pi\)
0.855396 + 0.517975i \(0.173314\pi\)
\(182\) −0.400300 3.80860i −0.0296722 0.282313i
\(183\) 0 0
\(184\) −6.85184 + 1.45640i −0.505124 + 0.107367i
\(185\) 0.516586 4.91499i 0.0379802 0.361357i
\(186\) 0 0
\(187\) −3.85477 + 11.1304i −0.281889 + 0.813933i
\(188\) 7.88841 0.575322
\(189\) 0 0
\(190\) −1.15821 + 3.56460i −0.0840252 + 0.258603i
\(191\) 20.1925 + 4.29206i 1.46108 + 0.310562i 0.868798 0.495167i \(-0.164893\pi\)
0.592284 + 0.805730i \(0.298227\pi\)
\(192\) 0 0
\(193\) −5.47401 2.43719i −0.394028 0.175433i 0.200152 0.979765i \(-0.435857\pi\)
−0.594180 + 0.804332i \(0.702523\pi\)
\(194\) 6.07139 6.74296i 0.435900 0.484116i
\(195\) 0 0
\(196\) 3.66244 1.63062i 0.261603 0.116473i
\(197\) 1.41800 0.101028 0.0505141 0.998723i \(-0.483914\pi\)
0.0505141 + 0.998723i \(0.483914\pi\)
\(198\) 0 0
\(199\) 6.07350 0.430539 0.215269 0.976555i \(-0.430937\pi\)
0.215269 + 0.976555i \(0.430937\pi\)
\(200\) −9.74227 + 4.33754i −0.688883 + 0.306710i
\(201\) 0 0
\(202\) 0.535514 0.594748i 0.0376786 0.0418464i
\(203\) −11.6118 5.16993i −0.814992 0.362858i
\(204\) 0 0
\(205\) 5.81254 + 1.23549i 0.405965 + 0.0862906i
\(206\) −3.56223 + 10.9634i −0.248192 + 0.763858i
\(207\) 0 0
\(208\) −3.58996 −0.248919
\(209\) −2.75905 9.08252i −0.190848 0.628251i
\(210\) 0 0
\(211\) −1.66663 + 15.8569i −0.114736 + 1.09164i 0.773990 + 0.633197i \(0.218258\pi\)
−0.888726 + 0.458439i \(0.848409\pi\)
\(212\) 5.22106 1.10977i 0.358584 0.0762193i
\(213\) 0 0
\(214\) −0.445008 4.23397i −0.0304201 0.289428i
\(215\) −7.47342 + 5.42976i −0.509683 + 0.370306i
\(216\) 0 0
\(217\) −2.28983 + 7.04737i −0.155444 + 0.478406i
\(218\) 12.7769 5.68866i 0.865364 0.385285i
\(219\) 0 0
\(220\) −1.81310 + 3.00532i −0.122239 + 0.202619i
\(221\) 4.15903 + 7.20366i 0.279767 + 0.484571i
\(222\) 0 0
\(223\) 17.6034 + 19.5506i 1.17881 + 1.30920i 0.941203 + 0.337842i \(0.109697\pi\)
0.237609 + 0.971361i \(0.423636\pi\)
\(224\) 2.11775 + 6.51775i 0.141498 + 0.435485i
\(225\) 0 0
\(226\) 1.97166 1.43250i 0.131153 0.0952883i
\(227\) −2.72150 0.578474i −0.180633 0.0383946i 0.116707 0.993166i \(-0.462766\pi\)
−0.297340 + 0.954772i \(0.596099\pi\)
\(228\) 0 0
\(229\) −2.19722 + 20.9052i −0.145197 + 1.38145i 0.642923 + 0.765931i \(0.277721\pi\)
−0.788120 + 0.615522i \(0.788945\pi\)
\(230\) −1.50231 2.60209i −0.0990597 0.171576i
\(231\) 0 0
\(232\) −12.6591 + 21.9261i −0.831108 + 1.43952i
\(233\) −11.0308 8.01437i −0.722654 0.525039i 0.164577 0.986364i \(-0.447374\pi\)
−0.887231 + 0.461326i \(0.847374\pi\)
\(234\) 0 0
\(235\) 3.47141 + 10.6839i 0.226450 + 0.696940i
\(236\) 0.980858 + 9.33224i 0.0638484 + 0.607477i
\(237\) 0 0
\(238\) −3.88564 + 4.31544i −0.251869 + 0.279728i
\(239\) 19.8335 4.21575i 1.28292 0.272694i 0.484501 0.874791i \(-0.339001\pi\)
0.798423 + 0.602097i \(0.205668\pi\)
\(240\) 0 0
\(241\) 13.1966 22.8571i 0.850066 1.47236i −0.0310821 0.999517i \(-0.509895\pi\)
0.881148 0.472841i \(-0.156771\pi\)
\(242\) 0.776668 + 11.7085i 0.0499261 + 0.752651i
\(243\) 0 0
\(244\) −0.427599 0.310669i −0.0273742 0.0198885i
\(245\) 3.82019 + 4.24275i 0.244063 + 0.271059i
\(246\) 0 0
\(247\) −6.12376 2.72647i −0.389646 0.173481i
\(248\) 13.4838 + 6.00336i 0.856220 + 0.381214i
\(249\) 0 0
\(250\) −7.44211 8.26530i −0.470680 0.522743i
\(251\) 4.51620 + 3.28121i 0.285060 + 0.207108i 0.721121 0.692809i \(-0.243627\pi\)
−0.436062 + 0.899917i \(0.643627\pi\)
\(252\) 0 0
\(253\) 6.89085 + 3.22827i 0.433224 + 0.202960i
\(254\) 0.844029 1.46190i 0.0529591 0.0917278i
\(255\) 0 0
\(256\) 15.9372 3.38756i 0.996075 0.211722i
\(257\) −18.4755 + 20.5191i −1.15247 + 1.27995i −0.198482 + 0.980105i \(0.563601\pi\)
−0.953988 + 0.299843i \(0.903066\pi\)
\(258\) 0 0
\(259\) 0.644995 + 6.13671i 0.0400780 + 0.381317i
\(260\) 0.765932 + 2.35730i 0.0475011 + 0.146193i
\(261\) 0 0
\(262\) 4.86957 + 3.53795i 0.300843 + 0.218575i
\(263\) 14.7278 25.5093i 0.908156 1.57297i 0.0915315 0.995802i \(-0.470824\pi\)
0.816624 0.577170i \(-0.195843\pi\)
\(264\) 0 0
\(265\) 3.80065 + 6.58292i 0.233472 + 0.404385i
\(266\) 0.489161 4.65406i 0.0299924 0.285359i
\(267\) 0 0
\(268\) 7.30190 + 1.55207i 0.446035 + 0.0948076i
\(269\) −14.7566 + 10.7213i −0.899723 + 0.653687i −0.938395 0.345565i \(-0.887687\pi\)
0.0386718 + 0.999252i \(0.487687\pi\)
\(270\) 0 0
\(271\) −2.16675 6.66858i −0.131621 0.405087i 0.863428 0.504472i \(-0.168313\pi\)
−0.995049 + 0.0993842i \(0.968313\pi\)
\(272\) 3.64251 + 4.04542i 0.220860 + 0.245289i
\(273\) 0 0
\(274\) −11.5470 20.0000i −0.697579 1.20824i
\(275\) 11.2832 + 2.62619i 0.680401 + 0.158365i
\(276\) 0 0
\(277\) −10.5132 + 4.68079i −0.631678 + 0.281241i −0.697494 0.716590i \(-0.745702\pi\)
0.0658158 + 0.997832i \(0.479035\pi\)
\(278\) 6.94234 21.3663i 0.416374 1.28147i
\(279\) 0 0
\(280\) −4.64772 + 3.37677i −0.277755 + 0.201801i
\(281\) −1.18477 11.2724i −0.0706776 0.672453i −0.971301 0.237853i \(-0.923556\pi\)
0.900624 0.434600i \(-0.143110\pi\)
\(282\) 0 0
\(283\) −4.47815 + 0.951861i −0.266199 + 0.0565823i −0.339077 0.940759i \(-0.610115\pi\)
0.0728785 + 0.997341i \(0.476781\pi\)
\(284\) 1.40731 13.3897i 0.0835086 0.794531i
\(285\) 0 0
\(286\) 6.60894 + 4.99875i 0.390795 + 0.295582i
\(287\) −7.41950 −0.437959
\(288\) 0 0
\(289\) −1.35562 + 4.17217i −0.0797423 + 0.245422i
\(290\) −10.6224 2.25787i −0.623771 0.132587i
\(291\) 0 0
\(292\) 11.9360 + 5.31424i 0.698500 + 0.310992i
\(293\) −17.6011 + 19.5480i −1.02827 + 1.14200i −0.0385063 + 0.999258i \(0.512260\pi\)
−0.989759 + 0.142746i \(0.954407\pi\)
\(294\) 0 0
\(295\) −12.2077 + 5.43524i −0.710762 + 0.316452i
\(296\) 12.2909 0.714391
\(297\) 0 0
\(298\) 14.9308 0.864920
\(299\) 4.90914 2.18569i 0.283903 0.126402i
\(300\) 0 0
\(301\) 7.71767 8.57134i 0.444839 0.494044i
\(302\) 20.4327 + 9.09721i 1.17577 + 0.523486i
\(303\) 0 0
\(304\) −4.29101 0.912083i −0.246107 0.0523116i
\(305\) 0.232592 0.715845i 0.0133182 0.0409892i
\(306\) 0 0
\(307\) −14.7093 −0.839504 −0.419752 0.907639i \(-0.637883\pi\)
−0.419752 + 0.907639i \(0.637883\pi\)
\(308\) 1.43416 4.14103i 0.0817188 0.235957i
\(309\) 0 0
\(310\) −0.661765 + 6.29627i −0.0375857 + 0.357604i
\(311\) 7.61753 1.61916i 0.431950 0.0918139i 0.0131950 0.999913i \(-0.495800\pi\)
0.418755 + 0.908099i \(0.362466\pi\)
\(312\) 0 0
\(313\) −1.89613 18.0405i −0.107176 1.01971i −0.907475 0.420106i \(-0.861993\pi\)
0.800299 0.599601i \(-0.204674\pi\)
\(314\) −15.1115 + 10.9791i −0.852789 + 0.619588i
\(315\) 0 0
\(316\) 0.517430 1.59249i 0.0291077 0.0895844i
\(317\) −17.7696 + 7.91152i −0.998039 + 0.444356i −0.839712 0.543031i \(-0.817276\pi\)
−0.158326 + 0.987387i \(0.550610\pi\)
\(318\) 0 0
\(319\) 25.3363 10.7012i 1.41856 0.599153i
\(320\) 4.80926 + 8.32988i 0.268846 + 0.465655i
\(321\) 0 0
\(322\) 2.51024 + 2.78790i 0.139890 + 0.155364i
\(323\) 3.14102 + 9.66706i 0.174771 + 0.537890i
\(324\) 0 0
\(325\) 6.61851 4.80863i 0.367129 0.266735i
\(326\) 0.199632 + 0.0424331i 0.0110566 + 0.00235015i
\(327\) 0 0
\(328\) −1.54479 + 14.6977i −0.0852968 + 0.811545i
\(329\) −7.01304 12.1469i −0.386642 0.669683i
\(330\) 0 0
\(331\) 10.3118 17.8606i 0.566788 0.981706i −0.430092 0.902785i \(-0.641519\pi\)
0.996881 0.0789215i \(-0.0251476\pi\)
\(332\) −3.71981 2.70260i −0.204151 0.148325i
\(333\) 0 0
\(334\) −0.316077 0.972784i −0.0172949 0.0532284i
\(335\) 1.11122 + 10.5725i 0.0607124 + 0.577640i
\(336\) 0 0
\(337\) −2.20600 + 2.45001i −0.120168 + 0.133460i −0.800227 0.599697i \(-0.795288\pi\)
0.680059 + 0.733158i \(0.261954\pi\)
\(338\) −7.84083 + 1.66662i −0.426485 + 0.0906521i
\(339\) 0 0
\(340\) 1.87922 3.25491i 0.101915 0.176522i
\(341\) −7.74828 14.0374i −0.419593 0.760169i
\(342\) 0 0
\(343\) −14.4472 10.4965i −0.780077 0.566759i
\(344\) −15.3726 17.0730i −0.828833 0.920513i
\(345\) 0 0
\(346\) −21.0871 9.38859i −1.13365 0.504734i
\(347\) 7.34341 + 3.26950i 0.394215 + 0.175516i 0.594264 0.804270i \(-0.297443\pi\)
−0.200049 + 0.979786i \(0.564110\pi\)
\(348\) 0 0
\(349\) 2.00281 + 2.22434i 0.107208 + 0.119066i 0.794360 0.607447i \(-0.207806\pi\)
−0.687152 + 0.726513i \(0.741140\pi\)
\(350\) 4.62050 + 3.35699i 0.246976 + 0.179439i
\(351\) 0 0
\(352\) −13.4283 6.29099i −0.715732 0.335311i
\(353\) −4.95736 + 8.58641i −0.263854 + 0.457008i −0.967263 0.253777i \(-0.918327\pi\)
0.703409 + 0.710786i \(0.251660\pi\)
\(354\) 0 0
\(355\) 18.7540 3.98628i 0.995359 0.211570i
\(356\) −3.36901 + 3.74166i −0.178557 + 0.198308i
\(357\) 0 0
\(358\) −2.28606 21.7504i −0.120822 1.14954i
\(359\) −4.69829 14.4598i −0.247966 0.763161i −0.995134 0.0985263i \(-0.968587\pi\)
0.747168 0.664635i \(-0.231413\pi\)
\(360\) 0 0
\(361\) 8.74440 + 6.35318i 0.460232 + 0.334378i
\(362\) −5.56228 + 9.63416i −0.292347 + 0.506360i
\(363\) 0 0
\(364\) −1.54736 2.68011i −0.0811037 0.140476i
\(365\) −1.94489 + 18.5044i −0.101800 + 0.968566i
\(366\) 0 0
\(367\) 1.35764 + 0.288576i 0.0708684 + 0.0150635i 0.243209 0.969974i \(-0.421800\pi\)
−0.172341 + 0.985037i \(0.555133\pi\)
\(368\) 2.84512 2.06710i 0.148312 0.107755i
\(369\) 0 0
\(370\) 1.62912 + 5.01391i 0.0846938 + 0.260661i
\(371\) −6.35056 7.05301i −0.329705 0.366174i
\(372\) 0 0
\(373\) −9.56704 16.5706i −0.495362 0.857993i 0.504623 0.863340i \(-0.331631\pi\)
−0.999986 + 0.00534681i \(0.998298\pi\)
\(374\) −1.07274 12.5193i −0.0554702 0.647359i
\(375\) 0 0
\(376\) −25.5227 + 11.3634i −1.31623 + 0.586025i
\(377\) 6.00187 18.4718i 0.309112 0.951348i
\(378\) 0 0
\(379\) 0.383874 0.278900i 0.0197183 0.0143262i −0.577882 0.816120i \(-0.696121\pi\)
0.597601 + 0.801794i \(0.296121\pi\)
\(380\) 0.316598 + 3.01223i 0.0162411 + 0.154524i
\(381\) 0 0
\(382\) −21.5404 + 4.57854i −1.10210 + 0.234259i
\(383\) 2.17877 20.7296i 0.111330 1.05923i −0.786107 0.618090i \(-0.787907\pi\)
0.897437 0.441143i \(-0.145427\pi\)
\(384\) 0 0
\(385\) 6.23964 + 0.120075i 0.318002 + 0.00611960i
\(386\) 6.39201 0.325345
\(387\) 0 0
\(388\) 2.26584 6.97354i 0.115031 0.354028i
\(389\) −2.60760 0.554263i −0.132211 0.0281022i 0.141331 0.989962i \(-0.454862\pi\)
−0.273542 + 0.961860i \(0.588195\pi\)
\(390\) 0 0
\(391\) −7.44398 3.31427i −0.376458 0.167610i
\(392\) −9.50077 + 10.5517i −0.479861 + 0.532940i
\(393\) 0 0
\(394\) −1.38187 + 0.615250i −0.0696178 + 0.0309958i
\(395\) 2.38453 0.119979
\(396\) 0 0
\(397\) −15.5756 −0.781716 −0.390858 0.920451i \(-0.627822\pi\)
−0.390858 + 0.920451i \(0.627822\pi\)
\(398\) −5.91876 + 2.63520i −0.296681 + 0.132091i
\(399\) 0 0
\(400\) 3.58245 3.97872i 0.179123 0.198936i
\(401\) −7.53398 3.35435i −0.376229 0.167508i 0.209905 0.977722i \(-0.432684\pi\)
−0.586135 + 0.810214i \(0.699351\pi\)
\(402\) 0 0
\(403\) −11.0754 2.35414i −0.551703 0.117268i
\(404\) 0.199854 0.615086i 0.00994309 0.0306017i
\(405\) 0 0
\(406\) 13.5592 0.672930
\(407\) −10.6488 8.05436i −0.527843 0.399240i
\(408\) 0 0
\(409\) −0.420562 + 4.00138i −0.0207955 + 0.197856i −0.999987 0.00508227i \(-0.998382\pi\)
0.979192 + 0.202938i \(0.0650489\pi\)
\(410\) −6.20052 + 1.31796i −0.306222 + 0.0650894i
\(411\) 0 0
\(412\) 0.973742 + 9.26454i 0.0479728 + 0.456431i
\(413\) 13.4982 9.80702i 0.664203 0.482572i
\(414\) 0 0
\(415\) 2.02339 6.22735i 0.0993243 0.305689i
\(416\) −9.56653 + 4.25929i −0.469037 + 0.208829i
\(417\) 0 0
\(418\) 6.62954 + 7.65401i 0.324261 + 0.374370i
\(419\) −16.0205 27.7484i −0.782654 1.35560i −0.930390 0.366570i \(-0.880532\pi\)
0.147736 0.989027i \(-0.452801\pi\)
\(420\) 0 0
\(421\) 17.0533 + 18.9396i 0.831128 + 0.923061i 0.998019 0.0629147i \(-0.0200396\pi\)
−0.166891 + 0.985975i \(0.553373\pi\)
\(422\) −5.25592 16.1761i −0.255854 0.787439i
\(423\) 0 0
\(424\) −15.2939 + 11.1117i −0.742739 + 0.539631i
\(425\) −12.1341 2.57918i −0.588589 0.125109i
\(426\) 0 0
\(427\) −0.0982337 + 0.934631i −0.00475386 + 0.0452300i
\(428\) −1.72018 2.97943i −0.0831479 0.144016i
\(429\) 0 0
\(430\) 4.92713 8.53403i 0.237607 0.411548i
\(431\) −16.7429 12.1644i −0.806477 0.585940i 0.106330 0.994331i \(-0.466090\pi\)
−0.912807 + 0.408391i \(0.866090\pi\)
\(432\) 0 0
\(433\) −4.45957 13.7251i −0.214313 0.659588i −0.999202 0.0399509i \(-0.987280\pi\)
0.784889 0.619637i \(-0.212720\pi\)
\(434\) −0.826260 7.86134i −0.0396618 0.377357i
\(435\) 0 0
\(436\) 7.56271 8.39924i 0.362188 0.402251i
\(437\) 6.42311 1.36527i 0.307259 0.0653099i
\(438\) 0 0
\(439\) −4.47700 + 7.75438i −0.213675 + 0.370097i −0.952862 0.303404i \(-0.901877\pi\)
0.739187 + 0.673501i \(0.235210\pi\)
\(440\) 1.53700 12.3355i 0.0732736 0.588070i
\(441\) 0 0
\(442\) −7.17864 5.21559i −0.341453 0.248080i
\(443\) 6.86391 + 7.62314i 0.326114 + 0.362186i 0.883799 0.467866i \(-0.154977\pi\)
−0.557685 + 0.830053i \(0.688310\pi\)
\(444\) 0 0
\(445\) −6.55021 2.91634i −0.310510 0.138248i
\(446\) −25.6376 11.4146i −1.21398 0.540497i
\(447\) 0 0
\(448\) −8.03586 8.92473i −0.379659 0.421654i
\(449\) 16.5355 + 12.0137i 0.780359 + 0.566964i 0.905087 0.425227i \(-0.139806\pi\)
−0.124728 + 0.992191i \(0.539806\pi\)
\(450\) 0 0
\(451\) 10.9700 11.7218i 0.516558 0.551958i
\(452\) 0.984725 1.70559i 0.0463176 0.0802244i
\(453\) 0 0
\(454\) 2.90316 0.617086i 0.136252 0.0289613i
\(455\) 2.94894 3.27513i 0.138248 0.153540i
\(456\) 0 0
\(457\) 4.02296 + 38.2759i 0.188186 + 1.79047i 0.527254 + 0.849708i \(0.323222\pi\)
−0.339068 + 0.940762i \(0.610112\pi\)
\(458\) −6.92921 21.3259i −0.323781 0.996494i
\(459\) 0 0
\(460\) −1.96435 1.42718i −0.0915882 0.0665427i
\(461\) −9.77045 + 16.9229i −0.455055 + 0.788178i −0.998691 0.0511424i \(-0.983714\pi\)
0.543636 + 0.839321i \(0.317047\pi\)
\(462\) 0 0
\(463\) 8.26314 + 14.3122i 0.384021 + 0.665144i 0.991633 0.129090i \(-0.0412057\pi\)
−0.607612 + 0.794234i \(0.707872\pi\)
\(464\) 1.32864 12.6411i 0.0616803 0.586849i
\(465\) 0 0
\(466\) 14.2271 + 3.02407i 0.659058 + 0.140087i
\(467\) 23.7147 17.2297i 1.09739 0.797297i 0.116754 0.993161i \(-0.462751\pi\)
0.980631 + 0.195864i \(0.0627510\pi\)
\(468\) 0 0
\(469\) −4.10167 12.6236i −0.189398 0.582906i
\(470\) −8.01855 8.90550i −0.369868 0.410780i
\(471\) 0 0
\(472\) −16.6169 28.7812i −0.764853 1.32476i
\(473\) 2.13069 + 24.8659i 0.0979690 + 1.14334i
\(474\) 0 0
\(475\) 9.13268 4.06613i 0.419036 0.186567i
\(476\) −1.45012 + 4.46301i −0.0664661 + 0.204562i
\(477\) 0 0
\(478\) −17.4991 + 12.7138i −0.800389 + 0.581517i
\(479\) −1.61899 15.4037i −0.0739737 0.703813i −0.967167 0.254140i \(-0.918207\pi\)
0.893194 0.449672i \(-0.148459\pi\)
\(480\) 0 0
\(481\) −9.22271 + 1.96035i −0.420519 + 0.0893842i
\(482\) −2.94298 + 28.0006i −0.134049 + 1.27539i
\(483\) 0 0
\(484\) 4.42181 + 8.38845i 0.200991 + 0.381293i
\(485\) 10.4419 0.474143
\(486\) 0 0
\(487\) −1.19788 + 3.68670i −0.0542811 + 0.167060i −0.974522 0.224293i \(-0.927993\pi\)
0.920241 + 0.391353i \(0.127993\pi\)
\(488\) 1.83101 + 0.389193i 0.0828859 + 0.0176179i
\(489\) 0 0
\(490\) −5.56373 2.47713i −0.251344 0.111905i
\(491\) 4.85611 5.39326i 0.219153 0.243395i −0.623536 0.781795i \(-0.714304\pi\)
0.842689 + 0.538400i \(0.180971\pi\)
\(492\) 0 0
\(493\) −26.9051 + 11.9789i −1.21174 + 0.539503i
\(494\) 7.15072 0.321726
\(495\) 0 0
\(496\) −7.41004 −0.332721
\(497\) −21.8692 + 9.73679i −0.980967 + 0.436755i
\(498\) 0 0
\(499\) 24.0197 26.6766i 1.07527 1.19421i 0.0952207 0.995456i \(-0.469644\pi\)
0.980050 0.198753i \(-0.0636890\pi\)
\(500\) −8.21079 3.65568i −0.367198 0.163487i
\(501\) 0 0
\(502\) −5.82481 1.23810i −0.259974 0.0552592i
\(503\) 4.52869 13.9379i 0.201924 0.621459i −0.797901 0.602788i \(-0.794056\pi\)
0.999826 0.0186711i \(-0.00594354\pi\)
\(504\) 0 0
\(505\) 0.921008 0.0409843
\(506\) −8.11599 0.156184i −0.360800 0.00694321i
\(507\) 0 0
\(508\) 0.142591 1.35666i 0.00632644 0.0601921i
\(509\) 0.394683 0.0838925i 0.0174940 0.00371847i −0.199156 0.979968i \(-0.563820\pi\)
0.216650 + 0.976249i \(0.430487\pi\)
\(510\) 0 0
\(511\) −2.42834 23.1041i −0.107423 1.02206i
\(512\) −13.1162 + 9.52950i −0.579661 + 0.421148i
\(513\) 0 0
\(514\) 9.10185 28.0126i 0.401465 1.23558i
\(515\) −12.1192 + 5.39581i −0.534035 + 0.237768i
\(516\) 0 0
\(517\) 29.5596 + 6.88007i 1.30003 + 0.302585i
\(518\) −3.29119 5.70051i −0.144607 0.250466i
\(519\) 0 0
\(520\) −5.87389 6.52362i −0.257587 0.286080i
\(521\) −3.50114 10.7754i −0.153388 0.472079i 0.844606 0.535388i \(-0.179835\pi\)
−0.997994 + 0.0633089i \(0.979835\pi\)
\(522\) 0 0
\(523\) 11.6876 8.49154i 0.511063 0.371309i −0.302164 0.953256i \(-0.597709\pi\)
0.813227 + 0.581947i \(0.197709\pi\)
\(524\) 4.75781 + 1.01130i 0.207846 + 0.0441791i
\(525\) 0 0
\(526\) −3.28447 + 31.2496i −0.143209 + 1.36255i
\(527\) 8.58466 + 14.8691i 0.373954 + 0.647707i
\(528\) 0 0
\(529\) 8.86793 15.3597i 0.385562 0.667813i
\(530\) −6.56005 4.76616i −0.284950 0.207029i
\(531\) 0 0
\(532\) −1.16861 3.59661i −0.0506657 0.155933i
\(533\) −1.18506 11.2751i −0.0513309 0.488380i
\(534\) 0 0
\(535\) 3.27829 3.64091i 0.141733 0.157410i
\(536\) −25.8609 + 5.49690i −1.11702 + 0.237430i
\(537\) 0 0
\(538\) 9.72880 16.8508i 0.419438 0.726488i
\(539\) 15.1461 2.91601i 0.652391 0.125602i
\(540\) 0 0
\(541\) 18.9044 + 13.7349i 0.812765 + 0.590509i 0.914631 0.404290i \(-0.132481\pi\)
−0.101866 + 0.994798i \(0.532481\pi\)
\(542\) 5.00495 + 5.55856i 0.214981 + 0.238761i
\(543\) 0 0
\(544\) 14.5062 + 6.45859i 0.621949 + 0.276910i
\(545\) 14.7038 + 6.54657i 0.629843 + 0.280424i
\(546\) 0 0
\(547\) 2.45284 + 2.72416i 0.104876 + 0.116476i 0.793297 0.608834i \(-0.208363\pi\)
−0.688421 + 0.725311i \(0.741696\pi\)
\(548\) −15.0982 10.9695i −0.644965 0.468594i
\(549\) 0 0
\(550\) −12.1352 + 2.33633i −0.517446 + 0.0996213i
\(551\) 11.8670 20.5542i 0.505550 0.875638i
\(552\) 0 0
\(553\) −2.91220 + 0.619006i −0.123839 + 0.0263228i
\(554\) 8.21445 9.12307i 0.348999 0.387602i
\(555\) 0 0
\(556\) −1.89770 18.0554i −0.0804805 0.765721i
\(557\) 10.6998 + 32.9306i 0.453365 + 1.39531i 0.873044 + 0.487641i \(0.162142\pi\)
−0.419680 + 0.907672i \(0.637858\pi\)
\(558\) 0 0
\(559\) 14.2582 + 10.3592i 0.603059 + 0.438148i
\(560\) 1.44209 2.49777i 0.0609394 0.105550i
\(561\) 0 0
\(562\) 6.04550 + 10.4711i 0.255014 + 0.441698i
\(563\) 4.02554 38.3005i 0.169656 1.61417i −0.496280 0.868163i \(-0.665301\pi\)
0.665936 0.746009i \(-0.268032\pi\)
\(564\) 0 0
\(565\) 2.74336 + 0.583119i 0.115414 + 0.0245320i
\(566\) 3.95107 2.87062i 0.166076 0.120661i
\(567\) 0 0
\(568\) 14.7348 + 45.3492i 0.618260 + 1.90281i
\(569\) −17.1727 19.0722i −0.719915 0.799547i 0.266497 0.963836i \(-0.414134\pi\)
−0.986412 + 0.164289i \(0.947467\pi\)
\(570\) 0 0
\(571\) −11.2142 19.4236i −0.469300 0.812852i 0.530084 0.847945i \(-0.322160\pi\)
−0.999384 + 0.0350935i \(0.988827\pi\)
\(572\) 6.52204 + 1.51802i 0.272700 + 0.0634716i
\(573\) 0 0
\(574\) 7.23048 3.21922i 0.301794 0.134367i
\(575\) −2.47649 + 7.62187i −0.103277 + 0.317854i
\(576\) 0 0
\(577\) −16.4972 + 11.9859i −0.686786 + 0.498979i −0.875602 0.483033i \(-0.839535\pi\)
0.188816 + 0.982013i \(0.439535\pi\)
\(578\) −0.489161 4.65406i −0.0203464 0.193583i
\(579\) 0 0
\(580\) −8.58409 + 1.82460i −0.356435 + 0.0757625i
\(581\) −0.854565 + 8.13064i −0.0354533 + 0.337316i
\(582\) 0 0
\(583\) 20.5323 + 0.395123i 0.850363 + 0.0163643i
\(584\) −46.2738 −1.91482
\(585\) 0 0
\(586\) 8.67107 26.6868i 0.358198 1.10242i
\(587\) 6.56503 + 1.39544i 0.270968 + 0.0575960i 0.341391 0.939921i \(-0.389102\pi\)
−0.0704238 + 0.997517i \(0.522435\pi\)
\(588\) 0 0
\(589\) −12.6401 5.62772i −0.520825 0.231886i
\(590\) 9.53845 10.5935i 0.392692 0.436129i
\(591\) 0 0
\(592\) −5.63705 + 2.50978i −0.231681 + 0.103151i
\(593\) −12.4707 −0.512110 −0.256055 0.966662i \(-0.582423\pi\)
−0.256055 + 0.966662i \(0.582423\pi\)
\(594\) 0 0
\(595\) −6.68275 −0.273966
\(596\) 11.0226 4.90758i 0.451503 0.201022i
\(597\) 0 0
\(598\) −3.83573 + 4.26001i −0.156855 + 0.174205i
\(599\) 4.92101 + 2.19097i 0.201067 + 0.0895207i 0.504800 0.863237i \(-0.331566\pi\)
−0.303733 + 0.952757i \(0.598233\pi\)
\(600\) 0 0
\(601\) −39.7356 8.44606i −1.62085 0.344522i −0.694005 0.719970i \(-0.744155\pi\)
−0.926843 + 0.375448i \(0.877489\pi\)
\(602\) −3.80206 + 11.7015i −0.154961 + 0.476919i
\(603\) 0 0
\(604\) 18.0744 0.735439
\(605\) −9.41525 + 9.68025i −0.382784 + 0.393558i
\(606\) 0 0
\(607\) −3.89942 + 37.1005i −0.158273 + 1.50586i 0.570609 + 0.821222i \(0.306707\pi\)
−0.728881 + 0.684640i \(0.759959\pi\)
\(608\) −12.5168 + 2.66053i −0.507624 + 0.107899i
\(609\) 0 0
\(610\) 0.0839284 + 0.798526i 0.00339816 + 0.0323314i
\(611\) 17.3391 12.5976i 0.701465 0.509644i
\(612\) 0 0
\(613\) −2.35013 + 7.23295i −0.0949208 + 0.292136i −0.987233 0.159283i \(-0.949082\pi\)
0.892312 + 0.451419i \(0.149082\pi\)
\(614\) 14.3345 6.38215i 0.578495 0.257563i
\(615\) 0 0
\(616\) 1.32507 + 15.4641i 0.0533887 + 0.623067i
\(617\) 19.1321 + 33.1378i 0.770229 + 1.33408i 0.937437 + 0.348154i \(0.113191\pi\)
−0.167208 + 0.985922i \(0.553475\pi\)
\(618\) 0 0
\(619\) 20.6758 + 22.9628i 0.831030 + 0.922952i 0.998013 0.0630078i \(-0.0200693\pi\)
−0.166983 + 0.985960i \(0.553403\pi\)
\(620\) 1.58096 + 4.86570i 0.0634929 + 0.195411i
\(621\) 0 0
\(622\) −6.72093 + 4.88304i −0.269485 + 0.195792i
\(623\) 8.75674 + 1.86130i 0.350831 + 0.0745715i
\(624\) 0 0
\(625\) −0.487660 + 4.63978i −0.0195064 + 0.185591i
\(626\) 9.67531 + 16.7581i 0.386703 + 0.669790i
\(627\) 0 0
\(628\) −7.54725 + 13.0722i −0.301168 + 0.521638i
\(629\) 11.5668 + 8.40375i 0.461197 + 0.335079i
\(630\) 0 0
\(631\) 1.73983 + 5.35465i 0.0692616 + 0.213165i 0.979696 0.200488i \(-0.0642527\pi\)
−0.910435 + 0.413653i \(0.864253\pi\)
\(632\) 0.619885 + 5.89781i 0.0246577 + 0.234602i
\(633\) 0 0
\(634\) 13.8842 15.4199i 0.551410 0.612403i
\(635\) 1.90018 0.403896i 0.0754064 0.0160281i
\(636\) 0 0
\(637\) 5.44616 9.43302i 0.215785 0.373750i
\(638\) −20.0477 + 21.4216i −0.793698 + 0.848091i
\(639\) 0 0
\(640\) 0.580131 + 0.421490i 0.0229317 + 0.0166609i
\(641\) −28.2970 31.4271i −1.11767 1.24129i −0.967565 0.252623i \(-0.918707\pi\)
−0.150101 0.988671i \(-0.547960\pi\)
\(642\) 0 0
\(643\) −11.0663 4.92704i −0.436413 0.194304i 0.176757 0.984254i \(-0.443439\pi\)
−0.613170 + 0.789951i \(0.710106\pi\)
\(644\) 2.76952 + 1.23307i 0.109134 + 0.0485897i
\(645\) 0 0
\(646\) −7.25540 8.05793i −0.285460 0.317035i
\(647\) −33.3540 24.2331i −1.31128 0.952703i −0.999997 0.00238648i \(-0.999240\pi\)
−0.311286 0.950316i \(-0.600760\pi\)
\(648\) 0 0
\(649\) −4.46385 + 35.8254i −0.175221 + 1.40627i
\(650\) −4.36349 + 7.55779i −0.171150 + 0.296441i
\(651\) 0 0
\(652\) 0.161325 0.0342906i 0.00631796 0.00134292i
\(653\) 9.22275 10.2429i 0.360914 0.400836i −0.535152 0.844756i \(-0.679746\pi\)
0.896067 + 0.443920i \(0.146412\pi\)
\(654\) 0 0
\(655\) 0.724054 + 6.88892i 0.0282911 + 0.269172i
\(656\) −2.29275 7.05637i −0.0895170 0.275505i
\(657\) 0 0
\(658\) 12.1048 + 8.79462i 0.471892 + 0.342850i
\(659\) −3.71441 + 6.43354i −0.144693 + 0.250615i −0.929258 0.369431i \(-0.879553\pi\)
0.784566 + 0.620046i \(0.212886\pi\)
\(660\) 0 0
\(661\) 5.34746 + 9.26208i 0.207992 + 0.360253i 0.951082 0.308939i \(-0.0999738\pi\)
−0.743090 + 0.669192i \(0.766640\pi\)
\(662\) −2.29965 + 21.8797i −0.0893784 + 0.850378i
\(663\) 0 0
\(664\) 15.9285 + 3.38571i 0.618146 + 0.131391i
\(665\) 4.35691 3.16548i 0.168954 0.122752i
\(666\) 0 0
\(667\) 5.87948 + 18.0952i 0.227654 + 0.700648i
\(668\) −0.553084 0.614262i −0.0213994 0.0237665i
\(669\) 0 0
\(670\) −5.67018 9.82105i −0.219058 0.379420i
\(671\) −1.33135 1.53708i −0.0513961 0.0593385i
\(672\) 0 0
\(673\) −17.7402 + 7.89843i −0.683833 + 0.304462i −0.719091 0.694916i \(-0.755441\pi\)
0.0352578 + 0.999378i \(0.488775\pi\)
\(674\) 1.08677 3.34474i 0.0418609 0.128834i
\(675\) 0 0
\(676\) −5.24065 + 3.80755i −0.201563 + 0.146444i
\(677\) 3.39166 + 32.2695i 0.130352 + 1.24022i 0.842697 + 0.538388i \(0.180967\pi\)
−0.712345 + 0.701830i \(0.752367\pi\)
\(678\) 0 0
\(679\) −12.7526 + 2.71064i −0.489399 + 0.104025i
\(680\) −1.39139 + 13.2382i −0.0533575 + 0.507663i
\(681\) 0 0
\(682\) 13.6415 + 10.3179i 0.522361 + 0.395093i
\(683\) 20.5244 0.785344 0.392672 0.919679i \(-0.371551\pi\)
0.392672 + 0.919679i \(0.371551\pi\)
\(684\) 0 0
\(685\) 8.21267 25.2760i 0.313790 0.965747i
\(686\) 18.6334 + 3.96066i 0.711428 + 0.151219i
\(687\) 0 0
\(688\) 10.5367 + 4.69125i 0.401709 + 0.178852i
\(689\) 9.70386 10.7772i 0.369688 0.410580i
\(690\) 0 0
\(691\) −26.9949 + 12.0189i −1.02694 + 0.457221i −0.849878 0.526979i \(-0.823325\pi\)
−0.177058 + 0.984200i \(0.556658\pi\)
\(692\) −18.6534 −0.709094
\(693\) 0 0
\(694\) −8.57491 −0.325499
\(695\) 23.6188 10.5157i 0.895910 0.398885i
\(696\) 0 0
\(697\) −11.5032 + 12.7756i −0.435715 + 0.483910i
\(698\) −2.91689 1.29868i −0.110406 0.0491559i
\(699\) 0 0
\(700\) 4.51446 + 0.959578i 0.170631 + 0.0362686i
\(701\) −6.24195 + 19.2108i −0.235755 + 0.725580i 0.761265 + 0.648441i \(0.224579\pi\)
−0.997020 + 0.0771395i \(0.975421\pi\)
\(702\) 0 0
\(703\) −11.5218 −0.434553
\(704\) 25.9812 + 0.499980i 0.979203 + 0.0188437i
\(705\) 0 0
\(706\) 1.10555 10.5186i 0.0416078 0.395872i
\(707\) −1.12481 + 0.239087i −0.0423030 + 0.00899178i
\(708\) 0 0
\(709\) −1.09128 10.3828i −0.0409837 0.389934i −0.995716 0.0924669i \(-0.970525\pi\)
0.954732 0.297467i \(-0.0961419\pi\)
\(710\) −16.5466 + 12.0218i −0.620983 + 0.451171i
\(711\) 0 0
\(712\) 5.51037 16.9592i 0.206510 0.635572i
\(713\) 10.1330 4.51148i 0.379482 0.168956i
\(714\) 0 0
\(715\) 0.814140 + 9.50133i 0.0304471 + 0.355329i
\(716\) −8.83675 15.3057i −0.330245 0.572001i
\(717\) 0 0
\(718\) 10.8525 + 12.0529i 0.405012 + 0.449811i
\(719\) 5.23808 + 16.1212i 0.195348 + 0.601218i 0.999972 + 0.00743448i \(0.00236649\pi\)
−0.804625 + 0.593784i \(0.797634\pi\)
\(720\) 0 0
\(721\) 13.4003 9.73588i 0.499053 0.362583i
\(722\) −11.2782 2.39725i −0.419730 0.0892164i
\(723\) 0 0
\(724\) −0.939696 + 8.94061i −0.0349235 + 0.332275i
\(725\) 14.4828 + 25.0850i 0.537879 + 0.931634i
\(726\) 0 0
\(727\) 13.1039 22.6966i 0.485996 0.841769i −0.513875 0.857865i \(-0.671790\pi\)
0.999870 + 0.0160961i \(0.00512378\pi\)
\(728\) 8.86719 + 6.44239i 0.328640 + 0.238771i
\(729\) 0 0
\(730\) −6.13346 18.8768i −0.227010 0.698663i
\(731\) −2.79346 26.5780i −0.103320 0.983023i
\(732\) 0 0
\(733\) −11.2286 + 12.4707i −0.414739 + 0.460614i −0.913926 0.405880i \(-0.866965\pi\)
0.499188 + 0.866494i \(0.333632\pi\)
\(734\) −1.44826 + 0.307838i −0.0534564 + 0.0113625i
\(735\) 0 0
\(736\) 5.12916 8.88397i 0.189064 0.327468i
\(737\) 26.0081 + 12.1845i 0.958022 + 0.448820i
\(738\) 0 0
\(739\) −7.71218 5.60322i −0.283697 0.206118i 0.436831 0.899543i \(-0.356101\pi\)
−0.720528 + 0.693425i \(0.756101\pi\)
\(740\) 2.85070 + 3.16602i 0.104794 + 0.116385i
\(741\) 0 0
\(742\) 9.24896 + 4.11790i 0.339540 + 0.151173i
\(743\) 2.51547 + 1.11996i 0.0922837 + 0.0410874i 0.452359 0.891836i \(-0.350582\pi\)
−0.360076 + 0.932923i \(0.617249\pi\)
\(744\) 0 0
\(745\) 11.4974 + 12.7691i 0.421231 + 0.467824i
\(746\) 16.5130 + 11.9974i 0.604585 + 0.439257i
\(747\) 0 0
\(748\) −4.90689 8.88972i −0.179414 0.325040i
\(749\) −3.05858 + 5.29762i −0.111758 + 0.193571i
\(750\) 0 0
\(751\) −33.8877 + 7.20306i −1.23658 + 0.262843i −0.779398 0.626530i \(-0.784475\pi\)
−0.457183 + 0.889373i \(0.651141\pi\)
\(752\) 9.38528 10.4234i 0.342246 0.380103i
\(753\) 0 0
\(754\) 2.16571 + 20.6054i 0.0788705 + 0.750403i
\(755\) 7.95391 + 24.4796i 0.289472 + 0.890905i
\(756\) 0 0
\(757\) −3.15478 2.29208i −0.114663 0.0833072i 0.528976 0.848637i \(-0.322576\pi\)
−0.643639 + 0.765329i \(0.722576\pi\)
\(758\) −0.253083 + 0.438352i −0.00919238 + 0.0159217i
\(759\) 0 0
\(760\) −5.36353 9.28991i −0.194556 0.336981i
\(761\) 0.229726 2.18570i 0.00832756 0.0792315i −0.989569 0.144061i \(-0.953984\pi\)
0.997896 + 0.0648298i \(0.0206504\pi\)
\(762\) 0 0
\(763\) −19.6570 4.17823i −0.711632 0.151262i
\(764\) −14.3971 + 10.4601i −0.520870 + 0.378434i
\(765\) 0 0
\(766\) 6.87102 + 21.1468i 0.248260 + 0.764065i
\(767\) 17.0593 + 18.9463i 0.615977 + 0.684112i
\(768\) 0 0
\(769\) −19.8299 34.3464i −0.715085 1.23856i −0.962927 0.269763i \(-0.913055\pi\)
0.247842 0.968801i \(-0.420279\pi\)
\(770\) −6.13277 + 2.59027i −0.221010 + 0.0933470i
\(771\) 0 0
\(772\) 4.71887 2.10097i 0.169836 0.0756157i
\(773\) −4.55217 + 14.0102i −0.163730 + 0.503910i −0.998940 0.0460208i \(-0.985346\pi\)
0.835210 + 0.549931i \(0.185346\pi\)
\(774\) 0 0
\(775\) 13.6613 9.92549i 0.490727 0.356534i
\(776\) 2.71449 + 25.8267i 0.0974446 + 0.927123i
\(777\) 0 0
\(778\) 2.78165 0.591259i 0.0997271 0.0211977i
\(779\) 1.44813 13.7780i 0.0518847 0.493650i
\(780\) 0 0
\(781\) 16.9516 48.9466i 0.606577 1.75145i
\(782\) 8.69234 0.310838
\(783\) 0 0
\(784\) 2.20277 6.77944i 0.0786705 0.242123i
\(785\) −21.0260 4.46921i −0.750450 0.159513i
\(786\) 0 0
\(787\) −0.481320 0.214297i −0.0171572 0.00763887i 0.398140 0.917325i \(-0.369656\pi\)
−0.415297 + 0.909686i \(0.636322\pi\)
\(788\) −0.817935 + 0.908409i −0.0291377 + 0.0323607i
\(789\) 0 0
\(790\) −2.32378 + 1.03461i −0.0826764 + 0.0368099i
\(791\) −3.50180 −0.124510
\(792\) 0 0
\(793\) −1.43601 −0.0509943
\(794\) 15.1788 6.75802i 0.538674 0.239833i
\(795\) 0 0
\(796\) −3.50333 + 3.89085i −0.124172 + 0.137907i
\(797\) 5.14617 + 2.29122i 0.182287 + 0.0811593i 0.495851 0.868408i \(-0.334856\pi\)
−0.313564 + 0.949567i \(0.601523\pi\)
\(798\) 0 0
\(799\) −31.7888 6.75691i −1.12461 0.239042i
\(800\) 4.82599 14.8529i 0.170625 0.525128i
\(801\) 0 0
\(802\) 8.79744 0.310649
\(803\) 40.0917 + 30.3238i 1.41481 + 1.07010i
\(804\) 0 0
\(805\) −0.451276 + 4.29360i −0.0159054 + 0.151330i
\(806\) 11.8146 2.51127i 0.416152 0.0884558i
\(807\) 0 0
\(808\) 0.239426 + 2.27799i 0.00842298 + 0.0801393i
\(809\) 19.1292 13.8982i 0.672549 0.488635i −0.198329 0.980136i \(-0.563551\pi\)
0.870877 + 0.491500i \(0.163551\pi\)
\(810\) 0 0
\(811\) −4.98249 + 15.3345i −0.174959 + 0.538468i −0.999632 0.0271423i \(-0.991359\pi\)
0.824673 + 0.565610i \(0.191359\pi\)
\(812\) 10.0100 4.45673i 0.351281 0.156401i
\(813\) 0 0
\(814\) 13.8722 + 3.22879i 0.486220 + 0.113169i
\(815\) 0.117436 + 0.203404i 0.00411359 + 0.00712494i
\(816\) 0 0
\(817\) 14.4107 + 16.0047i 0.504166 + 0.559933i
\(818\) −1.32629 4.08191i −0.0463728 0.142721i
\(819\) 0 0
\(820\) −4.14430 + 3.01101i −0.144725 + 0.105149i
\(821\) 20.2751 + 4.30961i 0.707607 + 0.150407i 0.547638 0.836715i \(-0.315527\pi\)
0.159969 + 0.987122i \(0.448861\pi\)
\(822\) 0 0
\(823\) 2.76458 26.3032i 0.0963673 0.916873i −0.834375 0.551197i \(-0.814171\pi\)
0.930742 0.365676i \(-0.119162\pi\)
\(824\) −16.4963 28.5724i −0.574676 0.995368i
\(825\) 0 0
\(826\) −8.89919 + 15.4138i −0.309642 + 0.536316i
\(827\) 42.3796 + 30.7905i 1.47368 + 1.07069i 0.979526 + 0.201319i \(0.0645227\pi\)
0.494156 + 0.869373i \(0.335477\pi\)
\(828\) 0 0
\(829\) 8.69589 + 26.7632i 0.302021 + 0.929525i 0.980772 + 0.195156i \(0.0625215\pi\)
−0.678751 + 0.734368i \(0.737479\pi\)
\(830\) 0.730119 + 6.94662i 0.0253428 + 0.241121i
\(831\) 0 0
\(832\) 12.2791 13.6373i 0.425700 0.472787i
\(833\) −16.1557 + 3.43399i −0.559760 + 0.118981i
\(834\) 0 0
\(835\) 0.588550 1.01940i 0.0203676 0.0352777i
\(836\) 7.40999 + 3.47148i 0.256280 + 0.120064i
\(837\) 0 0
\(838\) 27.6520 + 20.0904i 0.955223 + 0.694010i
\(839\) 29.2738 + 32.5119i 1.01064 + 1.12243i 0.992456 + 0.122600i \(0.0391232\pi\)
0.0181884 + 0.999835i \(0.494210\pi\)
\(840\) 0 0
\(841\) 36.3297 + 16.1750i 1.25275 + 0.557760i
\(842\) −24.8365 11.0579i −0.855921 0.381081i
\(843\) 0 0
\(844\) −9.19702 10.2143i −0.316575 0.351592i
\(845\) −7.46309 5.42225i −0.256738 0.186531i
\(846\) 0 0
\(847\) 8.98580 14.2665i 0.308756 0.490202i
\(848\) 4.74538 8.21924i 0.162957 0.282250i
\(849\) 0 0
\(850\) 12.9440 2.75133i 0.443976 0.0943700i
\(851\) 6.18042 6.86405i 0.211862 0.235297i
\(852\) 0 0
\(853\) 2.20199 + 20.9505i 0.0753946 + 0.717332i 0.965292 + 0.261172i \(0.0841089\pi\)
−0.889898 + 0.456160i \(0.849224\pi\)
\(854\) −0.309792 0.953442i −0.0106009 0.0326261i
\(855\) 0 0
\(856\) 9.85753 + 7.16191i 0.336923 + 0.244789i
\(857\) −9.44141 + 16.3530i −0.322512 + 0.558608i −0.981006 0.193979i \(-0.937861\pi\)
0.658493 + 0.752587i \(0.271194\pi\)
\(858\) 0 0
\(859\) 21.5417 + 37.3113i 0.734992 + 1.27304i 0.954727 + 0.297485i \(0.0961477\pi\)
−0.219734 + 0.975560i \(0.570519\pi\)
\(860\) 0.832392 7.91968i 0.0283843 0.270059i
\(861\) 0 0
\(862\) 21.5943 + 4.59001i 0.735505 + 0.156336i
\(863\) −12.9855 + 9.43449i −0.442030 + 0.321154i −0.786441 0.617665i \(-0.788079\pi\)
0.344411 + 0.938819i \(0.388079\pi\)
\(864\) 0 0
\(865\) −8.20867 25.2637i −0.279103 0.858992i
\(866\) 10.3011 + 11.4405i 0.350045 + 0.388764i
\(867\) 0 0
\(868\) −3.19391 5.53201i −0.108408 0.187769i
\(869\) 3.32785 5.51610i 0.112889 0.187121i
\(870\) 0 0
\(871\) 18.5285 8.24944i 0.627816 0.279522i
\(872\) −12.3696 + 38.0698i −0.418888 + 1.28920i
\(873\) 0 0
\(874\) −5.66709 + 4.11738i −0.191692 + 0.139273i
\(875\) 1.67046 + 15.8934i 0.0564719 + 0.537294i
\(876\) 0 0
\(877\) −15.0582 + 3.20073i −0.508481 + 0.108081i −0.455006 0.890488i \(-0.650363\pi\)
−0.0534747 + 0.998569i \(0.517030\pi\)
\(878\) 0.998420 9.49933i 0.0336950 0.320587i
\(879\) 0 0
\(880\) 1.81396 + 5.97136i 0.0611485 + 0.201294i
\(881\) −3.84430 −0.129518 −0.0647589 0.997901i \(-0.520628\pi\)
−0.0647589 + 0.997901i \(0.520628\pi\)
\(882\) 0 0
\(883\) 6.15742 18.9506i 0.207214 0.637738i −0.792402 0.610000i \(-0.791170\pi\)
0.999615 0.0277382i \(-0.00883048\pi\)
\(884\) −7.01388 1.49085i −0.235902 0.0501426i
\(885\) 0 0
\(886\) −9.99661 4.45078i −0.335843 0.149527i
\(887\) −7.77782 + 8.63814i −0.261154 + 0.290040i −0.859434 0.511246i \(-0.829184\pi\)
0.598281 + 0.801287i \(0.295851\pi\)
\(888\) 0 0
\(889\) −2.21582 + 0.986545i −0.0743161 + 0.0330877i
\(890\) 7.64868 0.256384
\(891\) 0 0
\(892\) −22.6787 −0.759338
\(893\) 23.9257 10.6524i 0.800644 0.356470i
\(894\) 0 0
\(895\) 16.8410 18.7038i 0.562931 0.625198i
\(896\) −0.817922 0.364162i −0.0273249 0.0121658i
\(897\) 0 0
\(898\) −21.3268 4.53316i −0.711685 0.151273i
\(899\) 12.3885 38.1277i 0.413178 1.27163i
\(900\) 0 0
\(901\) −21.9904 −0.732608
\(902\) −5.60461 + 16.1829i −0.186613 + 0.538832i
\(903\) 0 0
\(904\) −0.729099 + 6.93692i −0.0242495 + 0.230718i
\(905\) −12.5225 + 2.66174i −0.416262 + 0.0884792i
\(906\) 0 0
\(907\) −3.15142 29.9838i −0.104641 0.995596i −0.913292 0.407306i \(-0.866468\pi\)
0.808650 0.588290i \(-0.200198\pi\)
\(908\) 1.94041 1.40979i 0.0643948 0.0467856i
\(909\) 0 0
\(910\) −1.45278 + 4.47119i −0.0481591 + 0.148218i
\(911\) 21.2477 9.46009i 0.703968 0.313427i −0.0233502 0.999727i \(-0.507433\pi\)
0.727318 + 0.686301i \(0.240767\pi\)
\(912\) 0 0
\(913\) −11.5818 13.3716i −0.383302 0.442534i
\(914\) −20.5278 35.5552i −0.679000 1.17606i
\(915\) 0 0
\(916\) −12.1250 13.4662i −0.400621 0.444935i
\(917\) −2.67259 8.22539i −0.0882567 0.271626i
\(918\) 0 0
\(919\) −19.1223 + 13.8932i −0.630787 + 0.458294i −0.856673 0.515860i \(-0.827472\pi\)
0.225886 + 0.974154i \(0.427472\pi\)
\(920\) 8.41148 + 1.78791i 0.277318 + 0.0589458i
\(921\) 0 0
\(922\) 2.17892 20.7310i 0.0717588 0.682740i
\(923\) −18.2896 31.6786i −0.602011 1.04271i
\(924\) 0 0
\(925\) 7.03079 12.1777i 0.231171 0.400400i
\(926\) −14.2625 10.3623i −0.468694 0.340526i
\(927\) 0 0
\(928\) −11.4574 35.2624i −0.376109 1.15755i
\(929\) −5.68883 54.1256i −0.186645 1.77580i −0.541322 0.840815i \(-0.682076\pi\)
0.354677 0.934989i \(-0.384591\pi\)
\(930\) 0 0
\(931\) 8.90629 9.89144i 0.291892 0.324179i
\(932\) 11.4971 2.44377i 0.376599 0.0800485i
\(933\) 0 0
\(934\) −15.6348 + 27.0802i −0.511586 + 0.886092i
\(935\) 9.88070 10.5578i 0.323133 0.345278i
\(936\) 0 0
\(937\) −21.9192 15.9253i −0.716070 0.520255i 0.169056 0.985606i \(-0.445928\pi\)
−0.885126 + 0.465351i \(0.845928\pi\)
\(938\) 9.47439 + 10.5224i 0.309350 + 0.343568i
\(939\) 0 0
\(940\) −8.84678 3.93884i −0.288550 0.128471i
\(941\) 33.6137 + 14.9658i 1.09577 + 0.487870i 0.873357 0.487081i \(-0.161938\pi\)
0.222418 + 0.974951i \(0.428605\pi\)
\(942\) 0 0
\(943\) 7.43141 + 8.25341i 0.242000 + 0.268768i
\(944\) 13.4982 + 9.80702i 0.439329 + 0.319191i
\(945\) 0 0
\(946\) −12.8654 23.3079i −0.418289 0.757806i
\(947\) −29.5145 + 51.1206i −0.959093 + 1.66120i −0.234381 + 0.972145i \(0.575306\pi\)
−0.724712 + 0.689052i \(0.758027\pi\)
\(948\) 0 0
\(949\) 34.7225 7.38051i 1.12714 0.239581i
\(950\) −7.13577 + 7.92508i −0.231515 + 0.257123i
\(951\) 0 0
\(952\) −1.73725 16.5289i −0.0563047 0.535704i
\(953\) 12.3238 + 37.9287i 0.399206 + 1.22863i 0.925637 + 0.378413i \(0.123530\pi\)
−0.526431 + 0.850218i \(0.676470\pi\)
\(954\) 0 0
\(955\) −20.5026 14.8960i −0.663449 0.482024i
\(956\) −8.73972 + 15.1376i −0.282663 + 0.489586i
\(957\) 0 0
\(958\) 8.26118 + 14.3088i 0.266907 + 0.462296i
\(959\) −3.46857 + 33.0012i −0.112006 + 1.06566i
\(960\) 0 0
\(961\) 7.46193 + 1.58608i 0.240707 + 0.0511640i
\(962\) 8.13718 5.91201i 0.262353 0.190611i
\(963\) 0 0
\(964\) 7.03081 + 21.6386i 0.226447 + 0.696932i
\(965\) 4.92212 + 5.46656i 0.158449 + 0.175975i
\(966\) 0 0
\(967\) 11.1643 + 19.3371i 0.359019 + 0.621838i 0.987797 0.155746i \(-0.0497781\pi\)
−0.628779 + 0.777584i \(0.716445\pi\)
\(968\) −26.3904 20.7709i −0.848219 0.667600i
\(969\) 0 0
\(970\) −10.1759 + 4.53060i −0.326728 + 0.145469i
\(971\) 5.35373 16.4771i 0.171809 0.528775i −0.827664 0.561224i \(-0.810331\pi\)
0.999473 + 0.0324490i \(0.0103307\pi\)
\(972\) 0 0
\(973\) −26.1155 + 18.9740i −0.837223 + 0.608278i
\(974\) −0.432242 4.11251i −0.0138499 0.131773i
\(975\) 0 0
\(976\) −0.919243 + 0.195391i −0.0294243 + 0.00625432i
\(977\) −2.10562 + 20.0337i −0.0673648 + 0.640934i 0.907792 + 0.419420i \(0.137766\pi\)
−0.975157 + 0.221514i \(0.928900\pi\)
\(978\) 0 0
\(979\) −15.8878 + 11.0825i −0.507776 + 0.354197i
\(980\) −4.92160 −0.157215
\(981\) 0 0
\(982\) −2.39234 + 7.36286i −0.0763425 + 0.234958i
\(983\) −24.4304 5.19284i −0.779208 0.165626i −0.198897 0.980020i \(-0.563736\pi\)
−0.580311 + 0.814395i \(0.697069\pi\)
\(984\) 0 0
\(985\) −1.59027 0.708035i −0.0506703 0.0225599i
\(986\) 21.0221 23.3474i 0.669481 0.743534i
\(987\) 0 0
\(988\) 5.27898 2.35035i 0.167947 0.0747747i
\(989\) −17.2648 −0.548987
\(990\) 0 0
\(991\) −3.49555 −0.111040 −0.0555199 0.998458i \(-0.517682\pi\)
−0.0555199 + 0.998458i \(0.517682\pi\)
\(992\) −19.7463 + 8.79161i −0.626945 + 0.279134i
\(993\) 0 0
\(994\) 17.0874 18.9775i 0.541979 0.601928i
\(995\) −6.81137 3.03262i −0.215935 0.0961404i
\(996\) 0 0
\(997\) −7.20387 1.53123i −0.228149 0.0484946i 0.0924185 0.995720i \(-0.470540\pi\)
−0.320567 + 0.947226i \(0.603874\pi\)
\(998\) −11.8332 + 36.4188i −0.374573 + 1.15282i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.g.136.2 32
3.2 odd 2 inner 891.2.n.g.136.3 32
9.2 odd 6 297.2.f.c.136.2 16
9.4 even 3 inner 891.2.n.g.433.3 32
9.5 odd 6 inner 891.2.n.g.433.2 32
9.7 even 3 297.2.f.c.136.3 yes 16
11.3 even 5 inner 891.2.n.g.784.3 32
33.14 odd 10 inner 891.2.n.g.784.2 32
99.14 odd 30 inner 891.2.n.g.190.3 32
99.16 even 15 3267.2.a.bg.1.3 8
99.25 even 15 297.2.f.c.190.3 yes 16
99.38 odd 30 3267.2.a.bg.1.6 8
99.47 odd 30 297.2.f.c.190.2 yes 16
99.58 even 15 inner 891.2.n.g.190.2 32
99.61 odd 30 3267.2.a.bh.1.6 8
99.83 even 30 3267.2.a.bh.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.c.136.2 16 9.2 odd 6
297.2.f.c.136.3 yes 16 9.7 even 3
297.2.f.c.190.2 yes 16 99.47 odd 30
297.2.f.c.190.3 yes 16 99.25 even 15
891.2.n.g.136.2 32 1.1 even 1 trivial
891.2.n.g.136.3 32 3.2 odd 2 inner
891.2.n.g.190.2 32 99.58 even 15 inner
891.2.n.g.190.3 32 99.14 odd 30 inner
891.2.n.g.433.2 32 9.5 odd 6 inner
891.2.n.g.433.3 32 9.4 even 3 inner
891.2.n.g.784.2 32 33.14 odd 10 inner
891.2.n.g.784.3 32 11.3 even 5 inner
3267.2.a.bg.1.3 8 99.16 even 15
3267.2.a.bg.1.6 8 99.38 odd 30
3267.2.a.bh.1.3 8 99.83 even 30
3267.2.a.bh.1.6 8 99.61 odd 30