Properties

Label 300.2.e.a.251.3
Level 300300
Weight 22
Character 300.251
Analytic conductor 2.3962.396
Analytic rank 00
Dimension 44
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,2,Mod(251,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 300=22352 300 = 2^{2} \cdot 3 \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 300.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.395512060642.39551206064
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,5)\Q(\sqrt{3}, \sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+x2+4 x^{4} + x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 251.3
Root 0.8660251.11803i0.866025 - 1.11803i of defining polynomial
Character χ\chi == 300.251
Dual form 300.2.e.a.251.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8660251.11803i)q2+1.73205q3+(0.5000001.93649i)q4+(1.500001.93649i)q6+(2.598081.11803i)q8+3.00000q9+(0.8660253.35410i)q12+(3.50000+1.93649i)q164.47214iq17+(2.598083.35410i)q18+7.74597iq193.46410q23+(4.500001.93649i)q24+5.19615q27+7.74597iq31+(0.866025+5.59017i)q32+(5.000003.87298i)q34+(1.500005.80948i)q36+(8.66025+6.70820i)q38+(3.00000+3.87298i)q4610.3923q47+(6.06218+3.35410i)q48+7.00000q497.74597iq514.47214iq53+(4.500005.80948i)q54+13.4164iq572.00000q61+(8.66025+6.70820i)q62+(5.50000+5.80948i)q64+(8.66025+2.23607i)q686.00000q69+(7.794233.35410i)q72+(15.00003.87298i)q767.74597iq79+9.00000q81+3.46410q83+(1.73205+6.70820i)q92+13.4164iq93+(9.00000+11.6190i)q94+(1.50000+9.68246i)q96+(6.062187.82624i)q98+O(q100)q+(0.866025 - 1.11803i) q^{2} +1.73205 q^{3} +(-0.500000 - 1.93649i) q^{4} +(1.50000 - 1.93649i) q^{6} +(-2.59808 - 1.11803i) q^{8} +3.00000 q^{9} +(-0.866025 - 3.35410i) q^{12} +(-3.50000 + 1.93649i) q^{16} -4.47214i q^{17} +(2.59808 - 3.35410i) q^{18} +7.74597i q^{19} -3.46410 q^{23} +(-4.50000 - 1.93649i) q^{24} +5.19615 q^{27} +7.74597i q^{31} +(-0.866025 + 5.59017i) q^{32} +(-5.00000 - 3.87298i) q^{34} +(-1.50000 - 5.80948i) q^{36} +(8.66025 + 6.70820i) q^{38} +(-3.00000 + 3.87298i) q^{46} -10.3923 q^{47} +(-6.06218 + 3.35410i) q^{48} +7.00000 q^{49} -7.74597i q^{51} -4.47214i q^{53} +(4.50000 - 5.80948i) q^{54} +13.4164i q^{57} -2.00000 q^{61} +(8.66025 + 6.70820i) q^{62} +(5.50000 + 5.80948i) q^{64} +(-8.66025 + 2.23607i) q^{68} -6.00000 q^{69} +(-7.79423 - 3.35410i) q^{72} +(15.0000 - 3.87298i) q^{76} -7.74597i q^{79} +9.00000 q^{81} +3.46410 q^{83} +(1.73205 + 6.70820i) q^{92} +13.4164i q^{93} +(-9.00000 + 11.6190i) q^{94} +(-1.50000 + 9.68246i) q^{96} +(6.06218 - 7.82624i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q4+6q6+12q914q1618q2420q346q3612q46+28q49+18q548q61+22q6424q69+60q76+36q8136q946q96+O(q100) 4 q - 2 q^{4} + 6 q^{6} + 12 q^{9} - 14 q^{16} - 18 q^{24} - 20 q^{34} - 6 q^{36} - 12 q^{46} + 28 q^{49} + 18 q^{54} - 8 q^{61} + 22 q^{64} - 24 q^{69} + 60 q^{76} + 36 q^{81} - 36 q^{94} - 6 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/300Z)×\left(\mathbb{Z}/300\mathbb{Z}\right)^\times.

nn 101101 151151 277277
χ(n)\chi(n) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.866025 1.11803i 0.612372 0.790569i
33 1.73205 1.00000
44 −0.500000 1.93649i −0.250000 0.968246i
55 0 0
66 1.50000 1.93649i 0.612372 0.790569i
77 0 0 1.00000 00
−1.00000 π\pi
88 −2.59808 1.11803i −0.918559 0.395285i
99 3.00000 1.00000
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 −0.866025 3.35410i −0.250000 0.968246i
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 −3.50000 + 1.93649i −0.875000 + 0.484123i
1717 4.47214i 1.08465i −0.840168 0.542326i 0.817544π-0.817544\pi
0.840168 0.542326i 0.182456π-0.182456\pi
1818 2.59808 3.35410i 0.612372 0.790569i
1919 7.74597i 1.77705i 0.458831 + 0.888523i 0.348268π0.348268\pi
−0.458831 + 0.888523i 0.651732π0.651732\pi
2020 0 0
2121 0 0
2222 0 0
2323 −3.46410 −0.722315 −0.361158 0.932505i 0.617618π-0.617618\pi
−0.361158 + 0.932505i 0.617618π0.617618\pi
2424 −4.50000 1.93649i −0.918559 0.395285i
2525 0 0
2626 0 0
2727 5.19615 1.00000
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 7.74597i 1.39122i 0.718421 + 0.695608i 0.244865π0.244865\pi
−0.718421 + 0.695608i 0.755135π0.755135\pi
3232 −0.866025 + 5.59017i −0.153093 + 0.988212i
3333 0 0
3434 −5.00000 3.87298i −0.857493 0.664211i
3535 0 0
3636 −1.50000 5.80948i −0.250000 0.968246i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 8.66025 + 6.70820i 1.40488 + 1.08821i
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 −3.00000 + 3.87298i −0.442326 + 0.571040i
4747 −10.3923 −1.51587 −0.757937 0.652328i 0.773792π-0.773792\pi
−0.757937 + 0.652328i 0.773792π0.773792\pi
4848 −6.06218 + 3.35410i −0.875000 + 0.484123i
4949 7.00000 1.00000
5050 0 0
5151 7.74597i 1.08465i
5252 0 0
5353 4.47214i 0.614295i −0.951662 0.307148i 0.900625π-0.900625\pi
0.951662 0.307148i 0.0993745π-0.0993745\pi
5454 4.50000 5.80948i 0.612372 0.790569i
5555 0 0
5656 0 0
5757 13.4164i 1.77705i
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 −2.00000 −0.256074 −0.128037 0.991769i 0.540868π-0.540868\pi
−0.128037 + 0.991769i 0.540868π0.540868\pi
6262 8.66025 + 6.70820i 1.09985 + 0.851943i
6363 0 0
6464 5.50000 + 5.80948i 0.687500 + 0.726184i
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 −8.66025 + 2.23607i −1.05021 + 0.271163i
6969 −6.00000 −0.722315
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 −7.79423 3.35410i −0.918559 0.395285i
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 15.0000 3.87298i 1.72062 0.444262i
7777 0 0
7878 0 0
7979 7.74597i 0.871489i −0.900070 0.435745i 0.856485π-0.856485\pi
0.900070 0.435745i 0.143515π-0.143515\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 3.46410 0.380235 0.190117 0.981761i 0.439113π-0.439113\pi
0.190117 + 0.981761i 0.439113π0.439113\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 1.73205 + 6.70820i 0.180579 + 0.699379i
9393 13.4164i 1.39122i
9494 −9.00000 + 11.6190i −0.928279 + 1.19840i
9595 0 0
9696 −1.50000 + 9.68246i −0.153093 + 0.988212i
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 6.06218 7.82624i 0.612372 0.790569i
9999 0 0
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 −8.66025 6.70820i −0.857493 0.664211i
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 −5.00000 3.87298i −0.485643 0.376177i
107107 10.3923 1.00466 0.502331 0.864675i 0.332476π-0.332476\pi
0.502331 + 0.864675i 0.332476π0.332476\pi
108108 −2.59808 10.0623i −0.250000 0.968246i
109109 −14.0000 −1.34096 −0.670478 0.741929i 0.733911π-0.733911\pi
−0.670478 + 0.741929i 0.733911π0.733911\pi
110110 0 0
111111 0 0
112112 0 0
113113 4.47214i 0.420703i 0.977626 + 0.210352i 0.0674609π0.0674609\pi
−0.977626 + 0.210352i 0.932539π0.932539\pi
114114 15.0000 + 11.6190i 1.40488 + 1.08821i
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 −1.73205 + 2.23607i −0.156813 + 0.202444i
123123 0 0
124124 15.0000 3.87298i 1.34704 0.347804i
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 11.2583 1.11803i 0.995105 0.0988212i
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −5.00000 + 11.6190i −0.428746 + 0.996317i
137137 22.3607i 1.91040i −0.295958 0.955201i 0.595639π-0.595639\pi
0.295958 0.955201i 0.404361π-0.404361\pi
138138 −5.19615 + 6.70820i −0.442326 + 0.571040i
139139 23.2379i 1.97101i −0.169638 0.985506i 0.554260π-0.554260\pi
0.169638 0.985506i 0.445740π-0.445740\pi
140140 0 0
141141 −18.0000 −1.51587
142142 0 0
143143 0 0
144144 −10.5000 + 5.80948i −0.875000 + 0.484123i
145145 0 0
146146 0 0
147147 12.1244 1.00000
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 23.2379i 1.89107i −0.325515 0.945537i 0.605538π-0.605538\pi
0.325515 0.945537i 0.394462π-0.394462\pi
152152 8.66025 20.1246i 0.702439 1.63232i
153153 13.4164i 1.08465i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 −8.66025 6.70820i −0.688973 0.533676i
159159 7.74597i 0.614295i
160160 0 0
161161 0 0
162162 7.79423 10.0623i 0.612372 0.790569i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 3.00000 3.87298i 0.232845 0.300602i
167167 −24.2487 −1.87642 −0.938211 0.346064i 0.887518π-0.887518\pi
−0.938211 + 0.346064i 0.887518π0.887518\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 23.2379i 1.77705i
172172 0 0
173173 22.3607i 1.70005i −0.526742 0.850026i 0.676586π-0.676586\pi
0.526742 0.850026i 0.323414π-0.323414\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 22.0000 1.63525 0.817624 0.575753i 0.195291π-0.195291\pi
0.817624 + 0.575753i 0.195291π0.195291\pi
182182 0 0
183183 −3.46410 −0.256074
184184 9.00000 + 3.87298i 0.663489 + 0.285520i
185185 0 0
186186 15.0000 + 11.6190i 1.09985 + 0.851943i
187187 0 0
188188 5.19615 + 20.1246i 0.378968 + 1.46774i
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 9.52628 + 10.0623i 0.687500 + 0.726184i
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 −3.50000 13.5554i −0.250000 0.968246i
197197 4.47214i 0.318626i 0.987228 + 0.159313i 0.0509280π0.0509280\pi
−0.987228 + 0.159313i 0.949072π0.949072\pi
198198 0 0
199199 23.2379i 1.64729i 0.567105 + 0.823646i 0.308063π0.308063\pi
−0.567105 + 0.823646i 0.691937π0.691937\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 −15.0000 + 3.87298i −1.05021 + 0.271163i
205205 0 0
206206 0 0
207207 −10.3923 −0.722315
208208 0 0
209209 0 0
210210 0 0
211211 7.74597i 0.533254i −0.963800 0.266627i 0.914091π-0.914091\pi
0.963800 0.266627i 0.0859092π-0.0859092\pi
212212 −8.66025 + 2.23607i −0.594789 + 0.153574i
213213 0 0
214214 9.00000 11.6190i 0.615227 0.794255i
215215 0 0
216216 −13.5000 5.80948i −0.918559 0.395285i
217217 0 0
218218 −12.1244 + 15.6525i −0.821165 + 1.06012i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 5.00000 + 3.87298i 0.332595 + 0.257627i
227227 24.2487 1.60944 0.804722 0.593652i 0.202314π-0.202314\pi
0.804722 + 0.593652i 0.202314π0.202314\pi
228228 25.9808 6.70820i 1.72062 0.444262i
229229 26.0000 1.71813 0.859064 0.511868i 0.171046π-0.171046\pi
0.859064 + 0.511868i 0.171046π0.171046\pi
230230 0 0
231231 0 0
232232 0 0
233233 22.3607i 1.46490i 0.680823 + 0.732448i 0.261622π0.261622\pi
−0.680823 + 0.732448i 0.738378π0.738378\pi
234234 0 0
235235 0 0
236236 0 0
237237 13.4164i 0.871489i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 2.00000 0.128831 0.0644157 0.997923i 0.479482π-0.479482\pi
0.0644157 + 0.997923i 0.479482π0.479482\pi
242242 −9.52628 + 12.2984i −0.612372 + 0.790569i
243243 15.5885 1.00000
244244 1.00000 + 3.87298i 0.0640184 + 0.247942i
245245 0 0
246246 0 0
247247 0 0
248248 8.66025 20.1246i 0.549927 1.27791i
249249 6.00000 0.380235
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 8.50000 13.5554i 0.531250 0.847215i
257257 31.3050i 1.95275i 0.216085 + 0.976375i 0.430671π0.430671\pi
−0.216085 + 0.976375i 0.569329π0.569329\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −31.1769 −1.92245 −0.961225 0.275764i 0.911069π-0.911069\pi
−0.961225 + 0.275764i 0.911069π0.911069\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 7.74597i 0.470534i 0.971931 + 0.235267i 0.0755965π0.0755965\pi
−0.971931 + 0.235267i 0.924404π0.924404\pi
272272 8.66025 + 15.6525i 0.525105 + 0.949071i
273273 0 0
274274 −25.0000 19.3649i −1.51031 1.16988i
275275 0 0
276276 3.00000 + 11.6190i 0.180579 + 0.699379i
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 −25.9808 20.1246i −1.55822 1.20699i
279279 23.2379i 1.39122i
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 −15.5885 + 20.1246i −0.928279 + 1.19840i
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 −2.59808 + 16.7705i −0.153093 + 0.988212i
289289 −3.00000 −0.176471
290290 0 0
291291 0 0
292292 0 0
293293 31.3050i 1.82885i 0.404750 + 0.914427i 0.367359π0.367359\pi
−0.404750 + 0.914427i 0.632641π0.632641\pi
294294 10.5000 13.5554i 0.612372 0.790569i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −25.9808 20.1246i −1.49502 1.15804i
303303 0 0
304304 −15.0000 27.1109i −0.860309 1.55492i
305305 0 0
306306 −15.0000 11.6190i −0.857493 0.664211i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 −15.0000 + 3.87298i −0.843816 + 0.217872i
317317 22.3607i 1.25590i 0.778253 + 0.627950i 0.216106π0.216106\pi
−0.778253 + 0.627950i 0.783894π0.783894\pi
318318 −8.66025 6.70820i −0.485643 0.376177i
319319 0 0
320320 0 0
321321 18.0000 1.00466
322322 0 0
323323 34.6410 1.92748
324324 −4.50000 17.4284i −0.250000 0.968246i
325325 0 0
326326 0 0
327327 −24.2487 −1.34096
328328 0 0
329329 0 0
330330 0 0
331331 23.2379i 1.27727i 0.769510 + 0.638635i 0.220501π0.220501\pi
−0.769510 + 0.638635i 0.779499π0.779499\pi
332332 −1.73205 6.70820i −0.0950586 0.368161i
333333 0 0
334334 −21.0000 + 27.1109i −1.14907 + 1.48344i
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 −11.2583 + 14.5344i −0.612372 + 0.790569i
339339 7.74597i 0.420703i
340340 0 0
341341 0 0
342342 25.9808 + 20.1246i 1.40488 + 1.08821i
343343 0 0
344344 0 0
345345 0 0
346346 −25.0000 19.3649i −1.34401 1.04106i
347347 10.3923 0.557888 0.278944 0.960307i 0.410016π-0.410016\pi
0.278944 + 0.960307i 0.410016π0.410016\pi
348348 0 0
349349 34.0000 1.81998 0.909989 0.414632i 0.136090π-0.136090\pi
0.909989 + 0.414632i 0.136090π0.136090\pi
350350 0 0
351351 0 0
352352 0 0
353353 31.3050i 1.66619i −0.553127 0.833097i 0.686565π-0.686565\pi
0.553127 0.833097i 0.313435π-0.313435\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −41.0000 −2.15789
362362 19.0526 24.5967i 1.00138 1.29278i
363363 −19.0526 −1.00000
364364 0 0
365365 0 0
366366 −3.00000 + 3.87298i −0.156813 + 0.202444i
367367 0 0 1.00000 00
−1.00000 π\pi
368368 12.1244 6.70820i 0.632026 0.349689i
369369 0 0
370370 0 0
371371 0 0
372372 25.9808 6.70820i 1.34704 0.347804i
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 27.0000 + 11.6190i 1.39242 + 0.599202i
377377 0 0
378378 0 0
379379 38.7298i 1.98942i 0.102733 + 0.994709i 0.467241π0.467241\pi
−0.102733 + 0.994709i 0.532759π0.532759\pi
380380 0 0
381381 0 0
382382 0 0
383383 38.1051 1.94708 0.973540 0.228515i 0.0733872π-0.0733872\pi
0.973540 + 0.228515i 0.0733872π0.0733872\pi
384384 19.5000 1.93649i 0.995105 0.0988212i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 15.4919i 0.783461i
392392 −18.1865 7.82624i −0.918559 0.395285i
393393 0 0
394394 5.00000 + 3.87298i 0.251896 + 0.195118i
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 25.9808 + 20.1246i 1.30230 + 1.00876i
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 −8.66025 + 20.1246i −0.428746 + 0.996317i
409409 −26.0000 −1.28562 −0.642809 0.766027i 0.722231π-0.722231\pi
−0.642809 + 0.766027i 0.722231π0.722231\pi
410410 0 0
411411 38.7298i 1.91040i
412412 0 0
413413 0 0
414414 −9.00000 + 11.6190i −0.442326 + 0.571040i
415415 0 0
416416 0 0
417417 40.2492i 1.97101i
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 38.0000 1.85201 0.926003 0.377515i 0.123221π-0.123221\pi
0.926003 + 0.377515i 0.123221π0.123221\pi
422422 −8.66025 6.70820i −0.421575 0.326550i
423423 −31.1769 −1.51587
424424 −5.00000 + 11.6190i −0.242821 + 0.564266i
425425 0 0
426426 0 0
427427 0 0
428428 −5.19615 20.1246i −0.251166 0.972760i
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 −18.1865 + 10.0623i −0.875000 + 0.484123i
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 7.00000 + 27.1109i 0.335239 + 1.29838i
437437 26.8328i 1.28359i
438438 0 0
439439 38.7298i 1.84847i −0.381819 0.924237i 0.624702π-0.624702\pi
0.381819 0.924237i 0.375298π-0.375298\pi
440440 0 0
441441 21.0000 1.00000
442442 0 0
443443 −38.1051 −1.81043 −0.905214 0.424955i 0.860290π-0.860290\pi
−0.905214 + 0.424955i 0.860290π0.860290\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 8.66025 2.23607i 0.407344 0.105176i
453453 40.2492i 1.89107i
454454 21.0000 27.1109i 0.985579 1.27238i
455455 0 0
456456 15.0000 34.8569i 0.702439 1.63232i
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 22.5167 29.0689i 1.05213 1.35830i
459459 23.2379i 1.08465i
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 25.0000 + 19.3649i 1.15810 + 0.897062i
467467 24.2487 1.12210 0.561048 0.827783i 0.310398π-0.310398\pi
0.561048 + 0.827783i 0.310398π0.310398\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 −15.0000 11.6190i −0.688973 0.533676i
475475 0 0
476476 0 0
477477 13.4164i 0.614295i
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 1.73205 2.23607i 0.0788928 0.101850i
483483 0 0
484484 5.50000 + 21.3014i 0.250000 + 0.968246i
485485 0 0
486486 13.5000 17.4284i 0.612372 0.790569i
487487 0 0 1.00000 00
−1.00000 π\pi
488488 5.19615 + 2.23607i 0.235219 + 0.101222i
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −15.0000 27.1109i −0.673520 1.21731i
497497 0 0
498498 5.19615 6.70820i 0.232845 0.300602i
499499 7.74597i 0.346757i 0.984855 + 0.173379i 0.0554684π0.0554684\pi
−0.984855 + 0.173379i 0.944532π0.944532\pi
500500 0 0
501501 −42.0000 −1.87642
502502 0 0
503503 −3.46410 −0.154457 −0.0772283 0.997013i 0.524607π-0.524607\pi
−0.0772283 + 0.997013i 0.524607π0.524607\pi
504504 0 0
505505 0 0
506506 0 0
507507 −22.5167 −1.00000
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −7.79423 21.2426i −0.344459 0.938801i
513513 40.2492i 1.77705i
514514 35.0000 + 27.1109i 1.54378 + 1.19581i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 38.7298i 1.70005i
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 −27.0000 + 34.8569i −1.17726 + 1.51983i
527527 34.6410 1.50899
528528 0 0
529529 −11.0000 −0.478261
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −2.00000 −0.0859867 −0.0429934 0.999075i 0.513689π-0.513689\pi
−0.0429934 + 0.999075i 0.513689π0.513689\pi
542542 8.66025 + 6.70820i 0.371990 + 0.288142i
543543 38.1051 1.63525
544544 25.0000 + 3.87298i 1.07187 + 0.166053i
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −43.3013 + 11.1803i −1.84974 + 0.477600i
549549 −6.00000 −0.256074
550550 0 0
551551 0 0
552552 15.5885 + 6.70820i 0.663489 + 0.285520i
553553 0 0
554554 0 0
555555 0 0
556556 −45.0000 + 11.6190i −1.90843 + 0.492753i
557557 22.3607i 0.947452i 0.880672 + 0.473726i 0.157091π0.157091\pi
−0.880672 + 0.473726i 0.842909π0.842909\pi
558558 25.9808 + 20.1246i 1.09985 + 0.851943i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 31.1769 1.31395 0.656975 0.753912i 0.271836π-0.271836\pi
0.656975 + 0.753912i 0.271836π0.271836\pi
564564 9.00000 + 34.8569i 0.378968 + 1.46774i
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 38.7298i 1.62079i −0.585882 0.810397i 0.699252π-0.699252\pi
0.585882 0.810397i 0.300748π-0.300748\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 16.5000 + 17.4284i 0.687500 + 0.726184i
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 −2.59808 + 3.35410i −0.108066 + 0.139512i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 35.0000 + 27.1109i 1.44584 + 1.11994i
587587 −45.0333 −1.85872 −0.929362 0.369170i 0.879642π-0.879642\pi
−0.929362 + 0.369170i 0.879642π0.879642\pi
588588 −6.06218 23.4787i −0.250000 0.968246i
589589 −60.0000 −2.47226
590590 0 0
591591 7.74597i 0.318626i
592592 0 0
593593 4.47214i 0.183649i 0.995775 + 0.0918243i 0.0292698π0.0292698\pi
−0.995775 + 0.0918243i 0.970730π0.970730\pi
594594 0 0
595595 0 0
596596 0 0
597597 40.2492i 1.64729i
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −38.0000 −1.55005 −0.775026 0.631929i 0.782263π-0.782263\pi
−0.775026 + 0.631929i 0.782263π0.782263\pi
602602 0 0
603603 0 0
604604 −45.0000 + 11.6190i −1.83102 + 0.472768i
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 −43.3013 6.70820i −1.75610 0.272054i
609609 0 0
610610 0 0
611611 0 0
612612 −25.9808 + 6.70820i −1.05021 + 0.271163i
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 49.1935i 1.98046i 0.139459 + 0.990228i 0.455464π0.455464\pi
−0.139459 + 0.990228i 0.544536π0.544536\pi
618618 0 0
619619 23.2379i 0.934010i −0.884255 0.467005i 0.845333π-0.845333\pi
0.884255 0.467005i 0.154667π-0.154667\pi
620620 0 0
621621 −18.0000 −0.722315
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 38.7298i 1.54181i 0.636950 + 0.770905i 0.280196π0.280196\pi
−0.636950 + 0.770905i 0.719804π0.719804\pi
632632 −8.66025 + 20.1246i −0.344486 + 0.800514i
633633 13.4164i 0.533254i
634634 25.0000 + 19.3649i 0.992877 + 0.769079i
635635 0 0
636636 −15.0000 + 3.87298i −0.594789 + 0.153574i
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 15.5885 20.1246i 0.615227 0.794255i
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 30.0000 38.7298i 1.18033 1.52380i
647647 −24.2487 −0.953315 −0.476658 0.879089i 0.658152π-0.658152\pi
−0.476658 + 0.879089i 0.658152π0.658152\pi
648648 −23.3827 10.0623i −0.918559 0.395285i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 49.1935i 1.92509i 0.271122 + 0.962545i 0.412605π0.412605\pi
−0.271122 + 0.962545i 0.587395π0.587395\pi
654654 −21.0000 + 27.1109i −0.821165 + 1.06012i
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 22.0000 0.855701 0.427850 0.903850i 0.359271π-0.359271\pi
0.427850 + 0.903850i 0.359271π0.359271\pi
662662 25.9808 + 20.1246i 1.00977 + 0.782165i
663663 0 0
664664 −9.00000 3.87298i −0.349268 0.150301i
665665 0 0
666666 0 0
667667 0 0
668668 12.1244 + 46.9574i 0.469105 + 1.81684i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 6.50000 + 25.1744i 0.250000 + 0.968246i
677677 31.3050i 1.20315i −0.798817 0.601574i 0.794541π-0.794541\pi
0.798817 0.601574i 0.205459π-0.205459\pi
678678 8.66025 + 6.70820i 0.332595 + 0.257627i
679679 0 0
680680 0 0
681681 42.0000 1.60944
682682 0 0
683683 −38.1051 −1.45805 −0.729026 0.684486i 0.760027π-0.760027\pi
−0.729026 + 0.684486i 0.760027π0.760027\pi
684684 45.0000 11.6190i 1.72062 0.444262i
685685 0 0
686686 0 0
687687 45.0333 1.71813
688688 0 0
689689 0 0
690690 0 0
691691 7.74597i 0.294670i −0.989087 0.147335i 0.952930π-0.952930\pi
0.989087 0.147335i 0.0470696π-0.0470696\pi
692692 −43.3013 + 11.1803i −1.64607 + 0.425013i
693693 0 0
694694 9.00000 11.6190i 0.341635 0.441049i
695695 0 0
696696 0 0
697697 0 0
698698 29.4449 38.0132i 1.11450 1.43882i
699699 38.7298i 1.46490i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −35.0000 27.1109i −1.31724 1.02033i
707707 0 0
708708 0 0
709709 26.0000 0.976450 0.488225 0.872718i 0.337644π-0.337644\pi
0.488225 + 0.872718i 0.337644π0.337644\pi
710710 0 0
711711 23.2379i 0.871489i
712712 0 0
713713 26.8328i 1.00490i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 −35.5070 + 45.8394i −1.32144 + 1.70597i
723723 3.46410 0.128831
724724 −11.0000 42.6028i −0.408812 1.58332i
725725 0 0
726726 −16.5000 + 21.3014i −0.612372 + 0.790569i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 27.0000 1.00000
730730 0 0
731731 0 0
732732 1.73205 + 6.70820i 0.0640184 + 0.247942i
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 0 0
736736 3.00000 19.3649i 0.110581 0.713800i
737737 0 0
738738 0 0
739739 54.2218i 1.99458i −0.0735712 0.997290i 0.523440π-0.523440\pi
0.0735712 0.997290i 0.476560π-0.476560\pi
740740 0 0
741741 0 0
742742 0 0
743743 −31.1769 −1.14377 −0.571885 0.820334i 0.693788π-0.693788\pi
−0.571885 + 0.820334i 0.693788π0.693788\pi
744744 15.0000 34.8569i 0.549927 1.27791i
745745 0 0
746746 0 0
747747 10.3923 0.380235
748748 0 0
749749 0 0
750750 0 0
751751 54.2218i 1.97858i −0.145962 0.989290i 0.546628π-0.546628\pi
0.145962 0.989290i 0.453372π-0.453372\pi
752752 36.3731 20.1246i 1.32639 0.733869i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 43.3013 + 33.5410i 1.57277 + 1.21826i
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 33.0000 42.6028i 1.19234 1.53930i
767767 0 0
768768 14.7224 23.4787i 0.531250 0.847215i
769769 46.0000 1.65880 0.829401 0.558653i 0.188682π-0.188682\pi
0.829401 + 0.558653i 0.188682π0.188682\pi
770770 0 0
771771 54.2218i 1.95275i
772772 0 0
773773 4.47214i 0.160852i −0.996761 0.0804258i 0.974372π-0.974372\pi
0.996761 0.0804258i 0.0256280π-0.0256280\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 17.3205 + 13.4164i 0.619380 + 0.479770i
783783 0 0
784784 −24.5000 + 13.5554i −0.875000 + 0.484123i
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 8.66025 2.23607i 0.308509 0.0796566i
789789 −54.0000 −1.92245
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 45.0000 11.6190i 1.59498 0.411823i
797797 49.1935i 1.74252i −0.490819 0.871262i 0.663302π-0.663302\pi
0.490819 0.871262i 0.336698π-0.336698\pi
798798 0 0
799799 46.4758i 1.64420i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 23.2379i 0.815993i 0.912983 + 0.407997i 0.133772π0.133772\pi
−0.912983 + 0.407997i 0.866228π0.866228\pi
812812 0 0
813813 13.4164i 0.470534i
814814 0 0
815815 0 0
816816 15.0000 + 27.1109i 0.525105 + 0.949071i
817817 0 0
818818 −22.5167 + 29.0689i −0.787277 + 1.01637i
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 −43.3013 33.5410i −1.51031 1.16988i
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 −45.0333 −1.56596 −0.782981 0.622046i 0.786302π-0.786302\pi
−0.782981 + 0.622046i 0.786302π0.786302\pi
828828 5.19615 + 20.1246i 0.180579 + 0.699379i
829829 34.0000 1.18087 0.590434 0.807086i 0.298956π-0.298956\pi
0.590434 + 0.807086i 0.298956π0.298956\pi
830830 0 0
831831 0 0
832832 0 0
833833 31.3050i 1.08465i
834834 −45.0000 34.8569i −1.55822 1.20699i
835835 0 0
836836 0 0
837837 40.2492i 1.39122i
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 29.0000 1.00000
842842 32.9090 42.4853i 1.13412 1.46414i
843843 0 0
844844 −15.0000 + 3.87298i −0.516321 + 0.133314i
845845 0 0
846846 −27.0000 + 34.8569i −0.928279 + 1.19840i
847847 0 0
848848 8.66025 + 15.6525i 0.297394 + 0.537508i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 −27.0000 11.6190i −0.922841 0.397128i
857857 58.1378i 1.98595i −0.118331 0.992974i 0.537755π-0.537755\pi
0.118331 0.992974i 0.462245π-0.462245\pi
858858 0 0
859859 38.7298i 1.32144i 0.750630 + 0.660722i 0.229750π0.229750\pi
−0.750630 + 0.660722i 0.770250π0.770250\pi
860860 0 0
861861 0 0
862862 0 0
863863 38.1051 1.29711 0.648557 0.761166i 0.275373π-0.275373\pi
0.648557 + 0.761166i 0.275373π0.275373\pi
864864 −4.50000 + 29.0474i −0.153093 + 0.988212i
865865 0 0
866866 0 0
867867 −5.19615 −0.176471
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 36.3731 + 15.6525i 1.23175 + 0.530060i
873873 0 0
874874 −30.0000 23.2379i −1.01477 0.786034i
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 −43.3013 33.5410i −1.46135 1.13195i
879879 54.2218i 1.82885i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 18.1865 23.4787i 0.612372 0.790569i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 −33.0000 + 42.6028i −1.10866 + 1.43127i
887887 58.8897 1.97732 0.988662 0.150160i 0.0479788π-0.0479788\pi
0.988662 + 0.150160i 0.0479788π0.0479788\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 80.4984i 2.69378i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −20.0000 −0.666297
902902 0 0
903903 0 0
904904 5.00000 11.6190i 0.166298 0.386441i
905905 0 0
906906 −45.0000 34.8569i −1.49502 1.15804i
907907 0 0 1.00000 00
−1.00000 π\pi
908908 −12.1244 46.9574i −0.402361 1.55834i
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 −25.9808 46.9574i −0.860309 1.55492i
913913 0 0
914914 0 0
915915 0 0
916916 −13.0000 50.3488i −0.429532 1.66357i
917917 0 0
918918 −25.9808 20.1246i −0.857493 0.664211i
919919 23.2379i 0.766548i 0.923635 + 0.383274i 0.125203π0.125203\pi
−0.923635 + 0.383274i 0.874797π0.874797\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 54.2218i 1.77705i
932932 43.3013 11.1803i 1.41838 0.366224i
933933 0 0
934934 21.0000 27.1109i 0.687141 0.887095i
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −58.8897 −1.91366 −0.956830 0.290650i 0.906129π-0.906129\pi
−0.956830 + 0.290650i 0.906129π0.906129\pi
948948 −25.9808 + 6.70820i −0.843816 + 0.217872i
949949 0 0
950950 0 0
951951 38.7298i 1.25590i
952952 0 0
953953 58.1378i 1.88327i 0.336640 + 0.941634i 0.390710π0.390710\pi
−0.336640 + 0.941634i 0.609290π0.609290\pi
954954 −15.0000 11.6190i −0.485643 0.376177i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −29.0000 −0.935484
962962 0 0
963963 31.1769 1.00466
964964 −1.00000 3.87298i −0.0322078 0.124740i
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 28.5788 + 12.2984i 0.918559 + 0.395285i
969969 60.0000 1.92748
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 −7.79423 30.1869i −0.250000 0.968246i
973973 0 0
974974 0 0
975975 0 0
976976 7.00000 3.87298i 0.224065 0.123971i
977977 4.47214i 0.143076i −0.997438 0.0715382i 0.977209π-0.977209\pi
0.997438 0.0715382i 0.0227908π-0.0227908\pi
978978 0 0
979979 0 0
980980 0 0
981981 −42.0000 −1.34096
982982 0 0
983983 −3.46410 −0.110488 −0.0552438 0.998473i 0.517594π-0.517594\pi
−0.0552438 + 0.998473i 0.517594π0.517594\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 54.2218i 1.72241i −0.508257 0.861206i 0.669710π-0.669710\pi
0.508257 0.861206i 0.330290π-0.330290\pi
992992 −43.3013 6.70820i −1.37482 0.212986i
993993 40.2492i 1.27727i
994994 0 0
995995 0 0
996996 −3.00000 11.6190i −0.0950586 0.368161i
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 8.66025 + 6.70820i 0.274136 + 0.212344i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.2.e.a.251.3 4
3.2 odd 2 inner 300.2.e.a.251.2 4
4.3 odd 2 inner 300.2.e.a.251.1 4
5.2 odd 4 60.2.h.b.59.4 yes 4
5.3 odd 4 60.2.h.b.59.1 4
5.4 even 2 inner 300.2.e.a.251.2 4
12.11 even 2 inner 300.2.e.a.251.4 4
15.2 even 4 60.2.h.b.59.1 4
15.8 even 4 60.2.h.b.59.4 yes 4
15.14 odd 2 CM 300.2.e.a.251.3 4
20.3 even 4 60.2.h.b.59.2 yes 4
20.7 even 4 60.2.h.b.59.3 yes 4
20.19 odd 2 inner 300.2.e.a.251.4 4
40.3 even 4 960.2.o.a.959.3 4
40.13 odd 4 960.2.o.a.959.1 4
40.27 even 4 960.2.o.a.959.2 4
40.37 odd 4 960.2.o.a.959.4 4
60.23 odd 4 60.2.h.b.59.3 yes 4
60.47 odd 4 60.2.h.b.59.2 yes 4
60.59 even 2 inner 300.2.e.a.251.1 4
120.53 even 4 960.2.o.a.959.4 4
120.77 even 4 960.2.o.a.959.1 4
120.83 odd 4 960.2.o.a.959.2 4
120.107 odd 4 960.2.o.a.959.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.h.b.59.1 4 5.3 odd 4
60.2.h.b.59.1 4 15.2 even 4
60.2.h.b.59.2 yes 4 20.3 even 4
60.2.h.b.59.2 yes 4 60.47 odd 4
60.2.h.b.59.3 yes 4 20.7 even 4
60.2.h.b.59.3 yes 4 60.23 odd 4
60.2.h.b.59.4 yes 4 5.2 odd 4
60.2.h.b.59.4 yes 4 15.8 even 4
300.2.e.a.251.1 4 4.3 odd 2 inner
300.2.e.a.251.1 4 60.59 even 2 inner
300.2.e.a.251.2 4 3.2 odd 2 inner
300.2.e.a.251.2 4 5.4 even 2 inner
300.2.e.a.251.3 4 1.1 even 1 trivial
300.2.e.a.251.3 4 15.14 odd 2 CM
300.2.e.a.251.4 4 12.11 even 2 inner
300.2.e.a.251.4 4 20.19 odd 2 inner
960.2.o.a.959.1 4 40.13 odd 4
960.2.o.a.959.1 4 120.77 even 4
960.2.o.a.959.2 4 40.27 even 4
960.2.o.a.959.2 4 120.83 odd 4
960.2.o.a.959.3 4 40.3 even 4
960.2.o.a.959.3 4 120.107 odd 4
960.2.o.a.959.4 4 40.37 odd 4
960.2.o.a.959.4 4 120.53 even 4