Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [891,2,Mod(136,891)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(891, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([20, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("891.136");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 891 = 3^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 891.n (of order \(15\), degree \(8\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.11467082010\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{15})\) |
Twist minimal: | no (minimal twist has level 297) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
136.1 | −2.13857 | + | 0.952153i | 0 | 2.32863 | − | 2.58621i | 3.27795 | + | 1.45944i | 0 | −1.12566 | − | 0.239267i | −1.07069 | + | 3.29523i | 0 | −8.39974 | ||||||||
136.2 | −0.974523 | + | 0.433886i | 0 | −0.576823 | + | 0.640627i | −1.12149 | − | 0.499319i | 0 | 1.49928 | + | 0.318682i | 0.943455 | − | 2.90366i | 0 | 1.30957 | ||||||||
136.3 | 0.974523 | − | 0.433886i | 0 | −0.576823 | + | 0.640627i | 1.12149 | + | 0.499319i | 0 | 1.49928 | + | 0.318682i | −0.943455 | + | 2.90366i | 0 | 1.30957 | ||||||||
136.4 | 2.13857 | − | 0.952153i | 0 | 2.32863 | − | 2.58621i | −3.27795 | − | 1.45944i | 0 | −1.12566 | − | 0.239267i | 1.07069 | − | 3.29523i | 0 | −8.39974 | ||||||||
190.1 | −2.13857 | − | 0.952153i | 0 | 2.32863 | + | 2.58621i | 3.27795 | − | 1.45944i | 0 | −1.12566 | + | 0.239267i | −1.07069 | − | 3.29523i | 0 | −8.39974 | ||||||||
190.2 | −0.974523 | − | 0.433886i | 0 | −0.576823 | − | 0.640627i | −1.12149 | + | 0.499319i | 0 | 1.49928 | − | 0.318682i | 0.943455 | + | 2.90366i | 0 | 1.30957 | ||||||||
190.3 | 0.974523 | + | 0.433886i | 0 | −0.576823 | − | 0.640627i | 1.12149 | − | 0.499319i | 0 | 1.49928 | − | 0.318682i | −0.943455 | − | 2.90366i | 0 | 1.30957 | ||||||||
190.4 | 2.13857 | + | 0.952153i | 0 | 2.32863 | + | 2.58621i | −3.27795 | + | 1.45944i | 0 | −1.12566 | + | 0.239267i | 1.07069 | + | 3.29523i | 0 | −8.39974 | ||||||||
379.1 | −1.93997 | − | 0.412354i | 0 | 1.76637 | + | 0.786438i | −2.93030 | + | 0.622855i | 0 | 0.431548 | + | 4.10590i | 0.106651 | + | 0.0774867i | 0 | 5.94154 | ||||||||
379.2 | −0.655019 | − | 0.139229i | 0 | −1.41743 | − | 0.631078i | 2.70426 | − | 0.574808i | 0 | −0.157889 | − | 1.50221i | 1.92410 | + | 1.39794i | 0 | −1.85137 | ||||||||
379.3 | 0.655019 | + | 0.139229i | 0 | −1.41743 | − | 0.631078i | −2.70426 | + | 0.574808i | 0 | −0.157889 | − | 1.50221i | −1.92410 | − | 1.39794i | 0 | −1.85137 | ||||||||
379.4 | 1.93997 | + | 0.412354i | 0 | 1.76637 | + | 0.786438i | 2.93030 | − | 0.622855i | 0 | 0.431548 | + | 4.10590i | −0.106651 | − | 0.0774867i | 0 | 5.94154 | ||||||||
433.1 | −0.244697 | + | 2.32813i | 0 | −3.40403 | − | 0.723550i | 0.375065 | + | 3.56851i | 0 | 0.770042 | − | 0.855218i | 1.07069 | − | 3.29523i | 0 | −8.39974 | ||||||||
433.2 | −0.111506 | + | 1.06090i | 0 | 0.843211 | + | 0.179230i | −0.128322 | − | 1.22090i | 0 | −1.02563 | + | 1.13907i | −0.943455 | + | 2.90366i | 0 | 1.30957 | ||||||||
433.3 | 0.111506 | − | 1.06090i | 0 | 0.843211 | + | 0.179230i | 0.128322 | + | 1.22090i | 0 | −1.02563 | + | 1.13907i | 0.943455 | − | 2.90366i | 0 | 1.30957 | ||||||||
433.4 | 0.244697 | − | 2.32813i | 0 | −3.40403 | − | 0.723550i | −0.375065 | − | 3.56851i | 0 | 0.770042 | − | 0.855218i | −1.07069 | + | 3.29523i | 0 | −8.39974 | ||||||||
460.1 | −1.32710 | − | 1.47389i | 0 | −0.202109 | + | 1.92294i | −2.00456 | + | 2.22629i | 0 | −3.77159 | + | 1.67922i | −0.106651 | + | 0.0774867i | 0 | 5.94154 | ||||||||
460.2 | −0.448085 | − | 0.497649i | 0 | 0.162183 | − | 1.54307i | 1.84993 | − | 2.05455i | 0 | 1.37990 | − | 0.614370i | −1.92410 | + | 1.39794i | 0 | −1.85137 | ||||||||
460.3 | 0.448085 | + | 0.497649i | 0 | 0.162183 | − | 1.54307i | −1.84993 | + | 2.05455i | 0 | 1.37990 | − | 0.614370i | 1.92410 | − | 1.39794i | 0 | −1.85137 | ||||||||
460.4 | 1.32710 | + | 1.47389i | 0 | −0.202109 | + | 1.92294i | 2.00456 | − | 2.22629i | 0 | −3.77159 | + | 1.67922i | 0.106651 | − | 0.0774867i | 0 | 5.94154 | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
99.m | even | 15 | 1 | inner |
99.n | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 891.2.n.g | 32 | |
3.b | odd | 2 | 1 | inner | 891.2.n.g | 32 | |
9.c | even | 3 | 1 | 297.2.f.c | ✓ | 16 | |
9.c | even | 3 | 1 | inner | 891.2.n.g | 32 | |
9.d | odd | 6 | 1 | 297.2.f.c | ✓ | 16 | |
9.d | odd | 6 | 1 | inner | 891.2.n.g | 32 | |
11.c | even | 5 | 1 | inner | 891.2.n.g | 32 | |
33.h | odd | 10 | 1 | inner | 891.2.n.g | 32 | |
99.m | even | 15 | 1 | 297.2.f.c | ✓ | 16 | |
99.m | even | 15 | 1 | inner | 891.2.n.g | 32 | |
99.m | even | 15 | 1 | 3267.2.a.bg | 8 | ||
99.n | odd | 30 | 1 | 297.2.f.c | ✓ | 16 | |
99.n | odd | 30 | 1 | inner | 891.2.n.g | 32 | |
99.n | odd | 30 | 1 | 3267.2.a.bg | 8 | ||
99.o | odd | 30 | 1 | 3267.2.a.bh | 8 | ||
99.p | even | 30 | 1 | 3267.2.a.bh | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
297.2.f.c | ✓ | 16 | 9.c | even | 3 | 1 | |
297.2.f.c | ✓ | 16 | 9.d | odd | 6 | 1 | |
297.2.f.c | ✓ | 16 | 99.m | even | 15 | 1 | |
297.2.f.c | ✓ | 16 | 99.n | odd | 30 | 1 | |
891.2.n.g | 32 | 1.a | even | 1 | 1 | trivial | |
891.2.n.g | 32 | 3.b | odd | 2 | 1 | inner | |
891.2.n.g | 32 | 9.c | even | 3 | 1 | inner | |
891.2.n.g | 32 | 9.d | odd | 6 | 1 | inner | |
891.2.n.g | 32 | 11.c | even | 5 | 1 | inner | |
891.2.n.g | 32 | 33.h | odd | 10 | 1 | inner | |
891.2.n.g | 32 | 99.m | even | 15 | 1 | inner | |
891.2.n.g | 32 | 99.n | odd | 30 | 1 | inner | |
3267.2.a.bg | 8 | 99.m | even | 15 | 1 | ||
3267.2.a.bg | 8 | 99.n | odd | 30 | 1 | ||
3267.2.a.bh | 8 | 99.o | odd | 30 | 1 | ||
3267.2.a.bh | 8 | 99.p | even | 30 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 3 T_{2}^{30} - 16 T_{2}^{28} + 211 T_{2}^{26} - 298 T_{2}^{24} - 778 T_{2}^{22} + \cdots + 14641 \) acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\).