Properties

Label 300.9.b.e.149.14
Level $300$
Weight $9$
Character 300.149
Analytic conductor $122.214$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,9,Mod(149,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.149");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 300.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(122.213583018\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 35173 x^{18} - 571368 x^{17} + 569751077 x^{16} - 15299176388 x^{15} + \cdots + 26\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{34}\cdot 3^{34}\cdot 5^{30}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.14
Root \(-5.98515 + 57.3224i\) of defining polynomial
Character \(\chi\) \(=\) 300.149
Dual form 300.9.b.e.149.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(56.3224 + 58.2133i) q^{3} -2295.51i q^{7} +(-216.575 + 6557.42i) q^{9} -17396.4i q^{11} -16463.9i q^{13} +13497.4 q^{17} -195706. q^{19} +(133629. - 129288. i) q^{21} +206229. q^{23} +(-393927. + 356722. i) q^{27} +367170. i q^{29} -933775. q^{31} +(1.01270e6 - 979805. i) q^{33} -410.325i q^{37} +(958418. - 927287. i) q^{39} +3.34234e6i q^{41} +1.94035e6i q^{43} -5.83328e6 q^{47} +495447. q^{49} +(760207. + 785730. i) q^{51} -7.57320e6 q^{53} +(-1.10226e7 - 1.13927e7i) q^{57} +2.32367e7i q^{59} +8.94563e6 q^{61} +(1.50526e7 + 497149. i) q^{63} +2.59768e7i q^{67} +(1.16153e7 + 1.20053e7i) q^{69} +2.66873e7i q^{71} +1.77737e7i q^{73} -3.99335e7 q^{77} -3.48684e7 q^{79} +(-4.29529e7 - 2.84034e6i) q^{81} +4.67421e7 q^{83} +(-2.13742e7 + 2.06799e7i) q^{87} -2.42212e7i q^{89} -3.77930e7 q^{91} +(-5.25925e7 - 5.43581e7i) q^{93} -2.59451e7i q^{97} +(1.14075e8 + 3.76761e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 24910 q^{9} + 752060 q^{19} - 285080 q^{21} - 821720 q^{31} - 7055740 q^{39} - 27783060 q^{49} - 1289490 q^{51} - 102747080 q^{61} + 25125180 q^{69} - 72422800 q^{79} - 151395550 q^{81} + 129038960 q^{91}+ \cdots - 104585010 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 56.3224 + 58.2133i 0.695338 + 0.718683i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2295.51i 0.956063i −0.878343 0.478032i \(-0.841350\pi\)
0.878343 0.478032i \(-0.158650\pi\)
\(8\) 0 0
\(9\) −216.575 + 6557.42i −0.0330094 + 0.999455i
\(10\) 0 0
\(11\) 17396.4i 1.18819i −0.804393 0.594097i \(-0.797509\pi\)
0.804393 0.594097i \(-0.202491\pi\)
\(12\) 0 0
\(13\) 16463.9i 0.576447i −0.957563 0.288224i \(-0.906935\pi\)
0.957563 0.288224i \(-0.0930646\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 13497.4 0.161605 0.0808026 0.996730i \(-0.474252\pi\)
0.0808026 + 0.996730i \(0.474252\pi\)
\(18\) 0 0
\(19\) −195706. −1.50172 −0.750860 0.660461i \(-0.770361\pi\)
−0.750860 + 0.660461i \(0.770361\pi\)
\(20\) 0 0
\(21\) 133629. 129288.i 0.687106 0.664787i
\(22\) 0 0
\(23\) 206229. 0.736952 0.368476 0.929637i \(-0.379880\pi\)
0.368476 + 0.929637i \(0.379880\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −393927. + 356722.i −0.741244 + 0.671236i
\(28\) 0 0
\(29\) 367170.i 0.519128i 0.965726 + 0.259564i \(0.0835789\pi\)
−0.965726 + 0.259564i \(0.916421\pi\)
\(30\) 0 0
\(31\) −933775. −1.01110 −0.505552 0.862796i \(-0.668711\pi\)
−0.505552 + 0.862796i \(0.668711\pi\)
\(32\) 0 0
\(33\) 1.01270e6 979805.i 0.853935 0.826197i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 410.325i 0.000218938i −1.00000 0.000109469i \(-0.999965\pi\)
1.00000 0.000109469i \(-3.48450e-5\pi\)
\(38\) 0 0
\(39\) 958418. 927287.i 0.414283 0.400826i
\(40\) 0 0
\(41\) 3.34234e6i 1.18281i 0.806375 + 0.591405i \(0.201427\pi\)
−0.806375 + 0.591405i \(0.798573\pi\)
\(42\) 0 0
\(43\) 1.94035e6i 0.567553i 0.958891 + 0.283776i \(0.0915873\pi\)
−0.958891 + 0.283776i \(0.908413\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.83328e6 −1.19542 −0.597712 0.801711i \(-0.703923\pi\)
−0.597712 + 0.801711i \(0.703923\pi\)
\(48\) 0 0
\(49\) 495447. 0.0859435
\(50\) 0 0
\(51\) 760207. + 785730.i 0.112370 + 0.116143i
\(52\) 0 0
\(53\) −7.57320e6 −0.959790 −0.479895 0.877326i \(-0.659325\pi\)
−0.479895 + 0.877326i \(0.659325\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.10226e7 1.13927e7i −1.04420 1.07926i
\(58\) 0 0
\(59\) 2.32367e7i 1.91764i 0.284021 + 0.958818i \(0.408331\pi\)
−0.284021 + 0.958818i \(0.591669\pi\)
\(60\) 0 0
\(61\) 8.94563e6 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(62\) 0 0
\(63\) 1.50526e7 + 497149.i 0.955542 + 0.0315591i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.59768e7i 1.28910i 0.764562 + 0.644551i \(0.222956\pi\)
−0.764562 + 0.644551i \(0.777044\pi\)
\(68\) 0 0
\(69\) 1.16153e7 + 1.20053e7i 0.512431 + 0.529634i
\(70\) 0 0
\(71\) 2.66873e7i 1.05020i 0.851041 + 0.525100i \(0.175972\pi\)
−0.851041 + 0.525100i \(0.824028\pi\)
\(72\) 0 0
\(73\) 1.77737e7i 0.625875i 0.949774 + 0.312937i \(0.101313\pi\)
−0.949774 + 0.312937i \(0.898687\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.99335e7 −1.13599
\(78\) 0 0
\(79\) −3.48684e7 −0.895209 −0.447604 0.894232i \(-0.647723\pi\)
−0.447604 + 0.894232i \(0.647723\pi\)
\(80\) 0 0
\(81\) −4.29529e7 2.84034e6i −0.997821 0.0659828i
\(82\) 0 0
\(83\) 4.67421e7 0.984909 0.492454 0.870338i \(-0.336100\pi\)
0.492454 + 0.870338i \(0.336100\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.13742e7 + 2.06799e7i −0.373088 + 0.360970i
\(88\) 0 0
\(89\) 2.42212e7i 0.386043i −0.981195 0.193021i \(-0.938171\pi\)
0.981195 0.193021i \(-0.0618286\pi\)
\(90\) 0 0
\(91\) −3.77930e7 −0.551120
\(92\) 0 0
\(93\) −5.25925e7 5.43581e7i −0.703059 0.726662i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.59451e7i 0.293068i −0.989206 0.146534i \(-0.953188\pi\)
0.989206 0.146534i \(-0.0468117\pi\)
\(98\) 0 0
\(99\) 1.14075e8 + 3.76761e6i 1.18755 + 0.0392216i
\(100\) 0 0
\(101\) 1.57296e8i 1.51158i −0.654814 0.755790i \(-0.727253\pi\)
0.654814 0.755790i \(-0.272747\pi\)
\(102\) 0 0
\(103\) 2.36343e7i 0.209987i 0.994473 + 0.104994i \(0.0334822\pi\)
−0.994473 + 0.104994i \(0.966518\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.24020e7 −0.399773 −0.199886 0.979819i \(-0.564057\pi\)
−0.199886 + 0.979819i \(0.564057\pi\)
\(108\) 0 0
\(109\) −4.49101e7 −0.318154 −0.159077 0.987266i \(-0.550852\pi\)
−0.159077 + 0.987266i \(0.550852\pi\)
\(110\) 0 0
\(111\) 23886.4 23110.5i 0.000157347 0.000152236i
\(112\) 0 0
\(113\) −1.45262e8 −0.890921 −0.445460 0.895302i \(-0.646960\pi\)
−0.445460 + 0.895302i \(0.646960\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.07961e8 + 3.56566e6i 0.576133 + 0.0190282i
\(118\) 0 0
\(119\) 3.09834e7i 0.154505i
\(120\) 0 0
\(121\) −8.82745e7 −0.411807
\(122\) 0 0
\(123\) −1.94568e8 + 1.88248e8i −0.850065 + 0.822453i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.12436e8i 1.20101i 0.799622 + 0.600504i \(0.205033\pi\)
−0.799622 + 0.600504i \(0.794967\pi\)
\(128\) 0 0
\(129\) −1.12954e8 + 1.09285e8i −0.407890 + 0.394641i
\(130\) 0 0
\(131\) 4.47775e8i 1.52046i −0.649656 0.760229i \(-0.725087\pi\)
0.649656 0.760229i \(-0.274913\pi\)
\(132\) 0 0
\(133\) 4.49244e8i 1.43574i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.98335e8 1.41462 0.707309 0.706904i \(-0.249909\pi\)
0.707309 + 0.706904i \(0.249909\pi\)
\(138\) 0 0
\(139\) 5.33850e8 1.43008 0.715039 0.699084i \(-0.246409\pi\)
0.715039 + 0.699084i \(0.246409\pi\)
\(140\) 0 0
\(141\) −3.28545e8 3.39575e8i −0.831224 0.859130i
\(142\) 0 0
\(143\) −2.86412e8 −0.684932
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.79048e7 + 2.88416e7i 0.0597598 + 0.0617661i
\(148\) 0 0
\(149\) 2.63916e7i 0.0535452i 0.999642 + 0.0267726i \(0.00852301\pi\)
−0.999642 + 0.0267726i \(0.991477\pi\)
\(150\) 0 0
\(151\) −8.51062e8 −1.63702 −0.818509 0.574493i \(-0.805199\pi\)
−0.818509 + 0.574493i \(0.805199\pi\)
\(152\) 0 0
\(153\) −2.92320e6 + 8.85084e7i −0.00533449 + 0.161517i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.48170e8i 0.408462i 0.978923 + 0.204231i \(0.0654693\pi\)
−0.978923 + 0.204231i \(0.934531\pi\)
\(158\) 0 0
\(159\) −4.26541e8 4.40861e8i −0.667379 0.689784i
\(160\) 0 0
\(161\) 4.73401e8i 0.704572i
\(162\) 0 0
\(163\) 3.20988e8i 0.454713i −0.973812 0.227357i \(-0.926992\pi\)
0.973812 0.227357i \(-0.0730083\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.46565e9 −1.88436 −0.942180 0.335108i \(-0.891227\pi\)
−0.942180 + 0.335108i \(0.891227\pi\)
\(168\) 0 0
\(169\) 5.44670e8 0.667709
\(170\) 0 0
\(171\) 4.23849e7 1.28333e9i 0.0495709 1.50090i
\(172\) 0 0
\(173\) −1.44526e9 −1.61347 −0.806734 0.590915i \(-0.798767\pi\)
−0.806734 + 0.590915i \(0.798767\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.35268e9 + 1.30875e9i −1.37817 + 1.33341i
\(178\) 0 0
\(179\) 7.19759e8i 0.701092i 0.936546 + 0.350546i \(0.114004\pi\)
−0.936546 + 0.350546i \(0.885996\pi\)
\(180\) 0 0
\(181\) −1.56467e9 −1.45784 −0.728918 0.684601i \(-0.759977\pi\)
−0.728918 + 0.684601i \(0.759977\pi\)
\(182\) 0 0
\(183\) 5.03839e8 + 5.20755e8i 0.449250 + 0.464332i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.34806e8i 0.192018i
\(188\) 0 0
\(189\) 8.18859e8 + 9.04263e8i 0.641744 + 0.708676i
\(190\) 0 0
\(191\) 1.31338e9i 0.986864i −0.869784 0.493432i \(-0.835742\pi\)
0.869784 0.493432i \(-0.164258\pi\)
\(192\) 0 0
\(193\) 1.12320e9i 0.809523i 0.914422 + 0.404761i \(0.132645\pi\)
−0.914422 + 0.404761i \(0.867355\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.07566e9 −0.714185 −0.357092 0.934069i \(-0.616232\pi\)
−0.357092 + 0.934069i \(0.616232\pi\)
\(198\) 0 0
\(199\) 6.55984e8 0.418293 0.209147 0.977884i \(-0.432931\pi\)
0.209147 + 0.977884i \(0.432931\pi\)
\(200\) 0 0
\(201\) −1.51220e9 + 1.46308e9i −0.926455 + 0.896361i
\(202\) 0 0
\(203\) 8.42840e8 0.496319
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.46640e7 + 1.35233e9i −0.0243263 + 0.736550i
\(208\) 0 0
\(209\) 3.40457e9i 1.78434i
\(210\) 0 0
\(211\) −1.48749e9 −0.750453 −0.375227 0.926933i \(-0.622435\pi\)
−0.375227 + 0.926933i \(0.622435\pi\)
\(212\) 0 0
\(213\) −1.55356e9 + 1.50309e9i −0.754760 + 0.730244i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.14349e9i 0.966679i
\(218\) 0 0
\(219\) −1.03467e9 + 1.00106e9i −0.449805 + 0.435195i
\(220\) 0 0
\(221\) 2.22220e8i 0.0931569i
\(222\) 0 0
\(223\) 4.80438e9i 1.94276i 0.237540 + 0.971378i \(0.423659\pi\)
−0.237540 + 0.971378i \(0.576341\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.19807e9 −1.58105 −0.790525 0.612429i \(-0.790192\pi\)
−0.790525 + 0.612429i \(0.790192\pi\)
\(228\) 0 0
\(229\) 1.93560e9 0.703841 0.351920 0.936030i \(-0.385529\pi\)
0.351920 + 0.936030i \(0.385529\pi\)
\(230\) 0 0
\(231\) −2.24915e9 2.32466e9i −0.789897 0.816416i
\(232\) 0 0
\(233\) −2.52861e9 −0.857942 −0.428971 0.903318i \(-0.641124\pi\)
−0.428971 + 0.903318i \(0.641124\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.96387e9 2.02981e9i −0.622473 0.643371i
\(238\) 0 0
\(239\) 1.76815e9i 0.541910i −0.962592 0.270955i \(-0.912661\pi\)
0.962592 0.270955i \(-0.0873395\pi\)
\(240\) 0 0
\(241\) 1.55220e9 0.460129 0.230064 0.973175i \(-0.426106\pi\)
0.230064 + 0.973175i \(0.426106\pi\)
\(242\) 0 0
\(243\) −2.25387e9 2.66041e9i −0.646402 0.762997i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.22208e9i 0.865663i
\(248\) 0 0
\(249\) 2.63263e9 + 2.72101e9i 0.684845 + 0.707837i
\(250\) 0 0
\(251\) 4.84318e9i 1.22021i −0.792319 0.610107i \(-0.791127\pi\)
0.792319 0.610107i \(-0.208873\pi\)
\(252\) 0 0
\(253\) 3.58764e9i 0.875642i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.97195e8 −0.159816 −0.0799082 0.996802i \(-0.525463\pi\)
−0.0799082 + 0.996802i \(0.525463\pi\)
\(258\) 0 0
\(259\) −941903. −0.000209318
\(260\) 0 0
\(261\) −2.40769e9 7.95196e7i −0.518845 0.0171361i
\(262\) 0 0
\(263\) 4.25701e9 0.889777 0.444889 0.895586i \(-0.353243\pi\)
0.444889 + 0.895586i \(0.353243\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.40999e9 1.36419e9i 0.277442 0.268430i
\(268\) 0 0
\(269\) 3.37356e9i 0.644288i −0.946691 0.322144i \(-0.895597\pi\)
0.946691 0.322144i \(-0.104403\pi\)
\(270\) 0 0
\(271\) −6.57981e9 −1.21993 −0.609966 0.792427i \(-0.708817\pi\)
−0.609966 + 0.792427i \(0.708817\pi\)
\(272\) 0 0
\(273\) −2.12859e9 2.20006e9i −0.383215 0.396080i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.05227e7i 0.00858158i −0.999991 0.00429079i \(-0.998634\pi\)
0.999991 0.00429079i \(-0.00136581\pi\)
\(278\) 0 0
\(279\) 2.02232e8 6.12316e9i 0.0333759 1.01055i
\(280\) 0 0
\(281\) 5.00839e9i 0.803290i −0.915795 0.401645i \(-0.868439\pi\)
0.915795 0.401645i \(-0.131561\pi\)
\(282\) 0 0
\(283\) 1.00231e10i 1.56263i 0.624139 + 0.781314i \(0.285450\pi\)
−0.624139 + 0.781314i \(0.714550\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.67236e9 1.13084
\(288\) 0 0
\(289\) −6.79358e9 −0.973884
\(290\) 0 0
\(291\) 1.51035e9 1.46129e9i 0.210623 0.203781i
\(292\) 0 0
\(293\) −8.52756e9 −1.15706 −0.578528 0.815663i \(-0.696373\pi\)
−0.578528 + 0.815663i \(0.696373\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.20567e9 + 6.85290e9i 0.797559 + 0.880742i
\(298\) 0 0
\(299\) 3.39534e9i 0.424814i
\(300\) 0 0
\(301\) 4.45409e9 0.542616
\(302\) 0 0
\(303\) 9.15670e9 8.85927e9i 1.08635 1.05106i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.69426e9i 0.190733i −0.995442 0.0953665i \(-0.969598\pi\)
0.995442 0.0953665i \(-0.0304023\pi\)
\(308\) 0 0
\(309\) −1.37583e9 + 1.33114e9i −0.150914 + 0.146012i
\(310\) 0 0
\(311\) 5.14916e9i 0.550420i 0.961384 + 0.275210i \(0.0887474\pi\)
−0.961384 + 0.275210i \(0.911253\pi\)
\(312\) 0 0
\(313\) 8.32301e9i 0.867168i 0.901113 + 0.433584i \(0.142751\pi\)
−0.901113 + 0.433584i \(0.857249\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.67633e10 1.66006 0.830029 0.557721i \(-0.188324\pi\)
0.830029 + 0.557721i \(0.188324\pi\)
\(318\) 0 0
\(319\) 6.38742e9 0.616826
\(320\) 0 0
\(321\) −2.95141e9 3.05050e9i −0.277977 0.287310i
\(322\) 0 0
\(323\) −2.64152e9 −0.242686
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.52944e9 2.61436e9i −0.221225 0.228652i
\(328\) 0 0
\(329\) 1.33903e10i 1.14290i
\(330\) 0 0
\(331\) 2.17827e10 1.81468 0.907341 0.420396i \(-0.138109\pi\)
0.907341 + 0.420396i \(0.138109\pi\)
\(332\) 0 0
\(333\) 2.69067e6 + 88865.9i 0.000218819 + 7.22700e-6i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.33242e10i 1.80837i −0.427138 0.904186i \(-0.640478\pi\)
0.427138 0.904186i \(-0.359522\pi\)
\(338\) 0 0
\(339\) −8.18152e9 8.45619e9i −0.619491 0.640289i
\(340\) 0 0
\(341\) 1.62443e10i 1.20139i
\(342\) 0 0
\(343\) 1.43704e10i 1.03823i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.42872e10 −0.985437 −0.492718 0.870189i \(-0.663997\pi\)
−0.492718 + 0.870189i \(0.663997\pi\)
\(348\) 0 0
\(349\) 1.25048e10 0.842897 0.421449 0.906852i \(-0.361522\pi\)
0.421449 + 0.906852i \(0.361522\pi\)
\(350\) 0 0
\(351\) 5.87304e9 + 6.48558e9i 0.386932 + 0.427288i
\(352\) 0 0
\(353\) 3.48520e9 0.224454 0.112227 0.993683i \(-0.464202\pi\)
0.112227 + 0.993683i \(0.464202\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.80365e9 1.74506e9i 0.111040 0.107433i
\(358\) 0 0
\(359\) 1.70468e10i 1.02628i −0.858305 0.513139i \(-0.828482\pi\)
0.858305 0.513139i \(-0.171518\pi\)
\(360\) 0 0
\(361\) 2.13172e10 1.25517
\(362\) 0 0
\(363\) −4.97183e9 5.13875e9i −0.286345 0.295959i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.41628e9i 0.298563i 0.988795 + 0.149282i \(0.0476961\pi\)
−0.988795 + 0.149282i \(0.952304\pi\)
\(368\) 0 0
\(369\) −2.19171e10 7.23865e8i −1.18217 0.0390438i
\(370\) 0 0
\(371\) 1.73843e10i 0.917620i
\(372\) 0 0
\(373\) 1.31731e10i 0.680539i −0.940328 0.340269i \(-0.889482\pi\)
0.940328 0.340269i \(-0.110518\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.04505e9 0.299250
\(378\) 0 0
\(379\) −7.75719e8 −0.0375965 −0.0187983 0.999823i \(-0.505984\pi\)
−0.0187983 + 0.999823i \(0.505984\pi\)
\(380\) 0 0
\(381\) −1.81879e10 + 1.75971e10i −0.863143 + 0.835106i
\(382\) 0 0
\(383\) 3.66582e10 1.70363 0.851816 0.523841i \(-0.175502\pi\)
0.851816 + 0.523841i \(0.175502\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.27237e10 4.20230e8i −0.567243 0.0187346i
\(388\) 0 0
\(389\) 1.07813e10i 0.470839i −0.971894 0.235419i \(-0.924354\pi\)
0.971894 0.235419i \(-0.0756463\pi\)
\(390\) 0 0
\(391\) 2.78356e9 0.119095
\(392\) 0 0
\(393\) 2.60664e10 2.52197e10i 1.09273 1.05723i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.48948e10i 1.40475i −0.711807 0.702375i \(-0.752123\pi\)
0.711807 0.702375i \(-0.247877\pi\)
\(398\) 0 0
\(399\) −2.61520e10 + 2.53025e10i −1.03184 + 0.998325i
\(400\) 0 0
\(401\) 3.53994e10i 1.36905i 0.728991 + 0.684524i \(0.239990\pi\)
−0.728991 + 0.684524i \(0.760010\pi\)
\(402\) 0 0
\(403\) 1.53736e10i 0.582848i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.13816e6 −0.000260141
\(408\) 0 0
\(409\) 2.49105e10 0.890205 0.445102 0.895480i \(-0.353167\pi\)
0.445102 + 0.895480i \(0.353167\pi\)
\(410\) 0 0
\(411\) 2.80674e10 + 2.90097e10i 0.983638 + 1.01666i
\(412\) 0 0
\(413\) 5.33400e10 1.83338
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.00677e10 + 3.10772e10i 0.994388 + 1.02777i
\(418\) 0 0
\(419\) 2.06624e10i 0.670385i 0.942150 + 0.335192i \(0.108801\pi\)
−0.942150 + 0.335192i \(0.891199\pi\)
\(420\) 0 0
\(421\) 4.40984e10 1.40377 0.701883 0.712292i \(-0.252343\pi\)
0.701883 + 0.712292i \(0.252343\pi\)
\(422\) 0 0
\(423\) 1.26334e9 3.82513e10i 0.0394602 1.19477i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.05348e10i 0.617701i
\(428\) 0 0
\(429\) −1.61314e10 1.66730e10i −0.476259 0.492248i
\(430\) 0 0
\(431\) 6.54249e9i 0.189598i −0.995496 0.0947990i \(-0.969779\pi\)
0.995496 0.0947990i \(-0.0302208\pi\)
\(432\) 0 0
\(433\) 1.78927e10i 0.509008i 0.967072 + 0.254504i \(0.0819123\pi\)
−0.967072 + 0.254504i \(0.918088\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.03603e10 −1.10670
\(438\) 0 0
\(439\) −4.08114e10 −1.09881 −0.549406 0.835556i \(-0.685146\pi\)
−0.549406 + 0.835556i \(0.685146\pi\)
\(440\) 0 0
\(441\) −1.07301e8 + 3.24886e9i −0.00283694 + 0.0858967i
\(442\) 0 0
\(443\) −4.66125e10 −1.21028 −0.605142 0.796117i \(-0.706884\pi\)
−0.605142 + 0.796117i \(0.706884\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.53634e9 + 1.48644e9i −0.0384820 + 0.0372320i
\(448\) 0 0
\(449\) 1.18770e9i 0.0292229i −0.999893 0.0146114i \(-0.995349\pi\)
0.999893 0.0146114i \(-0.00465113\pi\)
\(450\) 0 0
\(451\) 5.81445e10 1.40541
\(452\) 0 0
\(453\) −4.79339e10 4.95431e10i −1.13828 1.17650i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.89499e10i 0.892979i −0.894789 0.446489i \(-0.852674\pi\)
0.894789 0.446489i \(-0.147326\pi\)
\(458\) 0 0
\(459\) −5.31700e9 + 4.81483e9i −0.119789 + 0.108475i
\(460\) 0 0
\(461\) 4.68231e8i 0.0103671i −0.999987 0.00518354i \(-0.998350\pi\)
0.999987 0.00518354i \(-0.00164998\pi\)
\(462\) 0 0
\(463\) 6.51315e10i 1.41732i 0.705552 + 0.708658i \(0.250699\pi\)
−0.705552 + 0.708658i \(0.749301\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.36135e10 1.96821 0.984104 0.177594i \(-0.0568313\pi\)
0.984104 + 0.177594i \(0.0568313\pi\)
\(468\) 0 0
\(469\) 5.96300e10 1.23246
\(470\) 0 0
\(471\) −1.44468e10 + 1.39776e10i −0.293554 + 0.284019i
\(472\) 0 0
\(473\) 3.37550e10 0.674363
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.64016e9 4.96607e10i 0.0316821 0.959267i
\(478\) 0 0
\(479\) 8.18125e10i 1.55410i −0.629442 0.777048i \(-0.716716\pi\)
0.629442 0.777048i \(-0.283284\pi\)
\(480\) 0 0
\(481\) −6.75555e6 −0.000126206
\(482\) 0 0
\(483\) 2.75582e10 2.66631e10i 0.506364 0.489916i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.53575e10i 0.273026i −0.990638 0.136513i \(-0.956410\pi\)
0.990638 0.136513i \(-0.0435896\pi\)
\(488\) 0 0
\(489\) 1.86857e10 1.80788e10i 0.326795 0.316180i
\(490\) 0 0
\(491\) 7.76212e10i 1.33553i 0.744371 + 0.667766i \(0.232749\pi\)
−0.744371 + 0.667766i \(0.767251\pi\)
\(492\) 0 0
\(493\) 4.95584e9i 0.0838938i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.12610e10 1.00406
\(498\) 0 0
\(499\) 3.55417e10 0.573239 0.286620 0.958044i \(-0.407468\pi\)
0.286620 + 0.958044i \(0.407468\pi\)
\(500\) 0 0
\(501\) −8.25488e10 8.53202e10i −1.31027 1.35426i
\(502\) 0 0
\(503\) −1.19756e11 −1.87079 −0.935396 0.353603i \(-0.884956\pi\)
−0.935396 + 0.353603i \(0.884956\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.06771e10 + 3.17071e10i 0.464283 + 0.479871i
\(508\) 0 0
\(509\) 4.51523e10i 0.672680i 0.941741 + 0.336340i \(0.109189\pi\)
−0.941741 + 0.336340i \(0.890811\pi\)
\(510\) 0 0
\(511\) 4.07997e10 0.598376
\(512\) 0 0
\(513\) 7.70938e10 6.98126e10i 1.11314 1.00801i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.01478e11i 1.42040i
\(518\) 0 0
\(519\) −8.14003e10 8.41331e10i −1.12191 1.15957i
\(520\) 0 0
\(521\) 1.25898e11i 1.70871i −0.519687 0.854357i \(-0.673951\pi\)
0.519687 0.854357i \(-0.326049\pi\)
\(522\) 0 0
\(523\) 1.27416e11i 1.70301i 0.524343 + 0.851507i \(0.324311\pi\)
−0.524343 + 0.851507i \(0.675689\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.26036e10 −0.163400
\(528\) 0 0
\(529\) −3.57805e10 −0.456902
\(530\) 0 0
\(531\) −1.52373e11 5.03248e9i −1.91659 0.0633000i
\(532\) 0 0
\(533\) 5.50279e10 0.681827
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −4.18995e10 + 4.05385e10i −0.503862 + 0.487496i
\(538\) 0 0
\(539\) 8.61898e9i 0.102118i
\(540\) 0 0
\(541\) 1.05813e11 1.23524 0.617620 0.786476i \(-0.288097\pi\)
0.617620 + 0.786476i \(0.288097\pi\)
\(542\) 0 0
\(543\) −8.81260e10 9.10847e10i −1.01369 1.04772i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.17218e10i 0.130932i −0.997855 0.0654661i \(-0.979147\pi\)
0.997855 0.0654661i \(-0.0208534\pi\)
\(548\) 0 0
\(549\) −1.93740e9 + 5.86603e10i −0.0213270 + 0.645736i
\(550\) 0 0
\(551\) 7.18572e10i 0.779586i
\(552\) 0 0
\(553\) 8.00408e10i 0.855876i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.90665e10 −0.198085 −0.0990423 0.995083i \(-0.531578\pi\)
−0.0990423 + 0.995083i \(0.531578\pi\)
\(558\) 0 0
\(559\) 3.19457e10 0.327164
\(560\) 0 0
\(561\) 1.36688e10 1.32248e10i 0.138000 0.133518i
\(562\) 0 0
\(563\) −4.94309e10 −0.492000 −0.246000 0.969270i \(-0.579116\pi\)
−0.246000 + 0.969270i \(0.579116\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.52003e9 + 9.85987e10i −0.0630837 + 0.953980i
\(568\) 0 0
\(569\) 7.53303e10i 0.718655i 0.933211 + 0.359328i \(0.116994\pi\)
−0.933211 + 0.359328i \(0.883006\pi\)
\(570\) 0 0
\(571\) −7.43397e10 −0.699321 −0.349661 0.936876i \(-0.613703\pi\)
−0.349661 + 0.936876i \(0.613703\pi\)
\(572\) 0 0
\(573\) 7.64562e10 7.39728e10i 0.709242 0.686204i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.46246e11i 1.31941i −0.751524 0.659706i \(-0.770681\pi\)
0.751524 0.659706i \(-0.229319\pi\)
\(578\) 0 0
\(579\) −6.53854e10 + 6.32615e10i −0.581790 + 0.562892i
\(580\) 0 0
\(581\) 1.07297e11i 0.941635i
\(582\) 0 0
\(583\) 1.31746e11i 1.14042i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.88952e11 −1.59147 −0.795735 0.605646i \(-0.792915\pi\)
−0.795735 + 0.605646i \(0.792915\pi\)
\(588\) 0 0
\(589\) 1.82745e11 1.51840
\(590\) 0 0
\(591\) −6.05838e10 6.26178e10i −0.496600 0.513272i
\(592\) 0 0
\(593\) −5.67120e10 −0.458624 −0.229312 0.973353i \(-0.573648\pi\)
−0.229312 + 0.973353i \(0.573648\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.69466e10 + 3.81870e10i 0.290855 + 0.300620i
\(598\) 0 0
\(599\) 4.00737e10i 0.311281i 0.987814 + 0.155640i \(0.0497441\pi\)
−0.987814 + 0.155640i \(0.950256\pi\)
\(600\) 0 0
\(601\) −2.27069e11 −1.74044 −0.870220 0.492663i \(-0.836024\pi\)
−0.870220 + 0.492663i \(0.836024\pi\)
\(602\) 0 0
\(603\) −1.70341e11 5.62592e9i −1.28840 0.0425524i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.87812e10i 0.506658i 0.967380 + 0.253329i \(0.0815255\pi\)
−0.967380 + 0.253329i \(0.918474\pi\)
\(608\) 0 0
\(609\) 4.74708e10 + 4.90645e10i 0.345110 + 0.356696i
\(610\) 0 0
\(611\) 9.60387e10i 0.689098i
\(612\) 0 0
\(613\) 2.22523e11i 1.57592i 0.615728 + 0.787959i \(0.288862\pi\)
−0.615728 + 0.787959i \(0.711138\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.41332e11 −0.975215 −0.487608 0.873063i \(-0.662130\pi\)
−0.487608 + 0.873063i \(0.662130\pi\)
\(618\) 0 0
\(619\) 1.28936e11 0.878236 0.439118 0.898429i \(-0.355291\pi\)
0.439118 + 0.898429i \(0.355291\pi\)
\(620\) 0 0
\(621\) −8.12393e10 + 7.35666e10i −0.546261 + 0.494668i
\(622\) 0 0
\(623\) −5.55999e10 −0.369081
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1.98191e11 + 1.91753e11i −1.28237 + 1.24072i
\(628\) 0 0
\(629\) 5.53833e6i 3.53815e-5i
\(630\) 0 0
\(631\) 1.64177e11 1.03561 0.517804 0.855499i \(-0.326750\pi\)
0.517804 + 0.855499i \(0.326750\pi\)
\(632\) 0 0
\(633\) −8.37789e10 8.65916e10i −0.521819 0.539338i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8.15700e9i 0.0495419i
\(638\) 0 0
\(639\) −1.75000e11 5.77980e9i −1.04963 0.0346664i
\(640\) 0 0
\(641\) 3.26564e10i 0.193436i −0.995312 0.0967178i \(-0.969166\pi\)
0.995312 0.0967178i \(-0.0308344\pi\)
\(642\) 0 0
\(643\) 2.64540e11i 1.54756i 0.633454 + 0.773781i \(0.281637\pi\)
−0.633454 + 0.773781i \(0.718363\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.87714e11 −1.07122 −0.535610 0.844466i \(-0.679918\pi\)
−0.535610 + 0.844466i \(0.679918\pi\)
\(648\) 0 0
\(649\) 4.04234e11 2.27853
\(650\) 0 0
\(651\) −1.24779e11 + 1.20726e11i −0.694735 + 0.672169i
\(652\) 0 0
\(653\) 1.62529e11 0.893879 0.446939 0.894564i \(-0.352514\pi\)
0.446939 + 0.894564i \(0.352514\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.16550e11 3.84934e9i −0.625533 0.0206597i
\(658\) 0 0
\(659\) 1.36472e11i 0.723608i 0.932254 + 0.361804i \(0.117839\pi\)
−0.932254 + 0.361804i \(0.882161\pi\)
\(660\) 0 0
\(661\) −2.89793e11 −1.51804 −0.759019 0.651069i \(-0.774321\pi\)
−0.759019 + 0.651069i \(0.774321\pi\)
\(662\) 0 0
\(663\) 1.29362e10 1.25160e10i 0.0669502 0.0647755i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.57211e10i 0.382572i
\(668\) 0 0
\(669\) −2.79679e11 + 2.70594e11i −1.39622 + 1.35087i
\(670\) 0 0
\(671\) 1.55621e11i 0.767678i
\(672\) 0 0
\(673\) 1.95738e10i 0.0954145i −0.998861 0.0477072i \(-0.984809\pi\)
0.998861 0.0477072i \(-0.0151915\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.54461e11 0.735297 0.367649 0.929965i \(-0.380163\pi\)
0.367649 + 0.929965i \(0.380163\pi\)
\(678\) 0 0
\(679\) −5.95571e10 −0.280191
\(680\) 0 0
\(681\) −2.36445e11 2.44383e11i −1.09937 1.13627i
\(682\) 0 0
\(683\) 3.32703e10 0.152888 0.0764440 0.997074i \(-0.475643\pi\)
0.0764440 + 0.997074i \(0.475643\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.09018e11 + 1.12678e11i 0.489407 + 0.505838i
\(688\) 0 0
\(689\) 1.24685e11i 0.553268i
\(690\) 0 0
\(691\) 3.41253e11 1.49680 0.748401 0.663246i \(-0.230822\pi\)
0.748401 + 0.663246i \(0.230822\pi\)
\(692\) 0 0
\(693\) 8.64858e9 2.61861e11i 0.0374983 1.13537i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.51130e10i 0.191148i
\(698\) 0 0
\(699\) −1.42417e11 1.47199e11i −0.596560 0.616588i
\(700\) 0 0
\(701\) 3.40014e11i 1.40807i −0.710165 0.704036i \(-0.751380\pi\)
0.710165 0.704036i \(-0.248620\pi\)
\(702\) 0 0
\(703\) 8.03029e7i 0.000328783i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.61073e11 −1.44517
\(708\) 0 0
\(709\) 2.31712e11 0.916987 0.458493 0.888698i \(-0.348389\pi\)
0.458493 + 0.888698i \(0.348389\pi\)
\(710\) 0 0
\(711\) 7.55162e9 2.28647e11i 0.0295503 0.894721i
\(712\) 0 0
\(713\) −1.92572e11 −0.745134
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.02930e11 9.95864e10i 0.389461 0.376811i
\(718\) 0 0
\(719\) 1.94401e11i 0.727417i −0.931513 0.363709i \(-0.881510\pi\)
0.931513 0.363709i \(-0.118490\pi\)
\(720\) 0 0
\(721\) 5.42526e10 0.200761
\(722\) 0 0
\(723\) 8.74236e10 + 9.03586e10i 0.319945 + 0.330687i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 5.06699e10i 0.181390i −0.995879 0.0906948i \(-0.971091\pi\)
0.995879 0.0906948i \(-0.0289088\pi\)
\(728\) 0 0
\(729\) 2.79278e10 2.81045e11i 0.0988843 0.995099i
\(730\) 0 0
\(731\) 2.61897e10i 0.0917195i
\(732\) 0 0
\(733\) 3.08608e11i 1.06903i 0.845158 + 0.534517i \(0.179506\pi\)
−0.845158 + 0.534517i \(0.820494\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.51902e11 1.53170
\(738\) 0 0
\(739\) −5.24612e11 −1.75898 −0.879489 0.475920i \(-0.842115\pi\)
−0.879489 + 0.475920i \(0.842115\pi\)
\(740\) 0 0
\(741\) −1.87568e11 + 1.81475e11i −0.622137 + 0.601928i
\(742\) 0 0
\(743\) −4.07793e11 −1.33809 −0.669043 0.743223i \(-0.733296\pi\)
−0.669043 + 0.743223i \(0.733296\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.01232e10 + 3.06508e11i −0.0325112 + 0.984372i
\(748\) 0 0
\(749\) 1.20289e11i 0.382208i
\(750\) 0 0
\(751\) −2.27808e11 −0.716160 −0.358080 0.933691i \(-0.616568\pi\)
−0.358080 + 0.933691i \(0.616568\pi\)
\(752\) 0 0
\(753\) 2.81938e11 2.72780e11i 0.876946 0.848461i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.82063e11i 1.16346i −0.813382 0.581730i \(-0.802376\pi\)
0.813382 0.581730i \(-0.197624\pi\)
\(758\) 0 0
\(759\) 2.08848e11 2.02064e11i 0.629309 0.608867i
\(760\) 0 0
\(761\) 3.24968e11i 0.968950i 0.874805 + 0.484475i \(0.160989\pi\)
−0.874805 + 0.484475i \(0.839011\pi\)
\(762\) 0 0
\(763\) 1.03091e11i 0.304175i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.82567e11 1.10542
\(768\) 0 0
\(769\) 5.24436e11 1.49964 0.749821 0.661641i \(-0.230140\pi\)
0.749821 + 0.661641i \(0.230140\pi\)
\(770\) 0 0
\(771\) −3.92677e10 4.05860e10i −0.111127 0.114857i
\(772\) 0 0
\(773\) −3.98964e10 −0.111742 −0.0558710 0.998438i \(-0.517794\pi\)
−0.0558710 + 0.998438i \(0.517794\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.30503e7 5.48313e7i −0.000145547 0.000150433i
\(778\) 0 0
\(779\) 6.54115e11i 1.77625i
\(780\) 0 0
\(781\) 4.64262e11 1.24784
\(782\) 0 0
\(783\) −1.30978e11 1.44638e11i −0.348458 0.384801i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.80418e10i 0.0470307i 0.999723 + 0.0235154i \(0.00748586\pi\)
−0.999723 + 0.0235154i \(0.992514\pi\)
\(788\) 0 0
\(789\) 2.39765e11 + 2.47814e11i 0.618696 + 0.639468i
\(790\) 0 0
\(791\) 3.33451e11i 0.851776i
\(792\) 0 0
\(793\) 1.47280e11i 0.372436i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.64874e11 1.64781 0.823903 0.566730i \(-0.191792\pi\)
0.823903 + 0.566730i \(0.191792\pi\)
\(798\) 0 0
\(799\) −7.87343e10 −0.193187
\(800\) 0 0
\(801\) 1.58829e11 + 5.24569e9i 0.385832 + 0.0127430i
\(802\) 0 0
\(803\) 3.09198e11 0.743661
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.96386e11 1.90007e11i 0.463038 0.447998i
\(808\) 0 0
\(809\) 5.10440e11i 1.19165i 0.803113 + 0.595827i \(0.203176\pi\)
−0.803113 + 0.595827i \(0.796824\pi\)
\(810\) 0 0
\(811\) 5.30337e11 1.22594 0.612969 0.790107i \(-0.289975\pi\)
0.612969 + 0.790107i \(0.289975\pi\)
\(812\) 0 0
\(813\) −3.70590e11 3.83032e11i −0.848266 0.876744i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.79738e11i 0.852306i
\(818\) 0 0
\(819\) 8.18501e9 2.47825e11i 0.0181921 0.550820i
\(820\) 0 0
\(821\) 1.20378e11i 0.264956i −0.991186 0.132478i \(-0.957707\pi\)
0.991186 0.132478i \(-0.0422934\pi\)
\(822\) 0 0
\(823\) 8.09679e11i 1.76487i 0.470432 + 0.882436i \(0.344098\pi\)
−0.470432 + 0.882436i \(0.655902\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5.02238e11 −1.07371 −0.536856 0.843674i \(-0.680388\pi\)
−0.536856 + 0.843674i \(0.680388\pi\)
\(828\) 0 0
\(829\) −5.45793e11 −1.15561 −0.577803 0.816176i \(-0.696090\pi\)
−0.577803 + 0.816176i \(0.696090\pi\)
\(830\) 0 0
\(831\) 2.94109e9 2.84556e9i 0.00616743 0.00596710i
\(832\) 0 0
\(833\) 6.68726e9 0.0138889
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.67840e11 3.33099e11i 0.749474 0.678689i
\(838\) 0 0
\(839\) 7.36835e11i 1.48704i −0.668715 0.743519i \(-0.733155\pi\)
0.668715 0.743519i \(-0.266845\pi\)
\(840\) 0 0
\(841\) 3.65433e11 0.730506
\(842\) 0 0
\(843\) 2.91555e11 2.82084e11i 0.577311 0.558558i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.02635e11i 0.393714i
\(848\) 0 0
\(849\) −5.83476e11 + 5.64524e11i −1.12303 + 1.08655i
\(850\) 0 0
\(851\) 8.46210e7i 0.000161347i
\(852\) 0 0
\(853\) 4.95665e11i 0.936250i −0.883662 0.468125i \(-0.844930\pi\)
0.883662 0.468125i \(-0.155070\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.67085e11 −0.309753 −0.154876 0.987934i \(-0.549498\pi\)
−0.154876 + 0.987934i \(0.549498\pi\)
\(858\) 0 0
\(859\) −6.89277e11 −1.26596 −0.632982 0.774167i \(-0.718169\pi\)
−0.632982 + 0.774167i \(0.718169\pi\)
\(860\) 0 0
\(861\) 4.32126e11 + 4.46633e11i 0.786317 + 0.812716i
\(862\) 0 0
\(863\) 6.64209e11 1.19746 0.598731 0.800950i \(-0.295672\pi\)
0.598731 + 0.800950i \(0.295672\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.82631e11 3.95476e11i −0.677179 0.699913i
\(868\) 0 0
\(869\) 6.06584e11i 1.06368i
\(870\) 0 0
\(871\) 4.27680e11 0.743099
\(872\) 0 0
\(873\) 1.70133e11 + 5.61904e9i 0.292908 + 0.00967398i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.97348e11i 0.671695i 0.941916 + 0.335848i \(0.109023\pi\)
−0.941916 + 0.335848i \(0.890977\pi\)
\(878\) 0 0
\(879\) −4.80292e11 4.96417e11i −0.804545 0.831556i
\(880\) 0 0
\(881\) 7.33038e11i 1.21681i 0.793627 + 0.608405i \(0.208190\pi\)
−0.793627 + 0.608405i \(0.791810\pi\)
\(882\) 0 0
\(883\) 1.10665e12i 1.82040i −0.414170 0.910199i \(-0.635928\pi\)
0.414170 0.910199i \(-0.364072\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.21287e11 1.16524 0.582618 0.812746i \(-0.302028\pi\)
0.582618 + 0.812746i \(0.302028\pi\)
\(888\) 0 0
\(889\) 7.17198e11 1.14824
\(890\) 0 0
\(891\) −4.94116e10 + 7.47224e11i −0.0784004 + 1.18561i
\(892\) 0 0
\(893\) 1.14161e12 1.79519
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.97654e11 1.91234e11i 0.305306 0.295389i
\(898\) 0 0
\(899\) 3.42854e11i 0.524892i
\(900\) 0 0
\(901\) −1.02219e11 −0.155107
\(902\) 0 0
\(903\) 2.50865e11 + 2.59287e11i 0.377302 + 0.389969i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 2.73405e11i 0.403996i −0.979386 0.201998i \(-0.935257\pi\)
0.979386 0.201998i \(-0.0647434\pi\)
\(908\) 0 0
\(909\) 1.03145e12 + 3.40662e10i 1.51076 + 0.0498963i
\(910\) 0 0
\(911\) 5.29336e11i 0.768525i 0.923224 + 0.384263i \(0.125544\pi\)
−0.923224 + 0.384263i \(0.874456\pi\)
\(912\) 0 0
\(913\) 8.13143e11i 1.17026i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.02787e12 −1.45365
\(918\) 0 0
\(919\) −3.37368e11 −0.472978 −0.236489 0.971634i \(-0.575997\pi\)
−0.236489 + 0.971634i \(0.575997\pi\)
\(920\) 0 0
\(921\) 9.86283e10 9.54246e10i 0.137076 0.132624i
\(922\) 0 0
\(923\) 4.39378e11 0.605384
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.54980e11 5.11858e9i −0.209873 0.00693156i
\(928\) 0 0
\(929\) 3.33858e11i 0.448229i 0.974563 + 0.224114i \(0.0719489\pi\)
−0.974563 + 0.224114i \(0.928051\pi\)
\(930\) 0 0
\(931\) −9.69619e10 −0.129063
\(932\) 0 0
\(933\) −2.99749e11 + 2.90013e11i −0.395577 + 0.382728i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.13902e11i 0.666688i −0.942805 0.333344i \(-0.891823\pi\)
0.942805 0.333344i \(-0.108177\pi\)
\(938\) 0 0
\(939\) −4.84510e11 + 4.68772e11i −0.623218 + 0.602975i
\(940\) 0 0
\(941\) 6.37307e11i 0.812812i 0.913693 + 0.406406i \(0.133218\pi\)
−0.913693 + 0.406406i \(0.866782\pi\)
\(942\) 0 0
\(943\) 6.89288e11i 0.871674i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.13296e12 −1.40869 −0.704346 0.709857i \(-0.748760\pi\)
−0.704346 + 0.709857i \(0.748760\pi\)
\(948\) 0 0
\(949\) 2.92625e11 0.360784
\(950\) 0 0
\(951\) 9.44150e11 + 9.75848e11i 1.15430 + 1.19305i
\(952\) 0 0
\(953\) −1.04326e11 −0.126480 −0.0632400 0.997998i \(-0.520143\pi\)
−0.0632400 + 0.997998i \(0.520143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.59755e11 + 3.71832e11i 0.428902 + 0.443302i
\(958\) 0 0
\(959\) 1.14393e12i 1.35246i
\(960\) 0 0
\(961\) 1.90453e10 0.0223303
\(962\) 0 0
\(963\) 1.13489e10 3.43622e11i 0.0131962 0.399555i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.71576e11i 0.539319i −0.962956 0.269659i \(-0.913089\pi\)
0.962956 0.269659i \(-0.0869111\pi\)
\(968\) 0 0
\(969\) −1.48777e11 1.53772e11i −0.168749 0.174414i
\(970\) 0 0
\(971\) 4.60220e11i 0.517713i 0.965916 + 0.258856i \(0.0833456\pi\)
−0.965916 + 0.258856i \(0.916654\pi\)
\(972\) 0 0
\(973\) 1.22546e12i 1.36725i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.41831e12 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(978\) 0 0
\(979\) −4.21360e11 −0.458694
\(980\) 0 0
\(981\) 9.72638e9 2.94494e11i 0.0105021 0.317981i
\(982\) 0 0
\(983\) −1.48643e12 −1.59196 −0.795978 0.605326i \(-0.793043\pi\)
−0.795978 + 0.605326i \(0.793043\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −7.79496e11 + 7.54177e11i −0.821382 + 0.794702i
\(988\) 0 0
\(989\) 4.00157e11i 0.418259i
\(990\) 0 0
\(991\) 5.45711e11 0.565807 0.282903 0.959148i \(-0.408702\pi\)
0.282903 + 0.959148i \(0.408702\pi\)
\(992\) 0 0
\(993\) 1.22686e12 + 1.26804e12i 1.26182 + 1.30418i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.51985e12i 1.53823i −0.639112 0.769114i \(-0.720698\pi\)
0.639112 0.769114i \(-0.279302\pi\)
\(998\) 0 0
\(999\) 1.46372e8 + 1.61638e8i 0.000146959 + 0.000162286i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.9.b.e.149.14 20
3.2 odd 2 inner 300.9.b.e.149.8 20
5.2 odd 4 300.9.g.g.101.7 yes 10
5.3 odd 4 300.9.g.e.101.4 yes 10
5.4 even 2 inner 300.9.b.e.149.7 20
15.2 even 4 300.9.g.g.101.8 yes 10
15.8 even 4 300.9.g.e.101.3 10
15.14 odd 2 inner 300.9.b.e.149.13 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.9.b.e.149.7 20 5.4 even 2 inner
300.9.b.e.149.8 20 3.2 odd 2 inner
300.9.b.e.149.13 20 15.14 odd 2 inner
300.9.b.e.149.14 20 1.1 even 1 trivial
300.9.g.e.101.3 10 15.8 even 4
300.9.g.e.101.4 yes 10 5.3 odd 4
300.9.g.g.101.7 yes 10 5.2 odd 4
300.9.g.g.101.8 yes 10 15.2 even 4