Properties

Label 300.9.g.e.101.3
Level $300$
Weight $9$
Character 300.101
Analytic conductor $122.214$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [300,9,Mod(101,300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("300.101");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 300.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(122.213583018\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 17581 x^{8} - 268094 x^{7} + 129938570 x^{6} - 2805075950 x^{5} + 497042336337 x^{4} + \cdots + 51\!\cdots\!56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{17}\cdot 5^{7}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.3
Root \(-5.98515 + 56.3224i\) of defining polynomial
Character \(\chi\) \(=\) 300.101
Dual form 300.9.g.e.101.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-58.2133 - 56.3224i) q^{3} -2295.51 q^{7} +(216.575 + 6557.42i) q^{9} +17396.4i q^{11} +16463.9 q^{13} +13497.4i q^{17} +195706. q^{19} +(133629. + 129288. i) q^{21} -206229. i q^{23} +(356722. - 393927. i) q^{27} +367170. i q^{29} -933775. q^{31} +(979805. - 1.01270e6i) q^{33} -410.325 q^{37} +(-958418. - 927287. i) q^{39} -3.34234e6i q^{41} -1.94035e6 q^{43} -5.83328e6i q^{47} -495447. q^{49} +(760207. - 785730. i) q^{51} +7.57320e6i q^{53} +(-1.13927e7 - 1.10226e7i) q^{57} +2.32367e7i q^{59} +8.94563e6 q^{61} +(-497149. - 1.50526e7i) q^{63} +2.59768e7 q^{67} +(-1.16153e7 + 1.20053e7i) q^{69} -2.66873e7i q^{71} -1.77737e7 q^{73} -3.99335e7i q^{77} +3.48684e7 q^{79} +(-4.29529e7 + 2.84034e6i) q^{81} -4.67421e7i q^{83} +(2.06799e7 - 2.13742e7i) q^{87} -2.42212e7i q^{89} -3.77930e7 q^{91} +(5.43581e7 + 5.25925e7i) q^{93} -2.59451e7 q^{97} +(-1.14075e8 + 3.76761e6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 137 q^{3} - 1048 q^{7} - 12455 q^{9} + 34472 q^{13} - 376030 q^{19} - 142540 q^{21} - 1458782 q^{27} - 410860 q^{31} - 523275 q^{33} - 110344 q^{37} + 3527870 q^{39} - 6252148 q^{43} + 13891530 q^{49}+ \cdots + 52292505 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −58.2133 56.3224i −0.718683 0.695338i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2295.51 −0.956063 −0.478032 0.878343i \(-0.658650\pi\)
−0.478032 + 0.878343i \(0.658650\pi\)
\(8\) 0 0
\(9\) 216.575 + 6557.42i 0.0330094 + 0.999455i
\(10\) 0 0
\(11\) 17396.4i 1.18819i 0.804393 + 0.594097i \(0.202491\pi\)
−0.804393 + 0.594097i \(0.797509\pi\)
\(12\) 0 0
\(13\) 16463.9 0.576447 0.288224 0.957563i \(-0.406935\pi\)
0.288224 + 0.957563i \(0.406935\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 13497.4i 0.161605i 0.996730 + 0.0808026i \(0.0257483\pi\)
−0.996730 + 0.0808026i \(0.974252\pi\)
\(18\) 0 0
\(19\) 195706. 1.50172 0.750860 0.660461i \(-0.229639\pi\)
0.750860 + 0.660461i \(0.229639\pi\)
\(20\) 0 0
\(21\) 133629. + 129288.i 0.687106 + 0.664787i
\(22\) 0 0
\(23\) 206229.i 0.736952i −0.929637 0.368476i \(-0.879880\pi\)
0.929637 0.368476i \(-0.120120\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 356722. 393927.i 0.671236 0.741244i
\(28\) 0 0
\(29\) 367170.i 0.519128i 0.965726 + 0.259564i \(0.0835789\pi\)
−0.965726 + 0.259564i \(0.916421\pi\)
\(30\) 0 0
\(31\) −933775. −1.01110 −0.505552 0.862796i \(-0.668711\pi\)
−0.505552 + 0.862796i \(0.668711\pi\)
\(32\) 0 0
\(33\) 979805. 1.01270e6i 0.826197 0.853935i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −410.325 −0.000218938 −0.000109469 1.00000i \(-0.500035\pi\)
−0.000109469 1.00000i \(0.500035\pi\)
\(38\) 0 0
\(39\) −958418. 927287.i −0.414283 0.400826i
\(40\) 0 0
\(41\) 3.34234e6i 1.18281i −0.806375 0.591405i \(-0.798573\pi\)
0.806375 0.591405i \(-0.201427\pi\)
\(42\) 0 0
\(43\) −1.94035e6 −0.567553 −0.283776 0.958891i \(-0.591587\pi\)
−0.283776 + 0.958891i \(0.591587\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.83328e6i 1.19542i −0.801711 0.597712i \(-0.796077\pi\)
0.801711 0.597712i \(-0.203923\pi\)
\(48\) 0 0
\(49\) −495447. −0.0859435
\(50\) 0 0
\(51\) 760207. 785730.i 0.112370 0.116143i
\(52\) 0 0
\(53\) 7.57320e6i 0.959790i 0.877326 + 0.479895i \(0.159325\pi\)
−0.877326 + 0.479895i \(0.840675\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.13927e7 1.10226e7i −1.07926 1.04420i
\(58\) 0 0
\(59\) 2.32367e7i 1.91764i 0.284021 + 0.958818i \(0.408331\pi\)
−0.284021 + 0.958818i \(0.591669\pi\)
\(60\) 0 0
\(61\) 8.94563e6 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(62\) 0 0
\(63\) −497149. 1.50526e7i −0.0315591 0.955542i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.59768e7 1.28910 0.644551 0.764562i \(-0.277044\pi\)
0.644551 + 0.764562i \(0.277044\pi\)
\(68\) 0 0
\(69\) −1.16153e7 + 1.20053e7i −0.512431 + 0.529634i
\(70\) 0 0
\(71\) 2.66873e7i 1.05020i −0.851041 0.525100i \(-0.824028\pi\)
0.851041 0.525100i \(-0.175972\pi\)
\(72\) 0 0
\(73\) −1.77737e7 −0.625875 −0.312937 0.949774i \(-0.601313\pi\)
−0.312937 + 0.949774i \(0.601313\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.99335e7i 1.13599i
\(78\) 0 0
\(79\) 3.48684e7 0.895209 0.447604 0.894232i \(-0.352277\pi\)
0.447604 + 0.894232i \(0.352277\pi\)
\(80\) 0 0
\(81\) −4.29529e7 + 2.84034e6i −0.997821 + 0.0659828i
\(82\) 0 0
\(83\) 4.67421e7i 0.984909i −0.870338 0.492454i \(-0.836100\pi\)
0.870338 0.492454i \(-0.163900\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.06799e7 2.13742e7i 0.360970 0.373088i
\(88\) 0 0
\(89\) 2.42212e7i 0.386043i −0.981195 0.193021i \(-0.938171\pi\)
0.981195 0.193021i \(-0.0618286\pi\)
\(90\) 0 0
\(91\) −3.77930e7 −0.551120
\(92\) 0 0
\(93\) 5.43581e7 + 5.25925e7i 0.726662 + 0.703059i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.59451e7 −0.293068 −0.146534 0.989206i \(-0.546812\pi\)
−0.146534 + 0.989206i \(0.546812\pi\)
\(98\) 0 0
\(99\) −1.14075e8 + 3.76761e6i −1.18755 + 0.0392216i
\(100\) 0 0
\(101\) 1.57296e8i 1.51158i 0.654814 + 0.755790i \(0.272747\pi\)
−0.654814 + 0.755790i \(0.727253\pi\)
\(102\) 0 0
\(103\) −2.36343e7 −0.209987 −0.104994 0.994473i \(-0.533482\pi\)
−0.104994 + 0.994473i \(0.533482\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.24020e7i 0.399773i −0.979819 0.199886i \(-0.935943\pi\)
0.979819 0.199886i \(-0.0640573\pi\)
\(108\) 0 0
\(109\) 4.49101e7 0.318154 0.159077 0.987266i \(-0.449148\pi\)
0.159077 + 0.987266i \(0.449148\pi\)
\(110\) 0 0
\(111\) 23886.4 + 23110.5i 0.000157347 + 0.000152236i
\(112\) 0 0
\(113\) 1.45262e8i 0.890921i 0.895302 + 0.445460i \(0.146960\pi\)
−0.895302 + 0.445460i \(0.853040\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.56566e6 + 1.07961e8i 0.0190282 + 0.576133i
\(118\) 0 0
\(119\) 3.09834e7i 0.154505i
\(120\) 0 0
\(121\) −8.82745e7 −0.411807
\(122\) 0 0
\(123\) −1.88248e8 + 1.94568e8i −0.822453 + 0.850065i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.12436e8 1.20101 0.600504 0.799622i \(-0.294967\pi\)
0.600504 + 0.799622i \(0.294967\pi\)
\(128\) 0 0
\(129\) 1.12954e8 + 1.09285e8i 0.407890 + 0.394641i
\(130\) 0 0
\(131\) 4.47775e8i 1.52046i 0.649656 + 0.760229i \(0.274913\pi\)
−0.649656 + 0.760229i \(0.725087\pi\)
\(132\) 0 0
\(133\) −4.49244e8 −1.43574
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.98335e8i 1.41462i 0.706904 + 0.707309i \(0.250091\pi\)
−0.706904 + 0.707309i \(0.749909\pi\)
\(138\) 0 0
\(139\) −5.33850e8 −1.43008 −0.715039 0.699084i \(-0.753591\pi\)
−0.715039 + 0.699084i \(0.753591\pi\)
\(140\) 0 0
\(141\) −3.28545e8 + 3.39575e8i −0.831224 + 0.859130i
\(142\) 0 0
\(143\) 2.86412e8i 0.684932i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.88416e7 + 2.79048e7i 0.0617661 + 0.0597598i
\(148\) 0 0
\(149\) 2.63916e7i 0.0535452i 0.999642 + 0.0267726i \(0.00852301\pi\)
−0.999642 + 0.0267726i \(0.991477\pi\)
\(150\) 0 0
\(151\) −8.51062e8 −1.63702 −0.818509 0.574493i \(-0.805199\pi\)
−0.818509 + 0.574493i \(0.805199\pi\)
\(152\) 0 0
\(153\) −8.85084e7 + 2.92320e6i −0.161517 + 0.00533449i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.48170e8 0.408462 0.204231 0.978923i \(-0.434531\pi\)
0.204231 + 0.978923i \(0.434531\pi\)
\(158\) 0 0
\(159\) 4.26541e8 4.40861e8i 0.667379 0.689784i
\(160\) 0 0
\(161\) 4.73401e8i 0.704572i
\(162\) 0 0
\(163\) 3.20988e8 0.454713 0.227357 0.973812i \(-0.426992\pi\)
0.227357 + 0.973812i \(0.426992\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.46565e9i 1.88436i −0.335108 0.942180i \(-0.608773\pi\)
0.335108 0.942180i \(-0.391227\pi\)
\(168\) 0 0
\(169\) −5.44670e8 −0.667709
\(170\) 0 0
\(171\) 4.23849e7 + 1.28333e9i 0.0495709 + 1.50090i
\(172\) 0 0
\(173\) 1.44526e9i 1.61347i 0.590915 + 0.806734i \(0.298767\pi\)
−0.590915 + 0.806734i \(0.701233\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.30875e9 1.35268e9i 1.33341 1.37817i
\(178\) 0 0
\(179\) 7.19759e8i 0.701092i 0.936546 + 0.350546i \(0.114004\pi\)
−0.936546 + 0.350546i \(0.885996\pi\)
\(180\) 0 0
\(181\) −1.56467e9 −1.45784 −0.728918 0.684601i \(-0.759977\pi\)
−0.728918 + 0.684601i \(0.759977\pi\)
\(182\) 0 0
\(183\) −5.20755e8 5.03839e8i −0.464332 0.449250i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.34806e8 −0.192018
\(188\) 0 0
\(189\) −8.18859e8 + 9.04263e8i −0.641744 + 0.708676i
\(190\) 0 0
\(191\) 1.31338e9i 0.986864i 0.869784 + 0.493432i \(0.164258\pi\)
−0.869784 + 0.493432i \(0.835742\pi\)
\(192\) 0 0
\(193\) −1.12320e9 −0.809523 −0.404761 0.914422i \(-0.632645\pi\)
−0.404761 + 0.914422i \(0.632645\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.07566e9i 0.714185i −0.934069 0.357092i \(-0.883768\pi\)
0.934069 0.357092i \(-0.116232\pi\)
\(198\) 0 0
\(199\) −6.55984e8 −0.418293 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(200\) 0 0
\(201\) −1.51220e9 1.46308e9i −0.926455 0.896361i
\(202\) 0 0
\(203\) 8.42840e8i 0.496319i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.35233e9 4.46640e7i 0.736550 0.0243263i
\(208\) 0 0
\(209\) 3.40457e9i 1.78434i
\(210\) 0 0
\(211\) −1.48749e9 −0.750453 −0.375227 0.926933i \(-0.622435\pi\)
−0.375227 + 0.926933i \(0.622435\pi\)
\(212\) 0 0
\(213\) −1.50309e9 + 1.55356e9i −0.730244 + 0.754760i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.14349e9 0.966679
\(218\) 0 0
\(219\) 1.03467e9 + 1.00106e9i 0.449805 + 0.435195i
\(220\) 0 0
\(221\) 2.22220e8i 0.0931569i
\(222\) 0 0
\(223\) −4.80438e9 −1.94276 −0.971378 0.237540i \(-0.923659\pi\)
−0.971378 + 0.237540i \(0.923659\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.19807e9i 1.58105i −0.612429 0.790525i \(-0.709808\pi\)
0.612429 0.790525i \(-0.290192\pi\)
\(228\) 0 0
\(229\) −1.93560e9 −0.703841 −0.351920 0.936030i \(-0.614471\pi\)
−0.351920 + 0.936030i \(0.614471\pi\)
\(230\) 0 0
\(231\) −2.24915e9 + 2.32466e9i −0.789897 + 0.816416i
\(232\) 0 0
\(233\) 2.52861e9i 0.857942i 0.903318 + 0.428971i \(0.141124\pi\)
−0.903318 + 0.428971i \(0.858876\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.02981e9 1.96387e9i −0.643371 0.622473i
\(238\) 0 0
\(239\) 1.76815e9i 0.541910i −0.962592 0.270955i \(-0.912661\pi\)
0.962592 0.270955i \(-0.0873395\pi\)
\(240\) 0 0
\(241\) 1.55220e9 0.460129 0.230064 0.973175i \(-0.426106\pi\)
0.230064 + 0.973175i \(0.426106\pi\)
\(242\) 0 0
\(243\) 2.66041e9 + 2.25387e9i 0.762997 + 0.646402i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.22208e9 0.865663
\(248\) 0 0
\(249\) −2.63263e9 + 2.72101e9i −0.684845 + 0.707837i
\(250\) 0 0
\(251\) 4.84318e9i 1.22021i 0.792319 + 0.610107i \(0.208873\pi\)
−0.792319 + 0.610107i \(0.791127\pi\)
\(252\) 0 0
\(253\) 3.58764e9 0.875642
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.97195e8i 0.159816i −0.996802 0.0799082i \(-0.974537\pi\)
0.996802 0.0799082i \(-0.0254627\pi\)
\(258\) 0 0
\(259\) 941903. 0.000209318
\(260\) 0 0
\(261\) −2.40769e9 + 7.95196e7i −0.518845 + 0.0171361i
\(262\) 0 0
\(263\) 4.25701e9i 0.889777i −0.895586 0.444889i \(-0.853243\pi\)
0.895586 0.444889i \(-0.146757\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.36419e9 + 1.40999e9i −0.268430 + 0.277442i
\(268\) 0 0
\(269\) 3.37356e9i 0.644288i −0.946691 0.322144i \(-0.895597\pi\)
0.946691 0.322144i \(-0.104403\pi\)
\(270\) 0 0
\(271\) −6.57981e9 −1.21993 −0.609966 0.792427i \(-0.708817\pi\)
−0.609966 + 0.792427i \(0.708817\pi\)
\(272\) 0 0
\(273\) 2.20006e9 + 2.12859e9i 0.396080 + 0.383215i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.05227e7 −0.00858158 −0.00429079 0.999991i \(-0.501366\pi\)
−0.00429079 + 0.999991i \(0.501366\pi\)
\(278\) 0 0
\(279\) −2.02232e8 6.12316e9i −0.0333759 1.01055i
\(280\) 0 0
\(281\) 5.00839e9i 0.803290i 0.915795 + 0.401645i \(0.131561\pi\)
−0.915795 + 0.401645i \(0.868439\pi\)
\(282\) 0 0
\(283\) −1.00231e10 −1.56263 −0.781314 0.624139i \(-0.785450\pi\)
−0.781314 + 0.624139i \(0.785450\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.67236e9i 1.13084i
\(288\) 0 0
\(289\) 6.79358e9 0.973884
\(290\) 0 0
\(291\) 1.51035e9 + 1.46129e9i 0.210623 + 0.203781i
\(292\) 0 0
\(293\) 8.52756e9i 1.15706i 0.815663 + 0.578528i \(0.196373\pi\)
−0.815663 + 0.578528i \(0.803627\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.85290e9 + 6.20567e9i 0.880742 + 0.797559i
\(298\) 0 0
\(299\) 3.39534e9i 0.424814i
\(300\) 0 0
\(301\) 4.45409e9 0.542616
\(302\) 0 0
\(303\) 8.85927e9 9.15670e9i 1.05106 1.08635i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.69426e9 −0.190733 −0.0953665 0.995442i \(-0.530402\pi\)
−0.0953665 + 0.995442i \(0.530402\pi\)
\(308\) 0 0
\(309\) 1.37583e9 + 1.33114e9i 0.150914 + 0.146012i
\(310\) 0 0
\(311\) 5.14916e9i 0.550420i −0.961384 0.275210i \(-0.911253\pi\)
0.961384 0.275210i \(-0.0887474\pi\)
\(312\) 0 0
\(313\) −8.32301e9 −0.867168 −0.433584 0.901113i \(-0.642751\pi\)
−0.433584 + 0.901113i \(0.642751\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.67633e10i 1.66006i 0.557721 + 0.830029i \(0.311676\pi\)
−0.557721 + 0.830029i \(0.688324\pi\)
\(318\) 0 0
\(319\) −6.38742e9 −0.616826
\(320\) 0 0
\(321\) −2.95141e9 + 3.05050e9i −0.277977 + 0.287310i
\(322\) 0 0
\(323\) 2.64152e9i 0.242686i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2.61436e9 2.52944e9i −0.228652 0.221225i
\(328\) 0 0
\(329\) 1.33903e10i 1.14290i
\(330\) 0 0
\(331\) 2.17827e10 1.81468 0.907341 0.420396i \(-0.138109\pi\)
0.907341 + 0.420396i \(0.138109\pi\)
\(332\) 0 0
\(333\) −88865.9 2.69067e6i −7.22700e−6 0.000218819i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.33242e10 −1.80837 −0.904186 0.427138i \(-0.859522\pi\)
−0.904186 + 0.427138i \(0.859522\pi\)
\(338\) 0 0
\(339\) 8.18152e9 8.45619e9i 0.619491 0.640289i
\(340\) 0 0
\(341\) 1.62443e10i 1.20139i
\(342\) 0 0
\(343\) 1.43704e10 1.03823
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.42872e10i 0.985437i −0.870189 0.492718i \(-0.836003\pi\)
0.870189 0.492718i \(-0.163997\pi\)
\(348\) 0 0
\(349\) −1.25048e10 −0.842897 −0.421449 0.906852i \(-0.638478\pi\)
−0.421449 + 0.906852i \(0.638478\pi\)
\(350\) 0 0
\(351\) 5.87304e9 6.48558e9i 0.386932 0.427288i
\(352\) 0 0
\(353\) 3.48520e9i 0.224454i −0.993683 0.112227i \(-0.964202\pi\)
0.993683 0.112227i \(-0.0357985\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.74506e9 + 1.80365e9i −0.107433 + 0.111040i
\(358\) 0 0
\(359\) 1.70468e10i 1.02628i −0.858305 0.513139i \(-0.828482\pi\)
0.858305 0.513139i \(-0.171518\pi\)
\(360\) 0 0
\(361\) 2.13172e10 1.25517
\(362\) 0 0
\(363\) 5.13875e9 + 4.97183e9i 0.295959 + 0.286345i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5.41628e9 0.298563 0.149282 0.988795i \(-0.452304\pi\)
0.149282 + 0.988795i \(0.452304\pi\)
\(368\) 0 0
\(369\) 2.19171e10 7.23865e8i 1.18217 0.0390438i
\(370\) 0 0
\(371\) 1.73843e10i 0.917620i
\(372\) 0 0
\(373\) 1.31731e10 0.680539 0.340269 0.940328i \(-0.389482\pi\)
0.340269 + 0.940328i \(0.389482\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.04505e9i 0.299250i
\(378\) 0 0
\(379\) 7.75719e8 0.0375965 0.0187983 0.999823i \(-0.494016\pi\)
0.0187983 + 0.999823i \(0.494016\pi\)
\(380\) 0 0
\(381\) −1.81879e10 1.75971e10i −0.863143 0.835106i
\(382\) 0 0
\(383\) 3.66582e10i 1.70363i −0.523841 0.851816i \(-0.675502\pi\)
0.523841 0.851816i \(-0.324498\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.20230e8 1.27237e10i −0.0187346 0.567243i
\(388\) 0 0
\(389\) 1.07813e10i 0.470839i −0.971894 0.235419i \(-0.924354\pi\)
0.971894 0.235419i \(-0.0756463\pi\)
\(390\) 0 0
\(391\) 2.78356e9 0.119095
\(392\) 0 0
\(393\) 2.52197e10 2.60664e10i 1.05723 1.09273i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.48948e10 −1.40475 −0.702375 0.711807i \(-0.747877\pi\)
−0.702375 + 0.711807i \(0.747877\pi\)
\(398\) 0 0
\(399\) 2.61520e10 + 2.53025e10i 1.03184 + 0.998325i
\(400\) 0 0
\(401\) 3.53994e10i 1.36905i −0.728991 0.684524i \(-0.760010\pi\)
0.728991 0.684524i \(-0.239990\pi\)
\(402\) 0 0
\(403\) −1.53736e10 −0.582848
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.13816e6i 0.000260141i
\(408\) 0 0
\(409\) −2.49105e10 −0.890205 −0.445102 0.895480i \(-0.646833\pi\)
−0.445102 + 0.895480i \(0.646833\pi\)
\(410\) 0 0
\(411\) 2.80674e10 2.90097e10i 0.983638 1.01666i
\(412\) 0 0
\(413\) 5.33400e10i 1.83338i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.10772e10 + 3.00677e10i 1.02777 + 0.994388i
\(418\) 0 0
\(419\) 2.06624e10i 0.670385i 0.942150 + 0.335192i \(0.108801\pi\)
−0.942150 + 0.335192i \(0.891199\pi\)
\(420\) 0 0
\(421\) 4.40984e10 1.40377 0.701883 0.712292i \(-0.252343\pi\)
0.701883 + 0.712292i \(0.252343\pi\)
\(422\) 0 0
\(423\) 3.82513e10 1.26334e9i 1.19477 0.0394602i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.05348e10 −0.617701
\(428\) 0 0
\(429\) 1.61314e10 1.66730e10i 0.476259 0.492248i
\(430\) 0 0
\(431\) 6.54249e9i 0.189598i 0.995496 + 0.0947990i \(0.0302208\pi\)
−0.995496 + 0.0947990i \(0.969779\pi\)
\(432\) 0 0
\(433\) −1.78927e10 −0.509008 −0.254504 0.967072i \(-0.581912\pi\)
−0.254504 + 0.967072i \(0.581912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.03603e10i 1.10670i
\(438\) 0 0
\(439\) 4.08114e10 1.09881 0.549406 0.835556i \(-0.314854\pi\)
0.549406 + 0.835556i \(0.314854\pi\)
\(440\) 0 0
\(441\) −1.07301e8 3.24886e9i −0.00283694 0.0858967i
\(442\) 0 0
\(443\) 4.66125e10i 1.21028i 0.796117 + 0.605142i \(0.206884\pi\)
−0.796117 + 0.605142i \(0.793116\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.48644e9 1.53634e9i 0.0372320 0.0384820i
\(448\) 0 0
\(449\) 1.18770e9i 0.0292229i −0.999893 0.0146114i \(-0.995349\pi\)
0.999893 0.0146114i \(-0.00465113\pi\)
\(450\) 0 0
\(451\) 5.81445e10 1.40541
\(452\) 0 0
\(453\) 4.95431e10 + 4.79339e10i 1.17650 + 1.13828i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.89499e10 −0.892979 −0.446489 0.894789i \(-0.647326\pi\)
−0.446489 + 0.894789i \(0.647326\pi\)
\(458\) 0 0
\(459\) 5.31700e9 + 4.81483e9i 0.119789 + 0.108475i
\(460\) 0 0
\(461\) 4.68231e8i 0.0103671i 0.999987 + 0.00518354i \(0.00164998\pi\)
−0.999987 + 0.00518354i \(0.998350\pi\)
\(462\) 0 0
\(463\) −6.51315e10 −1.41732 −0.708658 0.705552i \(-0.750699\pi\)
−0.708658 + 0.705552i \(0.750699\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.36135e10i 1.96821i 0.177594 + 0.984104i \(0.443169\pi\)
−0.177594 + 0.984104i \(0.556831\pi\)
\(468\) 0 0
\(469\) −5.96300e10 −1.23246
\(470\) 0 0
\(471\) −1.44468e10 1.39776e10i −0.293554 0.284019i
\(472\) 0 0
\(473\) 3.37550e10i 0.674363i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.96607e10 + 1.64016e9i −0.959267 + 0.0316821i
\(478\) 0 0
\(479\) 8.18125e10i 1.55410i −0.629442 0.777048i \(-0.716716\pi\)
0.629442 0.777048i \(-0.283284\pi\)
\(480\) 0 0
\(481\) −6.75555e6 −0.000126206
\(482\) 0 0
\(483\) 2.66631e10 2.75582e10i 0.489916 0.506364i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.53575e10 −0.273026 −0.136513 0.990638i \(-0.543590\pi\)
−0.136513 + 0.990638i \(0.543590\pi\)
\(488\) 0 0
\(489\) −1.86857e10 1.80788e10i −0.326795 0.316180i
\(490\) 0 0
\(491\) 7.76212e10i 1.33553i −0.744371 0.667766i \(-0.767251\pi\)
0.744371 0.667766i \(-0.232749\pi\)
\(492\) 0 0
\(493\) −4.95584e9 −0.0838938
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.12610e10i 1.00406i
\(498\) 0 0
\(499\) −3.55417e10 −0.573239 −0.286620 0.958044i \(-0.592532\pi\)
−0.286620 + 0.958044i \(0.592532\pi\)
\(500\) 0 0
\(501\) −8.25488e10 + 8.53202e10i −1.31027 + 1.35426i
\(502\) 0 0
\(503\) 1.19756e11i 1.87079i 0.353603 + 0.935396i \(0.384956\pi\)
−0.353603 + 0.935396i \(0.615044\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.17071e10 + 3.06771e10i 0.479871 + 0.464283i
\(508\) 0 0
\(509\) 4.51523e10i 0.672680i 0.941741 + 0.336340i \(0.109189\pi\)
−0.941741 + 0.336340i \(0.890811\pi\)
\(510\) 0 0
\(511\) 4.07997e10 0.598376
\(512\) 0 0
\(513\) 6.98126e10 7.70938e10i 1.00801 1.11314i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.01478e11 1.42040
\(518\) 0 0
\(519\) 8.14003e10 8.41331e10i 1.12191 1.15957i
\(520\) 0 0
\(521\) 1.25898e11i 1.70871i 0.519687 + 0.854357i \(0.326049\pi\)
−0.519687 + 0.854357i \(0.673951\pi\)
\(522\) 0 0
\(523\) −1.27416e11 −1.70301 −0.851507 0.524343i \(-0.824311\pi\)
−0.851507 + 0.524343i \(0.824311\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.26036e10i 0.163400i
\(528\) 0 0
\(529\) 3.57805e10 0.456902
\(530\) 0 0
\(531\) −1.52373e11 + 5.03248e9i −1.91659 + 0.0633000i
\(532\) 0 0
\(533\) 5.50279e10i 0.681827i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.05385e10 4.18995e10i 0.487496 0.503862i
\(538\) 0 0
\(539\) 8.61898e9i 0.102118i
\(540\) 0 0
\(541\) 1.05813e11 1.23524 0.617620 0.786476i \(-0.288097\pi\)
0.617620 + 0.786476i \(0.288097\pi\)
\(542\) 0 0
\(543\) 9.10847e10 + 8.81260e10i 1.04772 + 1.01369i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.17218e10 −0.130932 −0.0654661 0.997855i \(-0.520853\pi\)
−0.0654661 + 0.997855i \(0.520853\pi\)
\(548\) 0 0
\(549\) 1.93740e9 + 5.86603e10i 0.0213270 + 0.645736i
\(550\) 0 0
\(551\) 7.18572e10i 0.779586i
\(552\) 0 0
\(553\) −8.00408e10 −0.855876
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.90665e10i 0.198085i −0.995083 0.0990423i \(-0.968422\pi\)
0.995083 0.0990423i \(-0.0315779\pi\)
\(558\) 0 0
\(559\) −3.19457e10 −0.327164
\(560\) 0 0
\(561\) 1.36688e10 + 1.32248e10i 0.138000 + 0.133518i
\(562\) 0 0
\(563\) 4.94309e10i 0.492000i 0.969270 + 0.246000i \(0.0791163\pi\)
−0.969270 + 0.246000i \(0.920884\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.85987e10 6.52003e9i 0.953980 0.0630837i
\(568\) 0 0
\(569\) 7.53303e10i 0.718655i 0.933211 + 0.359328i \(0.116994\pi\)
−0.933211 + 0.359328i \(0.883006\pi\)
\(570\) 0 0
\(571\) −7.43397e10 −0.699321 −0.349661 0.936876i \(-0.613703\pi\)
−0.349661 + 0.936876i \(0.613703\pi\)
\(572\) 0 0
\(573\) 7.39728e10 7.64562e10i 0.686204 0.709242i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.46246e11 −1.31941 −0.659706 0.751524i \(-0.729319\pi\)
−0.659706 + 0.751524i \(0.729319\pi\)
\(578\) 0 0
\(579\) 6.53854e10 + 6.32615e10i 0.581790 + 0.562892i
\(580\) 0 0
\(581\) 1.07297e11i 0.941635i
\(582\) 0 0
\(583\) −1.31746e11 −1.14042
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.88952e11i 1.59147i −0.605646 0.795735i \(-0.707085\pi\)
0.605646 0.795735i \(-0.292915\pi\)
\(588\) 0 0
\(589\) −1.82745e11 −1.51840
\(590\) 0 0
\(591\) −6.05838e10 + 6.26178e10i −0.496600 + 0.513272i
\(592\) 0 0
\(593\) 5.67120e10i 0.458624i 0.973353 + 0.229312i \(0.0736476\pi\)
−0.973353 + 0.229312i \(0.926352\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.81870e10 + 3.69466e10i 0.300620 + 0.290855i
\(598\) 0 0
\(599\) 4.00737e10i 0.311281i 0.987814 + 0.155640i \(0.0497441\pi\)
−0.987814 + 0.155640i \(0.950256\pi\)
\(600\) 0 0
\(601\) −2.27069e11 −1.74044 −0.870220 0.492663i \(-0.836024\pi\)
−0.870220 + 0.492663i \(0.836024\pi\)
\(602\) 0 0
\(603\) 5.62592e9 + 1.70341e11i 0.0425524 + 1.28840i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.87812e10 0.506658 0.253329 0.967380i \(-0.418474\pi\)
0.253329 + 0.967380i \(0.418474\pi\)
\(608\) 0 0
\(609\) −4.74708e10 + 4.90645e10i −0.345110 + 0.356696i
\(610\) 0 0
\(611\) 9.60387e10i 0.689098i
\(612\) 0 0
\(613\) −2.22523e11 −1.57592 −0.787959 0.615728i \(-0.788862\pi\)
−0.787959 + 0.615728i \(0.788862\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.41332e11i 0.975215i −0.873063 0.487608i \(-0.837870\pi\)
0.873063 0.487608i \(-0.162130\pi\)
\(618\) 0 0
\(619\) −1.28936e11 −0.878236 −0.439118 0.898429i \(-0.644709\pi\)
−0.439118 + 0.898429i \(0.644709\pi\)
\(620\) 0 0
\(621\) −8.12393e10 7.35666e10i −0.546261 0.494668i
\(622\) 0 0
\(623\) 5.55999e10i 0.369081i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.91753e11 1.98191e11i 1.24072 1.28237i
\(628\) 0 0
\(629\) 5.53833e6i 3.53815e-5i
\(630\) 0 0
\(631\) 1.64177e11 1.03561 0.517804 0.855499i \(-0.326750\pi\)
0.517804 + 0.855499i \(0.326750\pi\)
\(632\) 0 0
\(633\) 8.65916e10 + 8.37789e10i 0.539338 + 0.521819i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.15700e9 −0.0495419
\(638\) 0 0
\(639\) 1.75000e11 5.77980e9i 1.04963 0.0346664i
\(640\) 0 0
\(641\) 3.26564e10i 0.193436i 0.995312 + 0.0967178i \(0.0308344\pi\)
−0.995312 + 0.0967178i \(0.969166\pi\)
\(642\) 0 0
\(643\) −2.64540e11 −1.54756 −0.773781 0.633454i \(-0.781637\pi\)
−0.773781 + 0.633454i \(0.781637\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.87714e11i 1.07122i −0.844466 0.535610i \(-0.820082\pi\)
0.844466 0.535610i \(-0.179918\pi\)
\(648\) 0 0
\(649\) −4.04234e11 −2.27853
\(650\) 0 0
\(651\) −1.24779e11 1.20726e11i −0.694735 0.672169i
\(652\) 0 0
\(653\) 1.62529e11i 0.893879i −0.894564 0.446939i \(-0.852514\pi\)
0.894564 0.446939i \(-0.147486\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.84934e9 1.16550e11i −0.0206597 0.625533i
\(658\) 0 0
\(659\) 1.36472e11i 0.723608i 0.932254 + 0.361804i \(0.117839\pi\)
−0.932254 + 0.361804i \(0.882161\pi\)
\(660\) 0 0
\(661\) −2.89793e11 −1.51804 −0.759019 0.651069i \(-0.774321\pi\)
−0.759019 + 0.651069i \(0.774321\pi\)
\(662\) 0 0
\(663\) 1.25160e10 1.29362e10i 0.0647755 0.0669502i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.57211e10 0.382572
\(668\) 0 0
\(669\) 2.79679e11 + 2.70594e11i 1.39622 + 1.35087i
\(670\) 0 0
\(671\) 1.55621e11i 0.767678i
\(672\) 0 0
\(673\) 1.95738e10 0.0954145 0.0477072 0.998861i \(-0.484809\pi\)
0.0477072 + 0.998861i \(0.484809\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.54461e11i 0.735297i 0.929965 + 0.367649i \(0.119837\pi\)
−0.929965 + 0.367649i \(0.880163\pi\)
\(678\) 0 0
\(679\) 5.95571e10 0.280191
\(680\) 0 0
\(681\) −2.36445e11 + 2.44383e11i −1.09937 + 1.13627i
\(682\) 0 0
\(683\) 3.32703e10i 0.152888i −0.997074 0.0764440i \(-0.975643\pi\)
0.997074 0.0764440i \(-0.0243566\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.12678e11 + 1.09018e11i 0.505838 + 0.489407i
\(688\) 0 0
\(689\) 1.24685e11i 0.553268i
\(690\) 0 0
\(691\) 3.41253e11 1.49680 0.748401 0.663246i \(-0.230822\pi\)
0.748401 + 0.663246i \(0.230822\pi\)
\(692\) 0 0
\(693\) 2.61861e11 8.64858e9i 1.13537 0.0374983i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.51130e10 0.191148
\(698\) 0 0
\(699\) 1.42417e11 1.47199e11i 0.596560 0.616588i
\(700\) 0 0
\(701\) 3.40014e11i 1.40807i 0.710165 + 0.704036i \(0.248620\pi\)
−0.710165 + 0.704036i \(0.751380\pi\)
\(702\) 0 0
\(703\) −8.03029e7 −0.000328783
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.61073e11i 1.44517i
\(708\) 0 0
\(709\) −2.31712e11 −0.916987 −0.458493 0.888698i \(-0.651611\pi\)
−0.458493 + 0.888698i \(0.651611\pi\)
\(710\) 0 0
\(711\) 7.55162e9 + 2.28647e11i 0.0295503 + 0.894721i
\(712\) 0 0
\(713\) 1.92572e11i 0.745134i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.95864e10 + 1.02930e11i −0.376811 + 0.389461i
\(718\) 0 0
\(719\) 1.94401e11i 0.727417i −0.931513 0.363709i \(-0.881510\pi\)
0.931513 0.363709i \(-0.118490\pi\)
\(720\) 0 0
\(721\) 5.42526e10 0.200761
\(722\) 0 0
\(723\) −9.03586e10 8.74236e10i −0.330687 0.319945i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.06699e10 −0.181390 −0.0906948 0.995879i \(-0.528909\pi\)
−0.0906948 + 0.995879i \(0.528909\pi\)
\(728\) 0 0
\(729\) −2.79278e10 2.81045e11i −0.0988843 0.995099i
\(730\) 0 0
\(731\) 2.61897e10i 0.0917195i
\(732\) 0 0
\(733\) −3.08608e11 −1.06903 −0.534517 0.845158i \(-0.679506\pi\)
−0.534517 + 0.845158i \(0.679506\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.51902e11i 1.53170i
\(738\) 0 0
\(739\) 5.24612e11 1.75898 0.879489 0.475920i \(-0.157885\pi\)
0.879489 + 0.475920i \(0.157885\pi\)
\(740\) 0 0
\(741\) −1.87568e11 1.81475e11i −0.622137 0.601928i
\(742\) 0 0
\(743\) 4.07793e11i 1.33809i 0.743223 + 0.669043i \(0.233296\pi\)
−0.743223 + 0.669043i \(0.766704\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.06508e11 1.01232e10i 0.984372 0.0325112i
\(748\) 0 0
\(749\) 1.20289e11i 0.382208i
\(750\) 0 0
\(751\) −2.27808e11 −0.716160 −0.358080 0.933691i \(-0.616568\pi\)
−0.358080 + 0.933691i \(0.616568\pi\)
\(752\) 0 0
\(753\) 2.72780e11 2.81938e11i 0.848461 0.876946i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −3.82063e11 −1.16346 −0.581730 0.813382i \(-0.697624\pi\)
−0.581730 + 0.813382i \(0.697624\pi\)
\(758\) 0 0
\(759\) −2.08848e11 2.02064e11i −0.629309 0.608867i
\(760\) 0 0
\(761\) 3.24968e11i 0.968950i −0.874805 0.484475i \(-0.839011\pi\)
0.874805 0.484475i \(-0.160989\pi\)
\(762\) 0 0
\(763\) −1.03091e11 −0.304175
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.82567e11i 1.10542i
\(768\) 0 0
\(769\) −5.24436e11 −1.49964 −0.749821 0.661641i \(-0.769860\pi\)
−0.749821 + 0.661641i \(0.769860\pi\)
\(770\) 0 0
\(771\) −3.92677e10 + 4.05860e10i −0.111127 + 0.114857i
\(772\) 0 0
\(773\) 3.98964e10i 0.111742i 0.998438 + 0.0558710i \(0.0177935\pi\)
−0.998438 + 0.0558710i \(0.982206\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −5.48313e7 5.30503e7i −0.000150433 0.000145547i
\(778\) 0 0
\(779\) 6.54115e11i 1.77625i
\(780\) 0 0
\(781\) 4.64262e11 1.24784
\(782\) 0 0
\(783\) 1.44638e11 + 1.30978e11i 0.384801 + 0.348458i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.80418e10 0.0470307 0.0235154 0.999723i \(-0.492514\pi\)
0.0235154 + 0.999723i \(0.492514\pi\)
\(788\) 0 0
\(789\) −2.39765e11 + 2.47814e11i −0.618696 + 0.639468i
\(790\) 0 0
\(791\) 3.33451e11i 0.851776i
\(792\) 0 0
\(793\) 1.47280e11 0.372436
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.64874e11i 1.64781i 0.566730 + 0.823903i \(0.308208\pi\)
−0.566730 + 0.823903i \(0.691792\pi\)
\(798\) 0 0
\(799\) 7.87343e10 0.193187
\(800\) 0 0
\(801\) 1.58829e11 5.24569e9i 0.385832 0.0127430i
\(802\) 0 0
\(803\) 3.09198e11i 0.743661i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.90007e11 + 1.96386e11i −0.447998 + 0.463038i
\(808\) 0 0
\(809\) 5.10440e11i 1.19165i 0.803113 + 0.595827i \(0.203176\pi\)
−0.803113 + 0.595827i \(0.796824\pi\)
\(810\) 0 0
\(811\) 5.30337e11 1.22594 0.612969 0.790107i \(-0.289975\pi\)
0.612969 + 0.790107i \(0.289975\pi\)
\(812\) 0 0
\(813\) 3.83032e11 + 3.70590e11i 0.876744 + 0.848266i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.79738e11 −0.852306
\(818\) 0 0
\(819\) −8.18501e9 2.47825e11i −0.0181921 0.550820i
\(820\) 0 0
\(821\) 1.20378e11i 0.264956i 0.991186 + 0.132478i \(0.0422934\pi\)
−0.991186 + 0.132478i \(0.957707\pi\)
\(822\) 0 0
\(823\) −8.09679e11 −1.76487 −0.882436 0.470432i \(-0.844098\pi\)
−0.882436 + 0.470432i \(0.844098\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.02238e11i 1.07371i −0.843674 0.536856i \(-0.819612\pi\)
0.843674 0.536856i \(-0.180388\pi\)
\(828\) 0 0
\(829\) 5.45793e11 1.15561 0.577803 0.816176i \(-0.303910\pi\)
0.577803 + 0.816176i \(0.303910\pi\)
\(830\) 0 0
\(831\) 2.94109e9 + 2.84556e9i 0.00616743 + 0.00596710i
\(832\) 0 0
\(833\) 6.68726e9i 0.0138889i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.33099e11 + 3.67840e11i −0.678689 + 0.749474i
\(838\) 0 0
\(839\) 7.36835e11i 1.48704i −0.668715 0.743519i \(-0.733155\pi\)
0.668715 0.743519i \(-0.266845\pi\)
\(840\) 0 0
\(841\) 3.65433e11 0.730506
\(842\) 0 0
\(843\) 2.82084e11 2.91555e11i 0.558558 0.577311i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.02635e11 0.393714
\(848\) 0 0
\(849\) 5.83476e11 + 5.64524e11i 1.12303 + 1.08655i
\(850\) 0 0
\(851\) 8.46210e7i 0.000161347i
\(852\) 0 0
\(853\) 4.95665e11 0.936250 0.468125 0.883662i \(-0.344930\pi\)
0.468125 + 0.883662i \(0.344930\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.67085e11i 0.309753i −0.987934 0.154876i \(-0.950502\pi\)
0.987934 0.154876i \(-0.0494979\pi\)
\(858\) 0 0
\(859\) 6.89277e11 1.26596 0.632982 0.774167i \(-0.281831\pi\)
0.632982 + 0.774167i \(0.281831\pi\)
\(860\) 0 0
\(861\) 4.32126e11 4.46633e11i 0.786317 0.812716i
\(862\) 0 0
\(863\) 6.64209e11i 1.19746i −0.800950 0.598731i \(-0.795672\pi\)
0.800950 0.598731i \(-0.204328\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.95476e11 3.82631e11i −0.699913 0.677179i
\(868\) 0 0
\(869\) 6.06584e11i 1.06368i
\(870\) 0 0
\(871\) 4.27680e11 0.743099
\(872\) 0 0
\(873\) −5.61904e9 1.70133e11i −0.00967398 0.292908i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.97348e11 0.671695 0.335848 0.941916i \(-0.390977\pi\)
0.335848 + 0.941916i \(0.390977\pi\)
\(878\) 0 0
\(879\) 4.80292e11 4.96417e11i 0.804545 0.831556i
\(880\) 0 0
\(881\) 7.33038e11i 1.21681i −0.793627 0.608405i \(-0.791810\pi\)
0.793627 0.608405i \(-0.208190\pi\)
\(882\) 0 0
\(883\) 1.10665e12 1.82040 0.910199 0.414170i \(-0.135928\pi\)
0.910199 + 0.414170i \(0.135928\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.21287e11i 1.16524i 0.812746 + 0.582618i \(0.197972\pi\)
−0.812746 + 0.582618i \(0.802028\pi\)
\(888\) 0 0
\(889\) −7.17198e11 −1.14824
\(890\) 0 0
\(891\) −4.94116e10 7.47224e11i −0.0784004 1.18561i
\(892\) 0 0
\(893\) 1.14161e12i 1.79519i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.91234e11 + 1.97654e11i −0.295389 + 0.305306i
\(898\) 0 0
\(899\) 3.42854e11i 0.524892i
\(900\) 0 0
\(901\) −1.02219e11 −0.155107
\(902\) 0 0
\(903\) −2.59287e11 2.50865e11i −0.389969 0.377302i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.73405e11 −0.403996 −0.201998 0.979386i \(-0.564743\pi\)
−0.201998 + 0.979386i \(0.564743\pi\)
\(908\) 0 0
\(909\) −1.03145e12 + 3.40662e10i −1.51076 + 0.0498963i
\(910\) 0 0
\(911\) 5.29336e11i 0.768525i −0.923224 0.384263i \(-0.874456\pi\)
0.923224 0.384263i \(-0.125544\pi\)
\(912\) 0 0
\(913\) 8.13143e11 1.17026
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.02787e12i 1.45365i
\(918\) 0 0
\(919\) 3.37368e11 0.472978 0.236489 0.971634i \(-0.424003\pi\)
0.236489 + 0.971634i \(0.424003\pi\)
\(920\) 0 0
\(921\) 9.86283e10 + 9.54246e10i 0.137076 + 0.132624i
\(922\) 0 0
\(923\) 4.39378e11i 0.605384i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5.11858e9 1.54980e11i −0.00693156 0.209873i
\(928\) 0 0
\(929\) 3.33858e11i 0.448229i 0.974563 + 0.224114i \(0.0719489\pi\)
−0.974563 + 0.224114i \(0.928051\pi\)
\(930\) 0 0
\(931\) −9.69619e10 −0.129063
\(932\) 0 0
\(933\) −2.90013e11 + 2.99749e11i −0.382728 + 0.395577i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5.13902e11 −0.666688 −0.333344 0.942805i \(-0.608177\pi\)
−0.333344 + 0.942805i \(0.608177\pi\)
\(938\) 0 0
\(939\) 4.84510e11 + 4.68772e11i 0.623218 + 0.602975i
\(940\) 0 0
\(941\) 6.37307e11i 0.812812i −0.913693 0.406406i \(-0.866782\pi\)
0.913693 0.406406i \(-0.133218\pi\)
\(942\) 0 0
\(943\) −6.89288e11 −0.871674
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.13296e12i 1.40869i −0.709857 0.704346i \(-0.751240\pi\)
0.709857 0.704346i \(-0.248760\pi\)
\(948\) 0 0
\(949\) −2.92625e11 −0.360784
\(950\) 0 0
\(951\) 9.44150e11 9.75848e11i 1.15430 1.19305i
\(952\) 0 0
\(953\) 1.04326e11i 0.126480i 0.997998 + 0.0632400i \(0.0201434\pi\)
−0.997998 + 0.0632400i \(0.979857\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.71832e11 + 3.59755e11i 0.443302 + 0.428902i
\(958\) 0 0
\(959\) 1.14393e12i 1.35246i
\(960\) 0 0
\(961\) 1.90453e10 0.0223303
\(962\) 0 0
\(963\) 3.43622e11 1.13489e10i 0.399555 0.0131962i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.71576e11 −0.539319 −0.269659 0.962956i \(-0.586911\pi\)
−0.269659 + 0.962956i \(0.586911\pi\)
\(968\) 0 0
\(969\) 1.48777e11 1.53772e11i 0.168749 0.174414i
\(970\) 0 0
\(971\) 4.60220e11i 0.517713i −0.965916 0.258856i \(-0.916654\pi\)
0.965916 0.258856i \(-0.0833456\pi\)
\(972\) 0 0
\(973\) 1.22546e12 1.36725
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.41831e12i 1.55665i 0.627860 + 0.778327i \(0.283931\pi\)
−0.627860 + 0.778327i \(0.716069\pi\)
\(978\) 0 0
\(979\) 4.21360e11 0.458694
\(980\) 0 0
\(981\) 9.72638e9 + 2.94494e11i 0.0105021 + 0.317981i
\(982\) 0 0
\(983\) 1.48643e12i 1.59196i 0.605326 + 0.795978i \(0.293043\pi\)
−0.605326 + 0.795978i \(0.706957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.54177e11 7.79496e11i 0.794702 0.821382i
\(988\) 0 0
\(989\) 4.00157e11i 0.418259i
\(990\) 0 0
\(991\) 5.45711e11 0.565807 0.282903 0.959148i \(-0.408702\pi\)
0.282903 + 0.959148i \(0.408702\pi\)
\(992\) 0 0
\(993\) −1.26804e12 1.22686e12i −1.30418 1.26182i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.51985e12 −1.53823 −0.769114 0.639112i \(-0.779302\pi\)
−0.769114 + 0.639112i \(0.779302\pi\)
\(998\) 0 0
\(999\) −1.46372e8 + 1.61638e8i −0.000146959 + 0.000162286i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 300.9.g.e.101.3 10
3.2 odd 2 inner 300.9.g.e.101.4 yes 10
5.2 odd 4 300.9.b.e.149.8 20
5.3 odd 4 300.9.b.e.149.13 20
5.4 even 2 300.9.g.g.101.8 yes 10
15.2 even 4 300.9.b.e.149.14 20
15.8 even 4 300.9.b.e.149.7 20
15.14 odd 2 300.9.g.g.101.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.9.b.e.149.7 20 15.8 even 4
300.9.b.e.149.8 20 5.2 odd 4
300.9.b.e.149.13 20 5.3 odd 4
300.9.b.e.149.14 20 15.2 even 4
300.9.g.e.101.3 10 1.1 even 1 trivial
300.9.g.e.101.4 yes 10 3.2 odd 2 inner
300.9.g.g.101.7 yes 10 15.14 odd 2
300.9.g.g.101.8 yes 10 5.4 even 2