Properties

Label 3000.2.f.e
Level $3000$
Weight $2$
Character orbit 3000.f
Analytic conductor $23.955$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3000,2,Mod(1249,3000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.9551206064\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.43430560000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 25x^{6} + 208x^{4} + 705x^{2} + 841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + ( - \beta_{7} + \beta_{2} - \beta_1) q^{7} - q^{9} + (\beta_{6} - \beta_{3} + 1) q^{11} + (3 \beta_{4} + \beta_{2} + \beta_1) q^{13} + (2 \beta_{4} + 3 \beta_{2} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{6} + \beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 2 q^{11} - 16 q^{19} + 2 q^{21} + 6 q^{29} + 28 q^{31} - 22 q^{39} + 14 q^{41} - 30 q^{49} - 24 q^{59} - 6 q^{61} + 6 q^{69} + 66 q^{71} - 26 q^{79} + 8 q^{81} - 24 q^{89} + 34 q^{91} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 25x^{6} + 208x^{4} + 705x^{2} + 841 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -13\nu^{7} - 296\nu^{5} - 2008\nu^{3} - 4061\nu ) / 232 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 24\nu^{4} + 176\nu^{2} + 385 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 9\nu^{7} + 196\nu^{5} + 1234\nu^{3} + 2285\nu ) / 58 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} - 64\nu^{4} - 392\nu^{2} - 715 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 22\nu^{4} - 140\nu^{2} - 261 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -123\nu^{7} - 2640\nu^{5} - 16304\nu^{3} - 29875\nu ) / 232 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{5} + \beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{7} - 9\beta_{4} - 6\beta_{2} - 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -17\beta_{6} + 18\beta_{5} - 14\beta_{3} + 64 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 35\beta_{7} + 151\beta_{4} + 87\beta_{2} + 81\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 232\beta_{6} - 256\beta_{5} + 168\beta_{3} - 689 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -488\beta_{7} - 2048\beta_{4} - 1072\beta_{2} - 921\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(1001\) \(1501\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1249.1
1.88775i
1.80698i
2.42502i
3.50578i
3.50578i
2.42502i
1.80698i
1.88775i
0 1.00000i 0 0 0 4.67247i 0 −1.00000 0
1249.2 0 1.00000i 0 0 0 0.498743i 0 −1.00000 0
1249.3 0 1.00000i 0 0 0 2.11678i 0 −1.00000 0
1249.4 0 1.00000i 0 0 0 4.05444i 0 −1.00000 0
1249.5 0 1.00000i 0 0 0 4.05444i 0 −1.00000 0
1249.6 0 1.00000i 0 0 0 2.11678i 0 −1.00000 0
1249.7 0 1.00000i 0 0 0 0.498743i 0 −1.00000 0
1249.8 0 1.00000i 0 0 0 4.67247i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3000.2.f.e 8
4.b odd 2 1 6000.2.f.s 8
5.b even 2 1 inner 3000.2.f.e 8
5.c odd 4 1 3000.2.a.k 4
5.c odd 4 1 3000.2.a.n yes 4
15.e even 4 1 9000.2.a.u 4
15.e even 4 1 9000.2.a.x 4
20.d odd 2 1 6000.2.f.s 8
20.e even 4 1 6000.2.a.bf 4
20.e even 4 1 6000.2.a.bi 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3000.2.a.k 4 5.c odd 4 1
3000.2.a.n yes 4 5.c odd 4 1
3000.2.f.e 8 1.a even 1 1 trivial
3000.2.f.e 8 5.b even 2 1 inner
6000.2.a.bf 4 20.e even 4 1
6000.2.a.bi 4 20.e even 4 1
6000.2.f.s 8 4.b odd 2 1
6000.2.f.s 8 20.d odd 2 1
9000.2.a.u 4 15.e even 4 1
9000.2.a.x 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} + 43T_{7}^{6} + 541T_{7}^{4} + 1740T_{7}^{2} + 400 \) acting on \(S_{2}^{\mathrm{new}}(3000, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 43 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$11$ \( (T^{4} - T^{3} - 32 T^{2} + \cdots + 29)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 65 T^{6} + \cdots + 1681 \) Copy content Toggle raw display
$17$ \( T^{8} + 114 T^{6} + \cdots + 96721 \) Copy content Toggle raw display
$19$ \( (T^{4} + 8 T^{3} + 7 T^{2} + \cdots - 76)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 77 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$29$ \( (T^{4} - 3 T^{3} + \cdots + 751)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 14 T^{3} + \cdots - 25)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 153 T^{6} + \cdots + 9025 \) Copy content Toggle raw display
$41$ \( (T^{4} - 7 T^{3} + \cdots + 3244)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 186 T^{6} + \cdots + 1142761 \) Copy content Toggle raw display
$47$ \( T^{8} + 233 T^{6} + \cdots + 4644025 \) Copy content Toggle raw display
$53$ \( T^{8} + 47 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$59$ \( (T^{4} + 12 T^{3} + \cdots + 179)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 3 T^{3} + \cdots + 1844)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 115 T^{6} + \cdots + 430336 \) Copy content Toggle raw display
$71$ \( (T^{4} - 33 T^{3} + \cdots - 16496)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 299 T^{6} + \cdots + 215296 \) Copy content Toggle raw display
$79$ \( (T^{4} + 13 T^{3} + \cdots - 524)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 415 T^{6} + \cdots + 1175056 \) Copy content Toggle raw display
$89$ \( (T^{4} + 12 T^{3} + \cdots - 8100)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} + 411 T^{6} + \cdots + 26896 \) Copy content Toggle raw display
show more
show less