Properties

Label 891.2.n.g
Level $891$
Weight $2$
Character orbit 891.n
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 2 q^{4} - 8 q^{7} - 24 q^{10} - 8 q^{13} + 2 q^{16} + 20 q^{19} + 24 q^{22} + 16 q^{25} - 60 q^{28} + 6 q^{31} - 32 q^{34} + 24 q^{37} + 40 q^{40} + 80 q^{43} - 24 q^{46} - 40 q^{49} - 12 q^{52}+ \cdots + 46 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
136.1 −2.13857 + 0.952153i 0 2.32863 2.58621i 3.27795 + 1.45944i 0 −1.12566 0.239267i −1.07069 + 3.29523i 0 −8.39974
136.2 −0.974523 + 0.433886i 0 −0.576823 + 0.640627i −1.12149 0.499319i 0 1.49928 + 0.318682i 0.943455 2.90366i 0 1.30957
136.3 0.974523 0.433886i 0 −0.576823 + 0.640627i 1.12149 + 0.499319i 0 1.49928 + 0.318682i −0.943455 + 2.90366i 0 1.30957
136.4 2.13857 0.952153i 0 2.32863 2.58621i −3.27795 1.45944i 0 −1.12566 0.239267i 1.07069 3.29523i 0 −8.39974
190.1 −2.13857 0.952153i 0 2.32863 + 2.58621i 3.27795 1.45944i 0 −1.12566 + 0.239267i −1.07069 3.29523i 0 −8.39974
190.2 −0.974523 0.433886i 0 −0.576823 0.640627i −1.12149 + 0.499319i 0 1.49928 0.318682i 0.943455 + 2.90366i 0 1.30957
190.3 0.974523 + 0.433886i 0 −0.576823 0.640627i 1.12149 0.499319i 0 1.49928 0.318682i −0.943455 2.90366i 0 1.30957
190.4 2.13857 + 0.952153i 0 2.32863 + 2.58621i −3.27795 + 1.45944i 0 −1.12566 + 0.239267i 1.07069 + 3.29523i 0 −8.39974
379.1 −1.93997 0.412354i 0 1.76637 + 0.786438i −2.93030 + 0.622855i 0 0.431548 + 4.10590i 0.106651 + 0.0774867i 0 5.94154
379.2 −0.655019 0.139229i 0 −1.41743 0.631078i 2.70426 0.574808i 0 −0.157889 1.50221i 1.92410 + 1.39794i 0 −1.85137
379.3 0.655019 + 0.139229i 0 −1.41743 0.631078i −2.70426 + 0.574808i 0 −0.157889 1.50221i −1.92410 1.39794i 0 −1.85137
379.4 1.93997 + 0.412354i 0 1.76637 + 0.786438i 2.93030 0.622855i 0 0.431548 + 4.10590i −0.106651 0.0774867i 0 5.94154
433.1 −0.244697 + 2.32813i 0 −3.40403 0.723550i 0.375065 + 3.56851i 0 0.770042 0.855218i 1.07069 3.29523i 0 −8.39974
433.2 −0.111506 + 1.06090i 0 0.843211 + 0.179230i −0.128322 1.22090i 0 −1.02563 + 1.13907i −0.943455 + 2.90366i 0 1.30957
433.3 0.111506 1.06090i 0 0.843211 + 0.179230i 0.128322 + 1.22090i 0 −1.02563 + 1.13907i 0.943455 2.90366i 0 1.30957
433.4 0.244697 2.32813i 0 −3.40403 0.723550i −0.375065 3.56851i 0 0.770042 0.855218i −1.07069 + 3.29523i 0 −8.39974
460.1 −1.32710 1.47389i 0 −0.202109 + 1.92294i −2.00456 + 2.22629i 0 −3.77159 + 1.67922i −0.106651 + 0.0774867i 0 5.94154
460.2 −0.448085 0.497649i 0 0.162183 1.54307i 1.84993 2.05455i 0 1.37990 0.614370i −1.92410 + 1.39794i 0 −1.85137
460.3 0.448085 + 0.497649i 0 0.162183 1.54307i −1.84993 + 2.05455i 0 1.37990 0.614370i 1.92410 1.39794i 0 −1.85137
460.4 1.32710 + 1.47389i 0 −0.202109 + 1.92294i 2.00456 2.22629i 0 −3.77159 + 1.67922i 0.106651 0.0774867i 0 5.94154
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 136.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
11.c even 5 1 inner
33.h odd 10 1 inner
99.m even 15 1 inner
99.n odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 891.2.n.g 32
3.b odd 2 1 inner 891.2.n.g 32
9.c even 3 1 297.2.f.c 16
9.c even 3 1 inner 891.2.n.g 32
9.d odd 6 1 297.2.f.c 16
9.d odd 6 1 inner 891.2.n.g 32
11.c even 5 1 inner 891.2.n.g 32
33.h odd 10 1 inner 891.2.n.g 32
99.m even 15 1 297.2.f.c 16
99.m even 15 1 inner 891.2.n.g 32
99.m even 15 1 3267.2.a.bg 8
99.n odd 30 1 297.2.f.c 16
99.n odd 30 1 inner 891.2.n.g 32
99.n odd 30 1 3267.2.a.bg 8
99.o odd 30 1 3267.2.a.bh 8
99.p even 30 1 3267.2.a.bh 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
297.2.f.c 16 9.c even 3 1
297.2.f.c 16 9.d odd 6 1
297.2.f.c 16 99.m even 15 1
297.2.f.c 16 99.n odd 30 1
891.2.n.g 32 1.a even 1 1 trivial
891.2.n.g 32 3.b odd 2 1 inner
891.2.n.g 32 9.c even 3 1 inner
891.2.n.g 32 9.d odd 6 1 inner
891.2.n.g 32 11.c even 5 1 inner
891.2.n.g 32 33.h odd 10 1 inner
891.2.n.g 32 99.m even 15 1 inner
891.2.n.g 32 99.n odd 30 1 inner
3267.2.a.bg 8 99.m even 15 1
3267.2.a.bg 8 99.n odd 30 1
3267.2.a.bh 8 99.o odd 30 1
3267.2.a.bh 8 99.p even 30 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 3 T_{2}^{30} - 16 T_{2}^{28} + 211 T_{2}^{26} - 298 T_{2}^{24} - 778 T_{2}^{22} + \cdots + 14641 \) acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\). Copy content Toggle raw display