Properties

Label 3000.2.f.e
Level 30003000
Weight 22
Character orbit 3000.f
Analytic conductor 23.95523.955
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3000,2,Mod(1249,3000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3000=23353 3000 = 2^{3} \cdot 3 \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3000.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.955120606423.9551206064
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.43430560000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+25x6+208x4+705x2+841 x^{8} + 25x^{6} + 208x^{4} + 705x^{2} + 841 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β4q3+(β7+β2β1)q7q9+(β6β3+1)q11+(3β4+β2+β1)q13+(2β4+3β22β1)q17++(β6+β31)q99+O(q100) q + \beta_{4} q^{3} + ( - \beta_{7} + \beta_{2} - \beta_1) q^{7} - q^{9} + (\beta_{6} - \beta_{3} + 1) q^{11} + (3 \beta_{4} + \beta_{2} + \beta_1) q^{13} + (2 \beta_{4} + 3 \beta_{2} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{6} + \beta_{3} - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q9+2q1116q19+2q21+6q29+28q3122q39+14q4130q4924q596q61+6q69+66q7126q79+8q8124q89+34q912q99+O(q100) 8 q - 8 q^{9} + 2 q^{11} - 16 q^{19} + 2 q^{21} + 6 q^{29} + 28 q^{31} - 22 q^{39} + 14 q^{41} - 30 q^{49} - 24 q^{59} - 6 q^{61} + 6 q^{69} + 66 q^{71} - 26 q^{79} + 8 q^{81} - 24 q^{89} + 34 q^{91} - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+25x6+208x4+705x2+841 x^{8} + 25x^{6} + 208x^{4} + 705x^{2} + 841 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (13ν7296ν52008ν34061ν)/232 ( -13\nu^{7} - 296\nu^{5} - 2008\nu^{3} - 4061\nu ) / 232 Copy content Toggle raw display
β3\beta_{3}== (ν6+24ν4+176ν2+385)/8 ( \nu^{6} + 24\nu^{4} + 176\nu^{2} + 385 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (9ν7+196ν5+1234ν3+2285ν)/58 ( 9\nu^{7} + 196\nu^{5} + 1234\nu^{3} + 2285\nu ) / 58 Copy content Toggle raw display
β5\beta_{5}== (3ν664ν4392ν2715)/8 ( -3\nu^{6} - 64\nu^{4} - 392\nu^{2} - 715 ) / 8 Copy content Toggle raw display
β6\beta_{6}== (ν622ν4140ν2261)/2 ( -\nu^{6} - 22\nu^{4} - 140\nu^{2} - 261 ) / 2 Copy content Toggle raw display
β7\beta_{7}== (123ν72640ν516304ν329875ν)/232 ( -123\nu^{7} - 2640\nu^{5} - 16304\nu^{3} - 29875\nu ) / 232 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6β5+β37 \beta_{6} - \beta_{5} + \beta_{3} - 7 Copy content Toggle raw display
ν3\nu^{3}== 2β79β46β28β1 -2\beta_{7} - 9\beta_{4} - 6\beta_{2} - 8\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 17β6+18β514β3+64 -17\beta_{6} + 18\beta_{5} - 14\beta_{3} + 64 Copy content Toggle raw display
ν5\nu^{5}== 35β7+151β4+87β2+81β1 35\beta_{7} + 151\beta_{4} + 87\beta_{2} + 81\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 232β6256β5+168β3689 232\beta_{6} - 256\beta_{5} + 168\beta_{3} - 689 Copy content Toggle raw display
ν7\nu^{7}== 488β72048β41072β2921β1 -488\beta_{7} - 2048\beta_{4} - 1072\beta_{2} - 921\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3000Z)×\left(\mathbb{Z}/3000\mathbb{Z}\right)^\times.

nn 751751 10011001 15011501 23772377
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
1.88775i
1.80698i
2.42502i
3.50578i
3.50578i
2.42502i
1.80698i
1.88775i
0 1.00000i 0 0 0 4.67247i 0 −1.00000 0
1249.2 0 1.00000i 0 0 0 0.498743i 0 −1.00000 0
1249.3 0 1.00000i 0 0 0 2.11678i 0 −1.00000 0
1249.4 0 1.00000i 0 0 0 4.05444i 0 −1.00000 0
1249.5 0 1.00000i 0 0 0 4.05444i 0 −1.00000 0
1249.6 0 1.00000i 0 0 0 2.11678i 0 −1.00000 0
1249.7 0 1.00000i 0 0 0 0.498743i 0 −1.00000 0
1249.8 0 1.00000i 0 0 0 4.67247i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3000.2.f.e 8
4.b odd 2 1 6000.2.f.s 8
5.b even 2 1 inner 3000.2.f.e 8
5.c odd 4 1 3000.2.a.k 4
5.c odd 4 1 3000.2.a.n yes 4
15.e even 4 1 9000.2.a.u 4
15.e even 4 1 9000.2.a.x 4
20.d odd 2 1 6000.2.f.s 8
20.e even 4 1 6000.2.a.bf 4
20.e even 4 1 6000.2.a.bi 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3000.2.a.k 4 5.c odd 4 1
3000.2.a.n yes 4 5.c odd 4 1
3000.2.f.e 8 1.a even 1 1 trivial
3000.2.f.e 8 5.b even 2 1 inner
6000.2.a.bf 4 20.e even 4 1
6000.2.a.bi 4 20.e even 4 1
6000.2.f.s 8 4.b odd 2 1
6000.2.f.s 8 20.d odd 2 1
9000.2.a.u 4 15.e even 4 1
9000.2.a.x 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T78+43T76+541T74+1740T72+400 T_{7}^{8} + 43T_{7}^{6} + 541T_{7}^{4} + 1740T_{7}^{2} + 400 acting on S2new(3000,[χ])S_{2}^{\mathrm{new}}(3000, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+43T6++400 T^{8} + 43 T^{6} + \cdots + 400 Copy content Toggle raw display
1111 (T4T332T2++29)2 (T^{4} - T^{3} - 32 T^{2} + \cdots + 29)^{2} Copy content Toggle raw display
1313 T8+65T6++1681 T^{8} + 65 T^{6} + \cdots + 1681 Copy content Toggle raw display
1717 T8+114T6++96721 T^{8} + 114 T^{6} + \cdots + 96721 Copy content Toggle raw display
1919 (T4+8T3+7T2+76)2 (T^{4} + 8 T^{3} + 7 T^{2} + \cdots - 76)^{2} Copy content Toggle raw display
2323 T8+77T6++25 T^{8} + 77 T^{6} + \cdots + 25 Copy content Toggle raw display
2929 (T43T3++751)2 (T^{4} - 3 T^{3} + \cdots + 751)^{2} Copy content Toggle raw display
3131 (T414T3+25)2 (T^{4} - 14 T^{3} + \cdots - 25)^{2} Copy content Toggle raw display
3737 T8+153T6++9025 T^{8} + 153 T^{6} + \cdots + 9025 Copy content Toggle raw display
4141 (T47T3++3244)2 (T^{4} - 7 T^{3} + \cdots + 3244)^{2} Copy content Toggle raw display
4343 T8+186T6++1142761 T^{8} + 186 T^{6} + \cdots + 1142761 Copy content Toggle raw display
4747 T8+233T6++4644025 T^{8} + 233 T^{6} + \cdots + 4644025 Copy content Toggle raw display
5353 T8+47T6++400 T^{8} + 47 T^{6} + \cdots + 400 Copy content Toggle raw display
5959 (T4+12T3++179)2 (T^{4} + 12 T^{3} + \cdots + 179)^{2} Copy content Toggle raw display
6161 (T4+3T3++1844)2 (T^{4} + 3 T^{3} + \cdots + 1844)^{2} Copy content Toggle raw display
6767 T8+115T6++430336 T^{8} + 115 T^{6} + \cdots + 430336 Copy content Toggle raw display
7171 (T433T3+16496)2 (T^{4} - 33 T^{3} + \cdots - 16496)^{2} Copy content Toggle raw display
7373 T8+299T6++215296 T^{8} + 299 T^{6} + \cdots + 215296 Copy content Toggle raw display
7979 (T4+13T3+524)2 (T^{4} + 13 T^{3} + \cdots - 524)^{2} Copy content Toggle raw display
8383 T8+415T6++1175056 T^{8} + 415 T^{6} + \cdots + 1175056 Copy content Toggle raw display
8989 (T4+12T3+8100)2 (T^{4} + 12 T^{3} + \cdots - 8100)^{2} Copy content Toggle raw display
9797 T8+411T6++26896 T^{8} + 411 T^{6} + \cdots + 26896 Copy content Toggle raw display
show more
show less