Properties

Label 3024.2.bf.e.2287.1
Level $3024$
Weight $2$
Character 3024.2287
Analytic conductor $24.147$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1711,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1711");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.bf (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2287.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2287
Dual form 3024.2.bf.e.1711.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.18154i q^{5} +(-2.62132 + 0.358719i) q^{7} -1.73205i q^{11} +(-0.621320 + 0.358719i) q^{13} +(-5.74264 + 3.31552i) q^{17} +(0.500000 - 0.866025i) q^{19} +7.64564i q^{23} -12.4853 q^{25} +(3.62132 - 6.27231i) q^{29} +(-2.00000 + 3.46410i) q^{31} +(1.50000 + 10.9612i) q^{35} +(-2.62132 + 4.54026i) q^{37} +(-0.257359 + 0.148586i) q^{41} +(2.74264 + 1.58346i) q^{43} +(4.24264 + 7.34847i) q^{47} +(6.74264 - 1.88064i) q^{49} +(-3.62132 - 6.27231i) q^{53} -7.24264 q^{55} +(3.00000 - 5.19615i) q^{59} +(6.00000 - 3.46410i) q^{61} +(1.50000 + 2.59808i) q^{65} +6.33386i q^{71} +(-7.50000 + 4.33013i) q^{73} +(0.621320 + 4.54026i) q^{77} +(10.2426 - 5.91359i) q^{79} +(-2.74264 + 4.75039i) q^{83} +(13.8640 + 24.0131i) q^{85} +(-11.2279 - 6.48244i) q^{89} +(1.50000 - 1.16320i) q^{91} +(-3.62132 - 2.09077i) q^{95} +(-2.74264 - 1.58346i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{7} + 6 q^{13} - 6 q^{17} + 2 q^{19} - 16 q^{25} + 6 q^{29} - 8 q^{31} + 6 q^{35} - 2 q^{37} - 18 q^{41} - 6 q^{43} + 10 q^{49} - 6 q^{53} - 12 q^{55} + 12 q^{59} + 24 q^{61} + 6 q^{65} - 30 q^{73}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.18154i 1.87004i −0.354593 0.935021i \(-0.615380\pi\)
0.354593 0.935021i \(-0.384620\pi\)
\(6\) 0 0
\(7\) −2.62132 + 0.358719i −0.990766 + 0.135583i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.73205i 0.522233i −0.965307 0.261116i \(-0.915909\pi\)
0.965307 0.261116i \(-0.0840907\pi\)
\(12\) 0 0
\(13\) −0.621320 + 0.358719i −0.172323 + 0.0994909i −0.583681 0.811983i \(-0.698388\pi\)
0.411358 + 0.911474i \(0.365055\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.74264 + 3.31552i −1.39279 + 0.804131i −0.993624 0.112746i \(-0.964035\pi\)
−0.399171 + 0.916876i \(0.630702\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.64564i 1.59423i 0.603830 + 0.797113i \(0.293641\pi\)
−0.603830 + 0.797113i \(0.706359\pi\)
\(24\) 0 0
\(25\) −12.4853 −2.49706
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.62132 6.27231i 0.672462 1.16474i −0.304741 0.952435i \(-0.598570\pi\)
0.977204 0.212304i \(-0.0680966\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.50000 + 10.9612i 0.253546 + 1.85277i
\(36\) 0 0
\(37\) −2.62132 + 4.54026i −0.430942 + 0.746414i −0.996955 0.0779826i \(-0.975152\pi\)
0.566012 + 0.824397i \(0.308485\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.257359 + 0.148586i −0.0401928 + 0.0232053i −0.519962 0.854190i \(-0.674054\pi\)
0.479769 + 0.877395i \(0.340720\pi\)
\(42\) 0 0
\(43\) 2.74264 + 1.58346i 0.418249 + 0.241476i 0.694328 0.719659i \(-0.255702\pi\)
−0.276079 + 0.961135i \(0.589035\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.24264 + 7.34847i 0.618853 + 1.07188i 0.989695 + 0.143189i \(0.0457356\pi\)
−0.370843 + 0.928696i \(0.620931\pi\)
\(48\) 0 0
\(49\) 6.74264 1.88064i 0.963234 0.268662i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.62132 6.27231i −0.497427 0.861568i 0.502569 0.864537i \(-0.332388\pi\)
−0.999996 + 0.00296896i \(0.999055\pi\)
\(54\) 0 0
\(55\) −7.24264 −0.976597
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 6.00000 3.46410i 0.768221 0.443533i −0.0640184 0.997949i \(-0.520392\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.50000 + 2.59808i 0.186052 + 0.322252i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.33386i 0.751691i 0.926682 + 0.375845i \(0.122648\pi\)
−0.926682 + 0.375845i \(0.877352\pi\)
\(72\) 0 0
\(73\) −7.50000 + 4.33013i −0.877809 + 0.506803i −0.869935 0.493166i \(-0.835840\pi\)
−0.00787336 + 0.999969i \(0.502506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.621320 + 4.54026i 0.0708060 + 0.517411i
\(78\) 0 0
\(79\) 10.2426 5.91359i 1.15239 0.665331i 0.202919 0.979195i \(-0.434957\pi\)
0.949468 + 0.313864i \(0.101624\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.74264 + 4.75039i −0.301044 + 0.521423i −0.976373 0.216093i \(-0.930668\pi\)
0.675329 + 0.737517i \(0.264002\pi\)
\(84\) 0 0
\(85\) 13.8640 + 24.0131i 1.50376 + 2.60458i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.2279 6.48244i −1.19016 0.687138i −0.231815 0.972760i \(-0.574466\pi\)
−0.958342 + 0.285622i \(0.907800\pi\)
\(90\) 0 0
\(91\) 1.50000 1.16320i 0.157243 0.121936i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.62132 2.09077i −0.371540 0.214509i
\(96\) 0 0
\(97\) −2.74264 1.58346i −0.278473 0.160776i 0.354259 0.935147i \(-0.384733\pi\)
−0.632732 + 0.774371i \(0.718066\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.717439i 0.0713878i −0.999363 0.0356939i \(-0.988636\pi\)
0.999363 0.0356939i \(-0.0113641\pi\)
\(102\) 0 0
\(103\) 13.7279 1.35265 0.676326 0.736602i \(-0.263571\pi\)
0.676326 + 0.736602i \(0.263571\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.98528 4.03295i −0.675293 0.389880i 0.122786 0.992433i \(-0.460817\pi\)
−0.798079 + 0.602553i \(0.794150\pi\)
\(108\) 0 0
\(109\) 8.62132 + 14.9326i 0.825773 + 1.43028i 0.901327 + 0.433139i \(0.142594\pi\)
−0.0755546 + 0.997142i \(0.524073\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.74264 + 4.75039i 0.258006 + 0.446879i 0.965708 0.259632i \(-0.0836013\pi\)
−0.707702 + 0.706511i \(0.750268\pi\)
\(114\) 0 0
\(115\) 31.9706 2.98127
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.8640 10.7510i 1.27091 0.985545i
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31.3000i 2.79956i
\(126\) 0 0
\(127\) 20.1903i 1.79160i 0.444461 + 0.895798i \(0.353395\pi\)
−0.444461 + 0.895798i \(0.646605\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.514719 0.0449712 0.0224856 0.999747i \(-0.492842\pi\)
0.0224856 + 0.999747i \(0.492842\pi\)
\(132\) 0 0
\(133\) −1.00000 + 2.44949i −0.0867110 + 0.212398i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −6.50000 11.2583i −0.551323 0.954919i −0.998179 0.0603135i \(-0.980790\pi\)
0.446857 0.894606i \(-0.352543\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.621320 + 1.07616i 0.0519574 + 0.0899929i
\(144\) 0 0
\(145\) −26.2279 15.1427i −2.17811 1.25753i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.7574 0.881277 0.440639 0.897685i \(-0.354752\pi\)
0.440639 + 0.897685i \(0.354752\pi\)
\(150\) 0 0
\(151\) 20.3134i 1.65308i 0.562880 + 0.826539i \(0.309693\pi\)
−0.562880 + 0.826539i \(0.690307\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.4853 + 8.36308i 1.16349 + 0.671739i
\(156\) 0 0
\(157\) −10.2426 5.91359i −0.817452 0.471956i 0.0320852 0.999485i \(-0.489785\pi\)
−0.849537 + 0.527529i \(0.823119\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.74264 20.0417i −0.216150 1.57951i
\(162\) 0 0
\(163\) −8.74264 5.04757i −0.684776 0.395356i 0.116876 0.993147i \(-0.462712\pi\)
−0.801652 + 0.597791i \(0.796045\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.86396 8.42463i −0.376385 0.651917i 0.614149 0.789190i \(-0.289500\pi\)
−0.990533 + 0.137273i \(0.956166\pi\)
\(168\) 0 0
\(169\) −6.24264 + 10.8126i −0.480203 + 0.831736i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.48528 + 4.89898i −0.645124 + 0.372463i −0.786586 0.617481i \(-0.788153\pi\)
0.141462 + 0.989944i \(0.454820\pi\)
\(174\) 0 0
\(175\) 32.7279 4.47871i 2.47400 0.338559i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.9853 + 9.22911i −1.19480 + 0.689816i −0.959390 0.282081i \(-0.908975\pi\)
−0.235406 + 0.971897i \(0.575642\pi\)
\(180\) 0 0
\(181\) 6.33386i 0.470792i 0.971900 + 0.235396i \(0.0756387\pi\)
−0.971900 + 0.235396i \(0.924361\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.9853 + 10.9612i 1.39583 + 0.805880i
\(186\) 0 0
\(187\) 5.74264 + 9.94655i 0.419943 + 0.727363i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.72792 5.61642i 0.703888 0.406390i −0.104906 0.994482i \(-0.533454\pi\)
0.808794 + 0.588092i \(0.200121\pi\)
\(192\) 0 0
\(193\) 6.48528 11.2328i 0.466821 0.808557i −0.532461 0.846455i \(-0.678733\pi\)
0.999282 + 0.0378973i \(0.0120660\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.48528 −0.177069 −0.0885345 0.996073i \(-0.528218\pi\)
−0.0885345 + 0.996073i \(0.528218\pi\)
\(198\) 0 0
\(199\) −2.86396 4.96053i −0.203021 0.351642i 0.746480 0.665408i \(-0.231743\pi\)
−0.949500 + 0.313766i \(0.898409\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.24264 + 17.7408i −0.508334 + 1.24516i
\(204\) 0 0
\(205\) 0.621320 + 1.07616i 0.0433949 + 0.0751622i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.50000 0.866025i −0.103757 0.0599042i
\(210\) 0 0
\(211\) −6.25736 + 3.61269i −0.430774 + 0.248708i −0.699676 0.714460i \(-0.746673\pi\)
0.268902 + 0.963168i \(0.413339\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.62132 11.4685i 0.451570 0.782143i
\(216\) 0 0
\(217\) 4.00000 9.79796i 0.271538 0.665129i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.37868 4.11999i 0.160007 0.277141i
\(222\) 0 0
\(223\) −1.62132 + 2.80821i −0.108572 + 0.188052i −0.915192 0.403019i \(-0.867961\pi\)
0.806620 + 0.591070i \(0.201294\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.514719 −0.0341631 −0.0170815 0.999854i \(-0.505437\pi\)
−0.0170815 + 0.999854i \(0.505437\pi\)
\(228\) 0 0
\(229\) 24.9662i 1.64981i −0.565272 0.824905i \(-0.691229\pi\)
0.565272 0.824905i \(-0.308771\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.7426 + 25.5350i −0.965823 + 1.67285i −0.258434 + 0.966029i \(0.583206\pi\)
−0.707389 + 0.706825i \(0.750127\pi\)
\(234\) 0 0
\(235\) 30.7279 17.7408i 2.00447 1.15728i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.1066 + 12.1859i −1.36527 + 0.788240i −0.990320 0.138803i \(-0.955674\pi\)
−0.374953 + 0.927044i \(0.622341\pi\)
\(240\) 0 0
\(241\) 10.0951i 0.650285i 0.945665 + 0.325142i \(0.105412\pi\)
−0.945665 + 0.325142i \(0.894588\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.86396 28.1946i −0.502410 1.80129i
\(246\) 0 0
\(247\) 0.717439i 0.0456495i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.51472 0.600564 0.300282 0.953851i \(-0.402919\pi\)
0.300282 + 0.953851i \(0.402919\pi\)
\(252\) 0 0
\(253\) 13.2426 0.832558
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.79050i 0.361201i −0.983557 0.180601i \(-0.942196\pi\)
0.983557 0.180601i \(-0.0578042\pi\)
\(258\) 0 0
\(259\) 5.24264 12.8418i 0.325762 0.797950i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.5154i 0.648407i 0.945987 + 0.324204i \(0.105096\pi\)
−0.945987 + 0.324204i \(0.894904\pi\)
\(264\) 0 0
\(265\) −26.2279 + 15.1427i −1.61117 + 0.930209i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3492 + 5.97514i −0.631004 + 0.364311i −0.781141 0.624355i \(-0.785362\pi\)
0.150137 + 0.988665i \(0.452029\pi\)
\(270\) 0 0
\(271\) −6.86396 + 11.8887i −0.416956 + 0.722189i −0.995632 0.0933689i \(-0.970236\pi\)
0.578676 + 0.815558i \(0.303570\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.6251i 1.30405i
\(276\) 0 0
\(277\) 13.7279 0.824831 0.412415 0.910996i \(-0.364685\pi\)
0.412415 + 0.910996i \(0.364685\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.985281 1.70656i 0.0587770 0.101805i −0.835140 0.550038i \(-0.814613\pi\)
0.893917 + 0.448233i \(0.147947\pi\)
\(282\) 0 0
\(283\) −11.2426 + 19.4728i −0.668306 + 1.15754i 0.310072 + 0.950713i \(0.399647\pi\)
−0.978378 + 0.206826i \(0.933687\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.621320 0.481813i 0.0366754 0.0284405i
\(288\) 0 0
\(289\) 13.4853 23.3572i 0.793252 1.37395i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −23.5919 + 13.6208i −1.37825 + 0.795734i −0.991949 0.126637i \(-0.959582\pi\)
−0.386303 + 0.922372i \(0.626248\pi\)
\(294\) 0 0
\(295\) −21.7279 12.5446i −1.26505 0.730376i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.74264 4.75039i −0.158611 0.274722i
\(300\) 0 0
\(301\) −7.75736 3.16693i −0.447127 0.182539i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.4853 25.0892i −0.829425 1.43661i
\(306\) 0 0
\(307\) −1.51472 −0.0864496 −0.0432248 0.999065i \(-0.513763\pi\)
−0.0432248 + 0.999065i \(0.513763\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.48528 + 9.50079i −0.311042 + 0.538740i −0.978588 0.205828i \(-0.934011\pi\)
0.667546 + 0.744568i \(0.267345\pi\)
\(312\) 0 0
\(313\) 7.24264 4.18154i 0.409378 0.236355i −0.281144 0.959666i \(-0.590714\pi\)
0.690523 + 0.723311i \(0.257381\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) −10.8640 6.27231i −0.608265 0.351182i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.63103i 0.368960i
\(324\) 0 0
\(325\) 7.75736 4.47871i 0.430301 0.248434i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −13.7574 17.7408i −0.758468 0.978081i
\(330\) 0 0
\(331\) −26.4853 + 15.2913i −1.45576 + 0.840485i −0.998799 0.0490002i \(-0.984396\pi\)
−0.456964 + 0.889485i \(0.651063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.50000 4.33013i −0.136184 0.235877i 0.789865 0.613280i \(-0.210150\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.00000 + 3.46410i 0.324918 + 0.187592i
\(342\) 0 0
\(343\) −17.0000 + 7.34847i −0.917914 + 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.0000 13.8564i −1.28839 0.743851i −0.310021 0.950730i \(-0.600336\pi\)
−0.978367 + 0.206879i \(0.933669\pi\)
\(348\) 0 0
\(349\) −6.62132 3.82282i −0.354431 0.204631i 0.312204 0.950015i \(-0.398933\pi\)
−0.666635 + 0.745384i \(0.732266\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.16693i 0.168559i −0.996442 0.0842793i \(-0.973141\pi\)
0.996442 0.0842793i \(-0.0268588\pi\)
\(354\) 0 0
\(355\) 26.4853 1.40569
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.62132 + 5.55487i 0.507794 + 0.293175i 0.731926 0.681384i \(-0.238621\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.1066 + 31.3616i 0.947743 + 1.64154i
\(366\) 0 0
\(367\) −31.7279 −1.65618 −0.828092 0.560592i \(-0.810574\pi\)
−0.828092 + 0.560592i \(0.810574\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.7426 + 15.1427i 0.609648 + 0.786170i
\(372\) 0 0
\(373\) 10.2721 0.531868 0.265934 0.963991i \(-0.414320\pi\)
0.265934 + 0.963991i \(0.414320\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.19615i 0.267615i
\(378\) 0 0
\(379\) 11.8272i 0.607522i 0.952748 + 0.303761i \(0.0982424\pi\)
−0.952748 + 0.303761i \(0.901758\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.7574 0.549675 0.274838 0.961491i \(-0.411376\pi\)
0.274838 + 0.961491i \(0.411376\pi\)
\(384\) 0 0
\(385\) 18.9853 2.59808i 0.967580 0.132410i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −37.2426 −1.88828 −0.944138 0.329549i \(-0.893103\pi\)
−0.944138 + 0.329549i \(0.893103\pi\)
\(390\) 0 0
\(391\) −25.3492 43.9062i −1.28197 2.22043i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −24.7279 42.8300i −1.24420 2.15501i
\(396\) 0 0
\(397\) −11.8934 6.86666i −0.596913 0.344628i 0.170913 0.985286i \(-0.445328\pi\)
−0.767826 + 0.640658i \(0.778661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.4558 0.821766 0.410883 0.911688i \(-0.365221\pi\)
0.410883 + 0.911688i \(0.365221\pi\)
\(402\) 0 0
\(403\) 2.86976i 0.142953i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.86396 + 4.54026i 0.389802 + 0.225052i
\(408\) 0 0
\(409\) −19.2426 11.1097i −0.951487 0.549341i −0.0579447 0.998320i \(-0.518455\pi\)
−0.893543 + 0.448978i \(0.851788\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 + 14.6969i −0.295241 + 0.723189i
\(414\) 0 0
\(415\) 19.8640 + 11.4685i 0.975083 + 0.562965i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.9853 + 22.4912i 0.634373 + 1.09877i 0.986648 + 0.162869i \(0.0520748\pi\)
−0.352275 + 0.935896i \(0.614592\pi\)
\(420\) 0 0
\(421\) 5.86396 10.1567i 0.285792 0.495006i −0.687009 0.726649i \(-0.741077\pi\)
0.972801 + 0.231643i \(0.0744100\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 71.6985 41.3951i 3.47789 2.00796i
\(426\) 0 0
\(427\) −14.4853 + 11.2328i −0.700992 + 0.543595i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.8345 7.41002i 0.618217 0.356928i −0.157957 0.987446i \(-0.550491\pi\)
0.776175 + 0.630518i \(0.217158\pi\)
\(432\) 0 0
\(433\) 6.33386i 0.304386i −0.988351 0.152193i \(-0.951367\pi\)
0.988351 0.152193i \(-0.0486335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.62132 + 3.82282i 0.316741 + 0.182870i
\(438\) 0 0
\(439\) −3.48528 6.03668i −0.166343 0.288115i 0.770788 0.637092i \(-0.219863\pi\)
−0.937132 + 0.348976i \(0.886529\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.2426 + 9.37769i −0.771711 + 0.445548i −0.833485 0.552543i \(-0.813658\pi\)
0.0617735 + 0.998090i \(0.480324\pi\)
\(444\) 0 0
\(445\) −27.1066 + 46.9500i −1.28498 + 2.22564i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) 0.257359 + 0.445759i 0.0121186 + 0.0209900i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.86396 6.27231i −0.228026 0.294050i
\(456\) 0 0
\(457\) 2.51472 + 4.35562i 0.117634 + 0.203747i 0.918829 0.394655i \(-0.129136\pi\)
−0.801196 + 0.598402i \(0.795803\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.1360 5.85204i −0.472082 0.272557i 0.245029 0.969516i \(-0.421203\pi\)
−0.717111 + 0.696959i \(0.754536\pi\)
\(462\) 0 0
\(463\) 15.6213 9.01897i 0.725984 0.419147i −0.0909670 0.995854i \(-0.528996\pi\)
0.816951 + 0.576707i \(0.195662\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.25736 + 5.64191i −0.150733 + 0.261077i −0.931497 0.363749i \(-0.881497\pi\)
0.780764 + 0.624826i \(0.214830\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.74264 4.75039i 0.126107 0.218423i
\(474\) 0 0
\(475\) −6.24264 + 10.8126i −0.286432 + 0.496115i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.24264 0.0567777 0.0283889 0.999597i \(-0.490962\pi\)
0.0283889 + 0.999597i \(0.490962\pi\)
\(480\) 0 0
\(481\) 3.76127i 0.171499i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.62132 + 11.4685i −0.300659 + 0.520756i
\(486\) 0 0
\(487\) 33.1066 19.1141i 1.50020 0.866143i 0.500203 0.865908i \(-0.333259\pi\)
1.00000 0.000234827i \(-7.47477e-5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.98528 2.30090i 0.179853 0.103838i −0.407370 0.913263i \(-0.633554\pi\)
0.587224 + 0.809425i \(0.300221\pi\)
\(492\) 0 0
\(493\) 48.0262i 2.16299i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.27208 16.6031i −0.101917 0.744749i
\(498\) 0 0
\(499\) 4.35562i 0.194984i 0.995236 + 0.0974922i \(0.0310821\pi\)
−0.995236 + 0.0974922i \(0.968918\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.8067i 1.14386i 0.820302 + 0.571931i \(0.193805\pi\)
−0.820302 + 0.571931i \(0.806195\pi\)
\(510\) 0 0
\(511\) 18.1066 14.0410i 0.800989 0.621139i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 57.4039i 2.52952i
\(516\) 0 0
\(517\) 12.7279 7.34847i 0.559773 0.323185i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.50000 + 4.33013i −0.328581 + 0.189706i −0.655211 0.755446i \(-0.727420\pi\)
0.326630 + 0.945152i \(0.394087\pi\)
\(522\) 0 0
\(523\) −0.500000 + 0.866025i −0.0218635 + 0.0378686i −0.876750 0.480946i \(-0.840293\pi\)
0.854887 + 0.518815i \(0.173627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26.5241i 1.15541i
\(528\) 0 0
\(529\) −35.4558 −1.54156
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.106602 0.184640i 0.00461743 0.00799763i
\(534\) 0 0
\(535\) −16.8640 + 29.2092i −0.729093 + 1.26283i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.25736 11.6786i −0.140304 0.503033i
\(540\) 0 0
\(541\) 0.893398 1.54741i 0.0384102 0.0665284i −0.846181 0.532895i \(-0.821104\pi\)
0.884591 + 0.466367i \(0.154437\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 62.4411 36.0504i 2.67468 1.54423i
\(546\) 0 0
\(547\) −2.22792 1.28629i −0.0952591 0.0549978i 0.451614 0.892214i \(-0.350849\pi\)
−0.546873 + 0.837216i \(0.684182\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.62132 6.27231i −0.154273 0.267209i
\(552\) 0 0
\(553\) −24.7279 + 19.1757i −1.05154 + 0.815432i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.1066 + 20.9692i 0.512973 + 0.888496i 0.999887 + 0.0150455i \(0.00478931\pi\)
−0.486914 + 0.873450i \(0.661877\pi\)
\(558\) 0 0
\(559\) −2.27208 −0.0960987
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.4853 30.2854i 0.736917 1.27638i −0.216961 0.976180i \(-0.569614\pi\)
0.953877 0.300197i \(-0.0970524\pi\)
\(564\) 0 0
\(565\) 19.8640 11.4685i 0.835683 0.482482i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.48528 9.50079i −0.229955 0.398294i 0.727840 0.685747i \(-0.240525\pi\)
−0.957795 + 0.287454i \(0.907191\pi\)
\(570\) 0 0
\(571\) −39.9411 23.0600i −1.67148 0.965032i −0.966808 0.255502i \(-0.917759\pi\)
−0.704676 0.709530i \(-0.748907\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 95.4580i 3.98087i
\(576\) 0 0
\(577\) 38.9558 22.4912i 1.62175 0.936320i 0.635302 0.772264i \(-0.280876\pi\)
0.986451 0.164056i \(-0.0524577\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.48528 13.4361i 0.227568 0.557425i
\(582\) 0 0
\(583\) −10.8640 + 6.27231i −0.449939 + 0.259773i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.98528 12.0989i 0.288313 0.499373i −0.685094 0.728455i \(-0.740239\pi\)
0.973407 + 0.229081i \(0.0735722\pi\)
\(588\) 0 0
\(589\) 2.00000 + 3.46410i 0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.2279 8.21449i −0.584271 0.337329i 0.178558 0.983929i \(-0.442857\pi\)
−0.762829 + 0.646601i \(0.776190\pi\)
\(594\) 0 0
\(595\) −44.9558 57.9727i −1.84301 2.37665i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 23.4853 + 13.5592i 0.959583 + 0.554015i 0.896045 0.443964i \(-0.146428\pi\)
0.0635380 + 0.997979i \(0.479762\pi\)
\(600\) 0 0
\(601\) −5.01472 2.89525i −0.204555 0.118100i 0.394224 0.919015i \(-0.371014\pi\)
−0.598778 + 0.800915i \(0.704347\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 33.4523i 1.36003i
\(606\) 0 0
\(607\) −24.6985 −1.00248 −0.501240 0.865308i \(-0.667123\pi\)
−0.501240 + 0.865308i \(0.667123\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.27208 3.04384i −0.213285 0.123140i
\(612\) 0 0
\(613\) 2.62132 + 4.54026i 0.105874 + 0.183379i 0.914095 0.405500i \(-0.132903\pi\)
−0.808221 + 0.588879i \(0.799569\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.74264 9.94655i −0.231190 0.400433i 0.726969 0.686671i \(-0.240929\pi\)
−0.958159 + 0.286238i \(0.907595\pi\)
\(618\) 0 0
\(619\) 35.9706 1.44578 0.722889 0.690964i \(-0.242814\pi\)
0.722889 + 0.690964i \(0.242814\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.7574 + 12.9649i 1.27233 + 0.519427i
\(624\) 0 0
\(625\) 68.4558 2.73823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.7641i 1.38614i
\(630\) 0 0
\(631\) 5.49333i 0.218686i 0.994004 + 0.109343i \(0.0348747\pi\)
−0.994004 + 0.109343i \(0.965125\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 84.4264 3.35036
\(636\) 0 0
\(637\) −3.51472 + 3.58719i −0.139258 + 0.142130i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.9411 1.22210 0.611050 0.791592i \(-0.290747\pi\)
0.611050 + 0.791592i \(0.290747\pi\)
\(642\) 0 0
\(643\) 13.2279 + 22.9114i 0.521658 + 0.903539i 0.999683 + 0.0251921i \(0.00801975\pi\)
−0.478024 + 0.878347i \(0.658647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.86396 8.42463i −0.191222 0.331206i 0.754433 0.656377i \(-0.227912\pi\)
−0.945655 + 0.325170i \(0.894578\pi\)
\(648\) 0 0
\(649\) −9.00000 5.19615i −0.353281 0.203967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.7574 1.36016 0.680080 0.733138i \(-0.261945\pi\)
0.680080 + 0.733138i \(0.261945\pi\)
\(654\) 0 0
\(655\) 2.15232i 0.0840980i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.4706 7.19988i −0.485784 0.280468i 0.237040 0.971500i \(-0.423823\pi\)
−0.722824 + 0.691032i \(0.757156\pi\)
\(660\) 0 0
\(661\) −13.4558 7.76874i −0.523372 0.302169i 0.214941 0.976627i \(-0.431044\pi\)
−0.738313 + 0.674458i \(0.764377\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.2426 + 4.18154i 0.397193 + 0.162153i
\(666\) 0 0
\(667\) 47.9558 + 27.6873i 1.85686 + 1.07206i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.00000 10.3923i −0.231627 0.401190i
\(672\) 0 0
\(673\) 4.98528 8.63476i 0.192168 0.332846i −0.753800 0.657104i \(-0.771781\pi\)
0.945969 + 0.324258i \(0.105115\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.7279 10.8126i 0.719773 0.415561i −0.0948964 0.995487i \(-0.530252\pi\)
0.814669 + 0.579926i \(0.196919\pi\)
\(678\) 0 0
\(679\) 7.75736 + 3.16693i 0.297700 + 0.121536i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.9853 + 17.8894i −1.18562 + 0.684517i −0.957308 0.289071i \(-0.906654\pi\)
−0.228311 + 0.973588i \(0.573320\pi\)
\(684\) 0 0
\(685\) 37.6339i 1.43792i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.50000 + 2.59808i 0.171436 + 0.0989788i
\(690\) 0 0
\(691\) −21.9706 38.0541i −0.835800 1.44765i −0.893378 0.449306i \(-0.851671\pi\)
0.0575781 0.998341i \(-0.481662\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −47.0772 + 27.1800i −1.78574 + 1.03100i
\(696\) 0 0
\(697\) 0.985281 1.70656i 0.0373202 0.0646405i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.9706 −1.32082 −0.660410 0.750905i \(-0.729617\pi\)
−0.660410 + 0.750905i \(0.729617\pi\)
\(702\) 0 0
\(703\) 2.62132 + 4.54026i 0.0988650 + 0.171239i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.257359 + 1.88064i 0.00967899 + 0.0707286i
\(708\) 0 0
\(709\) −5.75736 9.97204i −0.216222 0.374508i 0.737428 0.675426i \(-0.236040\pi\)
−0.953650 + 0.300918i \(0.902707\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −26.4853 15.2913i −0.991882 0.572663i
\(714\) 0 0
\(715\) 4.50000 2.59808i 0.168290 0.0971625i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.3787 + 35.2969i −0.759997 + 1.31635i 0.182855 + 0.983140i \(0.441466\pi\)
−0.942852 + 0.333213i \(0.891867\pi\)
\(720\) 0 0
\(721\) −35.9853 + 4.92447i −1.34016 + 0.183397i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −45.2132 + 78.3116i −1.67918 + 2.90842i
\(726\) 0 0
\(727\) 8.34924 14.4613i 0.309656 0.536340i −0.668631 0.743594i \(-0.733119\pi\)
0.978287 + 0.207254i \(0.0664527\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −21.0000 −0.776713
\(732\) 0 0
\(733\) 49.2149i 1.81779i −0.417022 0.908896i \(-0.636926\pi\)
0.417022 0.908896i \(-0.363074\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.7426 + 20.6360i −1.31481 + 0.759108i −0.982889 0.184197i \(-0.941031\pi\)
−0.331925 + 0.943306i \(0.607698\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.8640 + 14.9326i −0.948857 + 0.547823i −0.892726 0.450601i \(-0.851210\pi\)
−0.0561311 + 0.998423i \(0.517876\pi\)
\(744\) 0 0
\(745\) 44.9823i 1.64803i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.7574 + 8.06591i 0.721918 + 0.294722i
\(750\) 0 0
\(751\) 1.90613i 0.0695557i 0.999395 + 0.0347778i \(0.0110724\pi\)
−0.999395 + 0.0347778i \(0.988928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 84.9411 3.09132
\(756\) 0 0
\(757\) −43.9411 −1.59707 −0.798534 0.601950i \(-0.794391\pi\)
−0.798534 + 0.601950i \(0.794391\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1536i 0.513067i −0.966535 0.256533i \(-0.917420\pi\)
0.966535 0.256533i \(-0.0825804\pi\)
\(762\) 0 0
\(763\) −27.9558 36.0504i −1.01207 1.30511i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.30463i 0.155431i
\(768\) 0 0
\(769\) 34.1985 19.7445i 1.23323 0.712005i 0.265527 0.964103i \(-0.414454\pi\)
0.967702 + 0.252098i \(0.0811206\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28.3492 16.3674i 1.01965 0.588696i 0.105648 0.994404i \(-0.466308\pi\)
0.914003 + 0.405708i \(0.132975\pi\)
\(774\) 0 0
\(775\) 24.9706 43.2503i 0.896969 1.55360i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.297173i 0.0106473i
\(780\) 0 0
\(781\) 10.9706 0.392558
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24.7279 + 42.8300i −0.882577 + 1.52867i
\(786\) 0 0
\(787\) −3.24264 + 5.61642i −0.115588 + 0.200204i −0.918015 0.396547i \(-0.870208\pi\)
0.802427 + 0.596750i \(0.203542\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.89340 11.4685i −0.316213 0.407772i
\(792\) 0 0
\(793\) −2.48528 + 4.30463i −0.0882549 + 0.152862i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.1066 + 8.72180i −0.535103 + 0.308942i −0.743092 0.669189i \(-0.766642\pi\)
0.207989 + 0.978131i \(0.433308\pi\)
\(798\) 0 0
\(799\) −48.7279 28.1331i −1.72387 0.995277i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.50000 + 12.9904i 0.264669 + 0.458421i
\(804\) 0 0
\(805\) −83.8051 + 11.4685i −2.95374 + 0.404210i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.985281 + 1.70656i 0.0346406 + 0.0599994i 0.882826 0.469700i \(-0.155638\pi\)
−0.848185 + 0.529700i \(0.822305\pi\)
\(810\) 0 0
\(811\) −29.9411 −1.05138 −0.525688 0.850678i \(-0.676192\pi\)
−0.525688 + 0.850678i \(0.676192\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21.1066 + 36.5577i −0.739332 + 1.28056i
\(816\) 0 0
\(817\) 2.74264 1.58346i 0.0959529 0.0553984i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.727922 1.26080i −0.0254047 0.0440022i 0.853044 0.521840i \(-0.174754\pi\)
−0.878448 + 0.477838i \(0.841421\pi\)
\(822\) 0 0
\(823\) 0.213203 + 0.123093i 0.00743180 + 0.00429075i 0.503711 0.863872i \(-0.331968\pi\)
−0.496279 + 0.868163i \(0.665301\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.76874i 0.270145i −0.990836 0.135073i \(-0.956873\pi\)
0.990836 0.135073i \(-0.0431268\pi\)
\(828\) 0 0
\(829\) 27.8345 16.0703i 0.966733 0.558144i 0.0684943 0.997652i \(-0.478181\pi\)
0.898239 + 0.439508i \(0.144847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −32.4853 + 33.1552i −1.12555 + 1.14876i
\(834\) 0 0
\(835\) −35.2279 + 20.3389i −1.21911 + 0.703855i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.37868 + 9.31615i −0.185693 + 0.321629i −0.943810 0.330489i \(-0.892786\pi\)
0.758117 + 0.652118i \(0.226120\pi\)
\(840\) 0 0
\(841\) −11.7279 20.3134i −0.404411 0.700461i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 45.2132 + 26.1039i 1.55538 + 0.898000i
\(846\) 0 0
\(847\) −20.9706 + 2.86976i −0.720557 + 0.0986060i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −34.7132 20.0417i −1.18995 0.687020i
\(852\) 0 0
\(853\) 4.86396 + 2.80821i 0.166539 + 0.0961513i 0.580953 0.813937i \(-0.302680\pi\)
−0.414414 + 0.910089i \(0.636013\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9941i 0.512189i −0.966652 0.256095i \(-0.917564\pi\)
0.966652 0.256095i \(-0.0824358\pi\)
\(858\) 0 0
\(859\) 0.0294373 0.00100439 0.000502193 1.00000i \(-0.499840\pi\)
0.000502193 1.00000i \(0.499840\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.5919 18.8169i −1.10944 0.640536i −0.170756 0.985313i \(-0.554621\pi\)
−0.938684 + 0.344777i \(0.887954\pi\)
\(864\) 0 0
\(865\) 20.4853 + 35.4815i 0.696520 + 1.20641i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.2426 17.7408i −0.347458 0.601815i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.2279 82.0473i −0.379573 2.77371i
\(876\) 0 0
\(877\) 46.6985 1.57690 0.788448 0.615102i \(-0.210885\pi\)
0.788448 + 0.615102i \(0.210885\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.4215i 0.418492i 0.977863 + 0.209246i \(0.0671009\pi\)
−0.977863 + 0.209246i \(0.932899\pi\)
\(882\) 0 0
\(883\) 4.89898i 0.164864i 0.996597 + 0.0824319i \(0.0262687\pi\)
−0.996597 + 0.0824319i \(0.973731\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −49.6690 −1.66772 −0.833862 0.551973i \(-0.813875\pi\)
−0.833862 + 0.551973i \(0.813875\pi\)
\(888\) 0 0
\(889\) −7.24264 52.9251i −0.242910 1.77505i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.48528 0.283949
\(894\) 0 0
\(895\) 38.5919 + 66.8431i 1.28998 + 2.23432i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 14.4853 + 25.0892i 0.483111 + 0.836773i
\(900\) 0 0
\(901\) 41.5919 + 24.0131i 1.38563 + 0.799992i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.4853 0.880401
\(906\) 0 0
\(907\) 18.4582i 0.612895i 0.951888 + 0.306447i \(0.0991404\pi\)
−0.951888 + 0.306447i \(0.900860\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.8640 16.6646i −0.956306 0.552123i −0.0612716 0.998121i \(-0.519516\pi\)
−0.895034 + 0.445998i \(0.852849\pi\)
\(912\) 0 0
\(913\) 8.22792 + 4.75039i 0.272304 + 0.157215i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.34924 + 0.184640i −0.0445559 + 0.00609734i
\(918\) 0 0
\(919\) −16.8640 9.73641i −0.556291 0.321175i 0.195365 0.980731i \(-0.437411\pi\)
−0.751655 + 0.659556i \(0.770744\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.27208 3.93535i −0.0747864 0.129534i
\(924\) 0 0
\(925\) 32.7279 56.6864i 1.07609 1.86384i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.5147 14.1536i 0.804302 0.464364i −0.0406713 0.999173i \(-0.512950\pi\)
0.844973 + 0.534809i \(0.179616\pi\)
\(930\) 0 0
\(931\) 1.74264 6.77962i 0.0571127 0.222193i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 41.5919 24.0131i 1.36020 0.785312i
\(936\) 0 0
\(937\) 45.5257i 1.48726i −0.668592 0.743630i \(-0.733103\pi\)
0.668592 0.743630i \(-0.266897\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.4558 + 11.2328i 0.634242 + 0.366180i 0.782393 0.622785i \(-0.213999\pi\)
−0.148151 + 0.988965i \(0.547332\pi\)
\(942\) 0 0
\(943\) −1.13604 1.96768i −0.0369945 0.0640764i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.0294 + 9.25460i −0.520887 + 0.300734i −0.737297 0.675568i \(-0.763898\pi\)
0.216411 + 0.976302i \(0.430565\pi\)
\(948\) 0 0
\(949\) 3.10660 5.38079i 0.100845 0.174668i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −44.4853 −1.44102 −0.720510 0.693445i \(-0.756092\pi\)
−0.720510 + 0.693445i \(0.756092\pi\)
\(954\) 0 0
\(955\) −23.4853 40.6777i −0.759966 1.31630i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.5919 3.22848i 0.761822 0.104253i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −46.9706 27.1185i −1.51204 0.872974i
\(966\) 0 0
\(967\) 5.59188 3.22848i 0.179823 0.103821i −0.407387 0.913256i \(-0.633560\pi\)
0.587209 + 0.809435i \(0.300227\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.7426 + 25.5350i −0.473114 + 0.819457i −0.999526 0.0307720i \(-0.990203\pi\)
0.526413 + 0.850229i \(0.323537\pi\)
\(972\) 0 0
\(973\) 21.0772 + 27.1800i 0.675703 + 0.871351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.48528 14.6969i 0.271468 0.470197i −0.697770 0.716322i \(-0.745824\pi\)
0.969238 + 0.246125i \(0.0791575\pi\)
\(978\) 0 0
\(979\) −11.2279 + 19.4473i −0.358846 + 0.621539i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.7574 0.534477 0.267238 0.963630i \(-0.413889\pi\)
0.267238 + 0.963630i \(0.413889\pi\)
\(984\) 0 0
\(985\) 10.3923i 0.331126i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.1066 + 20.9692i −0.384968 + 0.666783i
\(990\) 0 0
\(991\) −37.8640 + 21.8608i −1.20279 + 0.694430i −0.961174 0.275942i \(-0.911010\pi\)
−0.241614 + 0.970372i \(0.577677\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.7426 + 11.9758i −0.657586 + 0.379657i
\(996\) 0 0
\(997\) 5.61642i 0.177874i −0.996037 0.0889369i \(-0.971653\pi\)
0.996037 0.0889369i \(-0.0283469\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.bf.e.2287.1 4
3.2 odd 2 1008.2.bf.f.943.2 yes 4
4.3 odd 2 3024.2.bf.f.2287.1 4
7.3 odd 6 3024.2.cz.e.2719.1 4
9.4 even 3 3024.2.cz.f.1279.1 4
9.5 odd 6 1008.2.cz.f.607.2 yes 4
12.11 even 2 1008.2.bf.e.943.2 yes 4
21.17 even 6 1008.2.cz.e.367.2 yes 4
28.3 even 6 3024.2.cz.f.2719.1 4
36.23 even 6 1008.2.cz.e.607.2 yes 4
36.31 odd 6 3024.2.cz.e.1279.1 4
63.31 odd 6 3024.2.bf.f.1711.2 4
63.59 even 6 1008.2.bf.e.31.1 4
84.59 odd 6 1008.2.cz.f.367.2 yes 4
252.31 even 6 inner 3024.2.bf.e.1711.2 4
252.59 odd 6 1008.2.bf.f.31.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.e.31.1 4 63.59 even 6
1008.2.bf.e.943.2 yes 4 12.11 even 2
1008.2.bf.f.31.1 yes 4 252.59 odd 6
1008.2.bf.f.943.2 yes 4 3.2 odd 2
1008.2.cz.e.367.2 yes 4 21.17 even 6
1008.2.cz.e.607.2 yes 4 36.23 even 6
1008.2.cz.f.367.2 yes 4 84.59 odd 6
1008.2.cz.f.607.2 yes 4 9.5 odd 6
3024.2.bf.e.1711.2 4 252.31 even 6 inner
3024.2.bf.e.2287.1 4 1.1 even 1 trivial
3024.2.bf.f.1711.2 4 63.31 odd 6
3024.2.bf.f.2287.1 4 4.3 odd 2
3024.2.cz.e.1279.1 4 36.31 odd 6
3024.2.cz.e.2719.1 4 7.3 odd 6
3024.2.cz.f.1279.1 4 9.4 even 3
3024.2.cz.f.2719.1 4 28.3 even 6