Properties

Label 300.3.l.e
Level $300$
Weight $3$
Character orbit 300.l
Analytic conductor $8.174$
Analytic rank $0$
Dimension $8$
CM discriminant -15
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,3,Mod(107,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.107");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 300.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17440793081\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 \beta_{5} q^{3} + (\beta_{6} + 4 \beta_{4}) q^{4} + (3 \beta_{2} + 3) q^{6} + (3 \beta_{7} + 4 \beta_{5}) q^{8} + 9 \beta_{4} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + 3 \beta_{5} q^{3} + (\beta_{6} + 4 \beta_{4}) q^{4} + (3 \beta_{2} + 3) q^{6} + (3 \beta_{7} + 4 \beta_{5}) q^{8} + 9 \beta_{4} q^{9} + (12 \beta_{3} + 3 \beta_1) q^{12} + (7 \beta_{2} - 5) q^{16} + ( - 8 \beta_{3} - 16 \beta_1) q^{17} + 9 \beta_{7} q^{18} + (16 \beta_{6} + 8 \beta_{4}) q^{19} + 34 \beta_{5} q^{23} + ( - 9 \beta_{6} + 12 \beta_{4}) q^{24} + 27 \beta_{3} q^{27} + ( - 32 \beta_{2} - 16) q^{31} + (28 \beta_{3} - 5 \beta_1) q^{32} + ( - 8 \beta_{6} - 64 \beta_{4}) q^{34} + (9 \beta_{2} - 27) q^{36} + ( - 8 \beta_{7} + 64 \beta_{5}) q^{38} + (34 \beta_{2} + 34) q^{46} - 14 \beta_{3} q^{47} + (21 \beta_{7} - 36 \beta_{5}) q^{48} - 49 \beta_{4} q^{49} + ( - 48 \beta_{2} - 24) q^{51} + (32 \beta_{7} - 16 \beta_{5}) q^{53} - 27 \beta_{6} q^{54} + (24 \beta_{3} + 48 \beta_1) q^{57} + 118 q^{61} + ( - 128 \beta_{3} - 16 \beta_1) q^{62} + ( - 33 \beta_{6} - 20 \beta_{4}) q^{64} + ( - 56 \beta_{7} - 32 \beta_{5}) q^{68} + 102 \beta_{4} q^{69} + (36 \beta_{3} - 27 \beta_1) q^{72} + (56 \beta_{2} + 88) q^{76} + (64 \beta_{6} + 32 \beta_{4}) q^{79} - 81 q^{81} - 154 \beta_{5} q^{83} + (136 \beta_{3} + 34 \beta_1) q^{92} + ( - 96 \beta_{7} + 48 \beta_{5}) q^{93} + 14 \beta_{6} q^{94} + ( - 15 \beta_{2} - 99) q^{96} - 49 \beta_{7} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 12 q^{6} - 68 q^{16} - 252 q^{36} + 136 q^{46} + 944 q^{61} + 480 q^{76} - 648 q^{81} - 732 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 17x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 5 ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 5\nu ) / 28 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 33\nu^{2} ) / 112 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 13\nu^{3} ) / 448 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 5\nu^{2} ) / 28 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} + 33\nu^{3} ) / 112 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{7} + 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 28\beta_{3} - 5\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -33\beta_{6} - 20\beta_{4} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 13\beta_{7} - 132\beta_{5} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
−1.72286 + 1.01575i
−1.01575 + 1.72286i
1.01575 1.72286i
1.72286 1.01575i
−1.72286 1.01575i
−1.01575 1.72286i
1.01575 + 1.72286i
1.72286 + 1.01575i
−1.72286 + 1.01575i −2.12132 + 2.12132i 1.93649 3.50000i 0 1.50000 5.80948i 0 0.218832 + 7.99701i 9.00000i 0
107.2 −1.01575 + 1.72286i 2.12132 2.12132i −1.93649 3.50000i 0 1.50000 + 5.80948i 0 7.99701 + 0.218832i 9.00000i 0
107.3 1.01575 1.72286i −2.12132 + 2.12132i −1.93649 3.50000i 0 1.50000 + 5.80948i 0 −7.99701 0.218832i 9.00000i 0
107.4 1.72286 1.01575i 2.12132 2.12132i 1.93649 3.50000i 0 1.50000 5.80948i 0 −0.218832 7.99701i 9.00000i 0
143.1 −1.72286 1.01575i −2.12132 2.12132i 1.93649 + 3.50000i 0 1.50000 + 5.80948i 0 0.218832 7.99701i 9.00000i 0
143.2 −1.01575 1.72286i 2.12132 + 2.12132i −1.93649 + 3.50000i 0 1.50000 5.80948i 0 7.99701 0.218832i 9.00000i 0
143.3 1.01575 + 1.72286i −2.12132 2.12132i −1.93649 + 3.50000i 0 1.50000 5.80948i 0 −7.99701 + 0.218832i 9.00000i 0
143.4 1.72286 + 1.01575i 2.12132 + 2.12132i 1.93649 + 3.50000i 0 1.50000 + 5.80948i 0 −0.218832 + 7.99701i 9.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 107.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
12.b even 2 1 inner
15.e even 4 2 inner
20.d odd 2 1 inner
20.e even 4 2 inner
60.h even 2 1 inner
60.l odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.l.e 8
3.b odd 2 1 inner 300.3.l.e 8
4.b odd 2 1 inner 300.3.l.e 8
5.b even 2 1 inner 300.3.l.e 8
5.c odd 4 2 inner 300.3.l.e 8
12.b even 2 1 inner 300.3.l.e 8
15.d odd 2 1 CM 300.3.l.e 8
15.e even 4 2 inner 300.3.l.e 8
20.d odd 2 1 inner 300.3.l.e 8
20.e even 4 2 inner 300.3.l.e 8
60.h even 2 1 inner 300.3.l.e 8
60.l odd 4 2 inner 300.3.l.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.3.l.e 8 1.a even 1 1 trivial
300.3.l.e 8 3.b odd 2 1 inner
300.3.l.e 8 4.b odd 2 1 inner
300.3.l.e 8 5.b even 2 1 inner
300.3.l.e 8 5.c odd 4 2 inner
300.3.l.e 8 12.b even 2 1 inner
300.3.l.e 8 15.d odd 2 1 CM
300.3.l.e 8 15.e even 4 2 inner
300.3.l.e 8 20.d odd 2 1 inner
300.3.l.e 8 20.e even 4 2 inner
300.3.l.e 8 60.h even 2 1 inner
300.3.l.e 8 60.l odd 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(300, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{17}^{4} + 921600 \) Copy content Toggle raw display
\( T_{19}^{2} - 960 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 17T^{4} + 256 \) Copy content Toggle raw display
$3$ \( (T^{4} + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 921600)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 960)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 1336336)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{2} + 3840)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 38416)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 14745600)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T - 118)^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} - 15360)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 562448656)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less