Properties

Label 30.18.a.d
Level $30$
Weight $18$
Character orbit 30.a
Self dual yes
Analytic conductor $54.967$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,18,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.9666262034\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 256 q^{2} - 6561 q^{3} + 65536 q^{4} - 390625 q^{5} - 1679616 q^{6} - 7079716 q^{7} + 16777216 q^{8} + 43046721 q^{9} - 100000000 q^{10} - 162426840 q^{11} - 429981696 q^{12} - 1810161262 q^{13} - 1812407296 q^{14}+ \cdots - 69\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
256.000 −6561.00 65536.0 −390625. −1.67962e6 −7.07972e6 1.67772e7 4.30467e7 −1.00000e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.18.a.d 1
3.b odd 2 1 90.18.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.18.a.d 1 1.a even 1 1 trivial
90.18.a.d 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 7079716 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(30))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 256 \) Copy content Toggle raw display
$3$ \( T + 6561 \) Copy content Toggle raw display
$5$ \( T + 390625 \) Copy content Toggle raw display
$7$ \( T + 7079716 \) Copy content Toggle raw display
$11$ \( T + 162426840 \) Copy content Toggle raw display
$13$ \( T + 1810161262 \) Copy content Toggle raw display
$17$ \( T + 1094990826 \) Copy content Toggle raw display
$19$ \( T - 38045175836 \) Copy content Toggle raw display
$23$ \( T + 68882038200 \) Copy content Toggle raw display
$29$ \( T - 587445157914 \) Copy content Toggle raw display
$31$ \( T - 2508137089208 \) Copy content Toggle raw display
$37$ \( T - 18449438145938 \) Copy content Toggle raw display
$41$ \( T - 94441103793594 \) Copy content Toggle raw display
$43$ \( T - 24445030708724 \) Copy content Toggle raw display
$47$ \( T - 71260398970920 \) Copy content Toggle raw display
$53$ \( T - 24684916671546 \) Copy content Toggle raw display
$59$ \( T - 833459560791960 \) Copy content Toggle raw display
$61$ \( T - 1299329194697270 \) Copy content Toggle raw display
$67$ \( T - 4965552125777204 \) Copy content Toggle raw display
$71$ \( T - 4246235071790880 \) Copy content Toggle raw display
$73$ \( T - 2703337188481538 \) Copy content Toggle raw display
$79$ \( T - 12\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T + 4858849359564492 \) Copy content Toggle raw display
$89$ \( T - 26\!\cdots\!78 \) Copy content Toggle raw display
$97$ \( T + 4926548684142622 \) Copy content Toggle raw display
show more
show less