Properties

Label 960.2.o.a.959.4
Level $960$
Weight $2$
Character 960.959
Analytic conductor $7.666$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(959,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 959.4
Root \(0.809017 + 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 960.959
Dual form 960.2.o.a.959.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +2.23607 q^{5} -3.00000 q^{9} +3.87298i q^{15} +4.47214 q^{17} +7.74597i q^{19} +3.46410i q^{23} +5.00000 q^{25} -5.19615i q^{27} +7.74597i q^{31} -6.70820 q^{45} -10.3923i q^{47} -7.00000 q^{49} +7.74597i q^{51} +4.47214 q^{53} -13.4164 q^{57} +2.00000 q^{61} -6.00000 q^{69} +8.66025i q^{75} +7.74597i q^{79} +9.00000 q^{81} +3.46410i q^{83} +10.0000 q^{85} -13.4164 q^{93} +17.3205i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 20 q^{25} - 28 q^{49} + 8 q^{61} - 24 q^{69} + 36 q^{81} + 40 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) 2.23607 1.00000
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 3.87298i 1.00000i
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) 7.74597i 1.77705i 0.458831 + 0.888523i \(0.348268\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.46410i 0.722315i 0.932505 + 0.361158i \(0.117618\pi\)
−0.932505 + 0.361158i \(0.882382\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 7.74597i 1.39122i 0.718421 + 0.695608i \(0.244865\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) −6.70820 −1.00000
\(46\) 0 0
\(47\) − 10.3923i − 1.51587i −0.652328 0.757937i \(-0.726208\pi\)
0.652328 0.757937i \(-0.273792\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 7.74597i 1.08465i
\(52\) 0 0
\(53\) 4.47214 0.614295 0.307148 0.951662i \(-0.400625\pi\)
0.307148 + 0.951662i \(0.400625\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −13.4164 −1.77705
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 8.66025i 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.74597i 0.871489i 0.900070 + 0.435745i \(0.143515\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 3.46410i 0.380235i 0.981761 + 0.190117i \(0.0608868\pi\)
−0.981761 + 0.190117i \(0.939113\pi\)
\(84\) 0 0
\(85\) 10.0000 1.08465
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −13.4164 −1.39122
\(94\) 0 0
\(95\) 17.3205i 1.77705i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 10.3923i − 1.00466i −0.864675 0.502331i \(-0.832476\pi\)
0.864675 0.502331i \(-0.167524\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.47214 0.420703 0.210352 0.977626i \(-0.432539\pi\)
0.210352 + 0.977626i \(0.432539\pi\)
\(114\) 0 0
\(115\) 7.74597i 0.722315i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 11.6190i − 1.00000i
\(136\) 0 0
\(137\) 22.3607 1.91040 0.955201 0.295958i \(-0.0956389\pi\)
0.955201 + 0.295958i \(0.0956389\pi\)
\(138\) 0 0
\(139\) − 23.2379i − 1.97101i −0.169638 0.985506i \(-0.554260\pi\)
0.169638 0.985506i \(-0.445740\pi\)
\(140\) 0 0
\(141\) 18.0000 1.51587
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 12.1244i − 1.00000i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) − 23.2379i − 1.89107i −0.325515 0.945537i \(-0.605538\pi\)
0.325515 0.945537i \(-0.394462\pi\)
\(152\) 0 0
\(153\) −13.4164 −1.08465
\(154\) 0 0
\(155\) 17.3205i 1.39122i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 7.74597i 0.614295i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 24.2487i − 1.87642i −0.346064 0.938211i \(-0.612482\pi\)
0.346064 0.938211i \(-0.387518\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) − 23.2379i − 1.77705i
\(172\) 0 0
\(173\) 22.3607 1.70005 0.850026 0.526742i \(-0.176586\pi\)
0.850026 + 0.526742i \(0.176586\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 3.46410i 0.256074i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.47214 0.318626 0.159313 0.987228i \(-0.449072\pi\)
0.159313 + 0.987228i \(0.449072\pi\)
\(198\) 0 0
\(199\) − 23.2379i − 1.64729i −0.567105 0.823646i \(-0.691937\pi\)
0.567105 0.823646i \(-0.308063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 10.3923i − 0.722315i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.74597i 0.533254i 0.963800 + 0.266627i \(0.0859092\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) − 24.2487i − 1.60944i −0.593652 0.804722i \(-0.702314\pi\)
0.593652 0.804722i \(-0.297686\pi\)
\(228\) 0 0
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 22.3607 1.46490 0.732448 0.680823i \(-0.238378\pi\)
0.732448 + 0.680823i \(0.238378\pi\)
\(234\) 0 0
\(235\) − 23.2379i − 1.51587i
\(236\) 0 0
\(237\) −13.4164 −0.871489
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) −15.6525 −1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 17.3205i 1.08465i
\(256\) 0 0
\(257\) −31.3050 −1.95275 −0.976375 0.216085i \(-0.930671\pi\)
−0.976375 + 0.216085i \(0.930671\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 31.1769i 1.92245i 0.275764 + 0.961225i \(0.411069\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 7.74597i 0.470534i 0.971931 + 0.235267i \(0.0755965\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) − 23.2379i − 1.39122i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) −30.0000 −1.77705
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −31.3050 −1.82885 −0.914427 0.404750i \(-0.867359\pi\)
−0.914427 + 0.404750i \(0.867359\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.47214 0.256074
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.3607 1.25590 0.627950 0.778253i \(-0.283894\pi\)
0.627950 + 0.778253i \(0.283894\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 18.0000 1.00466
\(322\) 0 0
\(323\) 34.6410i 1.92748i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 24.2487i − 1.34096i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 23.2379i − 1.27727i −0.769510 0.638635i \(-0.779499\pi\)
0.769510 0.638635i \(-0.220501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 7.74597i 0.420703i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −13.4164 −0.722315
\(346\) 0 0
\(347\) − 10.3923i − 0.557888i −0.960307 0.278944i \(-0.910016\pi\)
0.960307 0.278944i \(-0.0899844\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −31.3050 −1.66619 −0.833097 0.553127i \(-0.813435\pi\)
−0.833097 + 0.553127i \(0.813435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −41.0000 −2.15789
\(362\) 0 0
\(363\) − 19.0526i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 19.3649i 1.00000i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 38.7298i 1.98942i 0.102733 + 0.994709i \(0.467241\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 38.1051i − 1.94708i −0.228515 0.973540i \(-0.573387\pi\)
0.228515 0.973540i \(-0.426613\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 15.4919i 0.783461i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.3205i 0.871489i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 20.1246 1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 38.7298i 1.91040i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.74597i 0.380235i
\(416\) 0 0
\(417\) 40.2492 1.97101
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 0 0
\(423\) 31.1769i 1.51587i
\(424\) 0 0
\(425\) 22.3607 1.08465
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.8328 −1.28359
\(438\) 0 0
\(439\) 38.7298i 1.84847i 0.381819 + 0.924237i \(0.375298\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) − 38.1051i − 1.81043i −0.424955 0.905214i \(-0.639710\pi\)
0.424955 0.905214i \(-0.360290\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 40.2492 1.89107
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) − 23.2379i − 1.08465i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) −30.0000 −1.39122
\(466\) 0 0
\(467\) − 24.2487i − 1.12210i −0.827783 0.561048i \(-0.810398\pi\)
0.827783 0.561048i \(-0.189602\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 38.7298i 1.77705i
\(476\) 0 0
\(477\) −13.4164 −0.614295
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.74597i 0.346757i 0.984855 + 0.173379i \(0.0554684\pi\)
−0.984855 + 0.173379i \(0.944532\pi\)
\(500\) 0 0
\(501\) 42.0000 1.87642
\(502\) 0 0
\(503\) 3.46410i 0.154457i 0.997013 + 0.0772283i \(0.0246070\pi\)
−0.997013 + 0.0772283i \(0.975393\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.5167i 1.00000i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 40.2492 1.77705
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 38.7298i 1.70005i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.6410i 1.50899i
\(528\) 0 0
\(529\) 11.0000 0.478261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 23.2379i − 1.00466i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) − 38.1051i − 1.63525i
\(544\) 0 0
\(545\) −31.3050 −1.34096
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.3607 0.947452 0.473726 0.880672i \(-0.342909\pi\)
0.473726 + 0.880672i \(0.342909\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.1769i 1.31395i 0.753912 + 0.656975i \(0.228164\pi\)
−0.753912 + 0.656975i \(0.771836\pi\)
\(564\) 0 0
\(565\) 10.0000 0.420703
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 38.7298i 1.62079i 0.585882 + 0.810397i \(0.300748\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.3205i 0.722315i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.0333i 1.85872i 0.369170 + 0.929362i \(0.379642\pi\)
−0.369170 + 0.929362i \(0.620358\pi\)
\(588\) 0 0
\(589\) −60.0000 −2.47226
\(590\) 0 0
\(591\) 7.74597i 0.318626i
\(592\) 0 0
\(593\) 4.47214 0.183649 0.0918243 0.995775i \(-0.470730\pi\)
0.0918243 + 0.995775i \(0.470730\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 40.2492 1.64729
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.5967 −1.00000
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −49.1935 −1.98046 −0.990228 0.139459i \(-0.955464\pi\)
−0.990228 + 0.139459i \(0.955464\pi\)
\(618\) 0 0
\(619\) − 23.2379i − 0.934010i −0.884255 0.467005i \(-0.845333\pi\)
0.884255 0.467005i \(-0.154667\pi\)
\(620\) 0 0
\(621\) 18.0000 0.722315
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 38.7298i 1.54181i 0.636950 + 0.770905i \(0.280196\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −13.4164 −0.533254
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 24.2487i − 0.953315i −0.879089 0.476658i \(-0.841848\pi\)
0.879089 0.476658i \(-0.158152\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −49.1935 −1.92509 −0.962545 0.271122i \(-0.912605\pi\)
−0.962545 + 0.271122i \(0.912605\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) − 25.9808i − 1.00000i
\(676\) 0 0
\(677\) −31.3050 −1.20315 −0.601574 0.798817i \(-0.705459\pi\)
−0.601574 + 0.798817i \(0.705459\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 42.0000 1.60944
\(682\) 0 0
\(683\) − 38.1051i − 1.45805i −0.684486 0.729026i \(-0.739973\pi\)
0.684486 0.729026i \(-0.260027\pi\)
\(684\) 0 0
\(685\) 50.0000 1.91040
\(686\) 0 0
\(687\) 45.0333i 1.71813i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 7.74597i 0.294670i 0.989087 + 0.147335i \(0.0470696\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 51.9615i − 1.97101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 38.7298i 1.46490i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 40.2492 1.51587
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) − 23.2379i − 0.871489i
\(712\) 0 0
\(713\) −26.8328 −1.00490
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.46410i 0.128831i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) − 27.1109i − 1.00000i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 54.2218i − 1.99458i −0.0735712 0.997290i \(-0.523440\pi\)
0.0735712 0.997290i \(-0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.1769i 1.14377i 0.820334 + 0.571885i \(0.193788\pi\)
−0.820334 + 0.571885i \(0.806212\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 10.3923i − 0.380235i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 54.2218i − 1.97858i −0.145962 0.989290i \(-0.546628\pi\)
0.145962 0.989290i \(-0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 51.9615i − 1.89107i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −30.0000 −1.08465
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) − 54.2218i − 1.95275i
\(772\) 0 0
\(773\) 4.47214 0.160852 0.0804258 0.996761i \(-0.474372\pi\)
0.0804258 + 0.996761i \(0.474372\pi\)
\(774\) 0 0
\(775\) 38.7298i 1.39122i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) −54.0000 −1.92245
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 17.3205i 0.614295i
\(796\) 0 0
\(797\) −49.1935 −1.74252 −0.871262 0.490819i \(-0.836698\pi\)
−0.871262 + 0.490819i \(0.836698\pi\)
\(798\) 0 0
\(799\) − 46.4758i − 1.64420i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) − 23.2379i − 0.815993i −0.912983 0.407997i \(-0.866228\pi\)
0.912983 0.407997i \(-0.133772\pi\)
\(812\) 0 0
\(813\) −13.4164 −0.470534
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.0333i 1.56596i 0.622046 + 0.782981i \(0.286302\pi\)
−0.622046 + 0.782981i \(0.713698\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −31.3050 −1.08465
\(834\) 0 0
\(835\) − 54.2218i − 1.87642i
\(836\) 0 0
\(837\) 40.2492 1.39122
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 29.0689 1.00000
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) − 51.9615i − 1.77705i
\(856\) 0 0
\(857\) 58.1378 1.98595 0.992974 0.118331i \(-0.0377545\pi\)
0.992974 + 0.118331i \(0.0377545\pi\)
\(858\) 0 0
\(859\) 38.7298i 1.32144i 0.750630 + 0.660722i \(0.229750\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 38.1051i − 1.29711i −0.761166 0.648557i \(-0.775373\pi\)
0.761166 0.648557i \(-0.224627\pi\)
\(864\) 0 0
\(865\) 50.0000 1.70005
\(866\) 0 0
\(867\) 5.19615i 0.176471i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) − 54.2218i − 1.82885i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 58.8897i 1.97732i 0.150160 + 0.988662i \(0.452021\pi\)
−0.150160 + 0.988662i \(0.547979\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 80.4984 2.69378
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 20.0000 0.666297
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −49.1935 −1.63525
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 7.74597i 0.256074i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 23.2379i − 0.766548i −0.923635 0.383274i \(-0.874797\pi\)
0.923635 0.383274i \(-0.125203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) − 54.2218i − 1.77705i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 58.8897i 1.91366i 0.290650 + 0.956830i \(0.406129\pi\)
−0.290650 + 0.956830i \(0.593871\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 38.7298i 1.25590i
\(952\) 0 0
\(953\) 58.1378 1.88327 0.941634 0.336640i \(-0.109290\pi\)
0.941634 + 0.336640i \(0.109290\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 0 0
\(963\) 31.1769i 1.00466i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −60.0000 −1.92748
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.47214 0.143076 0.0715382 0.997438i \(-0.477209\pi\)
0.0715382 + 0.997438i \(0.477209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 42.0000 1.34096
\(982\) 0 0
\(983\) 3.46410i 0.110488i 0.998473 + 0.0552438i \(0.0175936\pi\)
−0.998473 + 0.0552438i \(0.982406\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 54.2218i − 1.72241i −0.508257 0.861206i \(-0.669710\pi\)
0.508257 0.861206i \(-0.330290\pi\)
\(992\) 0 0
\(993\) 40.2492 1.27727
\(994\) 0 0
\(995\) − 51.9615i − 1.64729i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.o.a.959.4 4
3.2 odd 2 inner 960.2.o.a.959.1 4
4.3 odd 2 inner 960.2.o.a.959.2 4
5.4 even 2 inner 960.2.o.a.959.1 4
8.3 odd 2 60.2.h.b.59.3 yes 4
8.5 even 2 60.2.h.b.59.4 yes 4
12.11 even 2 inner 960.2.o.a.959.3 4
15.14 odd 2 CM 960.2.o.a.959.4 4
20.19 odd 2 inner 960.2.o.a.959.3 4
24.5 odd 2 60.2.h.b.59.1 4
24.11 even 2 60.2.h.b.59.2 yes 4
40.3 even 4 300.2.e.a.251.1 4
40.13 odd 4 300.2.e.a.251.3 4
40.19 odd 2 60.2.h.b.59.2 yes 4
40.27 even 4 300.2.e.a.251.4 4
40.29 even 2 60.2.h.b.59.1 4
40.37 odd 4 300.2.e.a.251.2 4
60.59 even 2 inner 960.2.o.a.959.2 4
120.29 odd 2 60.2.h.b.59.4 yes 4
120.53 even 4 300.2.e.a.251.2 4
120.59 even 2 60.2.h.b.59.3 yes 4
120.77 even 4 300.2.e.a.251.3 4
120.83 odd 4 300.2.e.a.251.4 4
120.107 odd 4 300.2.e.a.251.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
60.2.h.b.59.1 4 24.5 odd 2
60.2.h.b.59.1 4 40.29 even 2
60.2.h.b.59.2 yes 4 24.11 even 2
60.2.h.b.59.2 yes 4 40.19 odd 2
60.2.h.b.59.3 yes 4 8.3 odd 2
60.2.h.b.59.3 yes 4 120.59 even 2
60.2.h.b.59.4 yes 4 8.5 even 2
60.2.h.b.59.4 yes 4 120.29 odd 2
300.2.e.a.251.1 4 40.3 even 4
300.2.e.a.251.1 4 120.107 odd 4
300.2.e.a.251.2 4 40.37 odd 4
300.2.e.a.251.2 4 120.53 even 4
300.2.e.a.251.3 4 40.13 odd 4
300.2.e.a.251.3 4 120.77 even 4
300.2.e.a.251.4 4 40.27 even 4
300.2.e.a.251.4 4 120.83 odd 4
960.2.o.a.959.1 4 3.2 odd 2 inner
960.2.o.a.959.1 4 5.4 even 2 inner
960.2.o.a.959.2 4 4.3 odd 2 inner
960.2.o.a.959.2 4 60.59 even 2 inner
960.2.o.a.959.3 4 12.11 even 2 inner
960.2.o.a.959.3 4 20.19 odd 2 inner
960.2.o.a.959.4 4 1.1 even 1 trivial
960.2.o.a.959.4 4 15.14 odd 2 CM