Properties

Label 3000.2.a.d
Level $3000$
Weight $2$
Character orbit 3000.a
Self dual yes
Analytic conductor $23.955$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3000,2,Mod(1,3000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.9551206064\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( - \beta + 3) q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + ( - \beta + 3) q^{7} + q^{9} - q^{11} + (2 \beta - 3) q^{13} + ( - 3 \beta + 1) q^{17} + ( - 2 \beta - 3) q^{19} + (\beta - 3) q^{21} + (6 \beta - 1) q^{23} - q^{27} + (2 \beta - 5) q^{29} + (5 \beta - 7) q^{31} + q^{33} + (2 \beta - 5) q^{37} + ( - 2 \beta + 3) q^{39} + ( - 5 \beta - 1) q^{41} + ( - 3 \beta + 8) q^{43} + ( - 2 \beta + 1) q^{47} + ( - 5 \beta + 3) q^{49} + (3 \beta - 1) q^{51} + ( - \beta - 4) q^{53} + (2 \beta + 3) q^{57} + ( - 3 \beta - 7) q^{59} + (3 \beta - 1) q^{61} + ( - \beta + 3) q^{63} + ( - 4 \beta + 8) q^{67} + ( - 6 \beta + 1) q^{69} + (9 \beta - 4) q^{71} + ( - 3 \beta + 4) q^{73} + (\beta - 3) q^{77} + ( - 6 \beta + 10) q^{79} + q^{81} + (5 \beta - 9) q^{83} + ( - 2 \beta + 5) q^{87} - 11 q^{89} + (7 \beta - 11) q^{91} + ( - 5 \beta + 7) q^{93} + (11 \beta - 1) q^{97} - q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 5 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 5 q^{7} + 2 q^{9} - 2 q^{11} - 4 q^{13} - q^{17} - 8 q^{19} - 5 q^{21} + 4 q^{23} - 2 q^{27} - 8 q^{29} - 9 q^{31} + 2 q^{33} - 8 q^{37} + 4 q^{39} - 7 q^{41} + 13 q^{43} + q^{49} + q^{51} - 9 q^{53} + 8 q^{57} - 17 q^{59} + q^{61} + 5 q^{63} + 12 q^{67} - 4 q^{69} + q^{71} + 5 q^{73} - 5 q^{77} + 14 q^{79} + 2 q^{81} - 13 q^{83} + 8 q^{87} - 22 q^{89} - 15 q^{91} + 9 q^{93} + 9 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 −1.00000 0 0 0 1.38197 0 1.00000 0
1.2 0 −1.00000 0 0 0 3.61803 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3000.2.a.d 2
3.b odd 2 1 9000.2.a.p 2
4.b odd 2 1 6000.2.a.p 2
5.b even 2 1 3000.2.a.e yes 2
5.c odd 4 2 3000.2.f.c 4
15.d odd 2 1 9000.2.a.a 2
20.d odd 2 1 6000.2.a.l 2
20.e even 4 2 6000.2.f.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3000.2.a.d 2 1.a even 1 1 trivial
3000.2.a.e yes 2 5.b even 2 1
3000.2.f.c 4 5.c odd 4 2
6000.2.a.l 2 20.d odd 2 1
6000.2.a.p 2 4.b odd 2 1
6000.2.f.i 4 20.e even 4 2
9000.2.a.a 2 15.d odd 2 1
9000.2.a.p 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3000))\):

\( T_{7}^{2} - 5T_{7} + 5 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$31$ \( T^{2} + 9T - 11 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$41$ \( T^{2} + 7T - 19 \) Copy content Toggle raw display
$43$ \( T^{2} - 13T + 31 \) Copy content Toggle raw display
$47$ \( T^{2} - 5 \) Copy content Toggle raw display
$53$ \( T^{2} + 9T + 19 \) Copy content Toggle raw display
$59$ \( T^{2} + 17T + 61 \) Copy content Toggle raw display
$61$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$67$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - T - 101 \) Copy content Toggle raw display
$73$ \( T^{2} - 5T - 5 \) Copy content Toggle raw display
$79$ \( T^{2} - 14T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} + 13T + 11 \) Copy content Toggle raw display
$89$ \( (T + 11)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 9T - 131 \) Copy content Toggle raw display
show more
show less