Properties

Label 3024.2.cz.e.1279.1
Level $3024$
Weight $2$
Character 3024.1279
Analytic conductor $24.147$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1279,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1279");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cz (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1279.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 3024.1279
Dual form 3024.2.cz.e.2719.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.62132 + 2.09077i) q^{5} +(-1.00000 + 2.44949i) q^{7} +(-1.50000 - 0.866025i) q^{11} +(0.621320 + 0.358719i) q^{13} +(-5.74264 + 3.31552i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(-6.62132 + 3.82282i) q^{23} +(6.24264 - 10.8126i) q^{25} +(3.62132 + 6.27231i) q^{29} -4.00000 q^{31} +(-1.50000 - 10.9612i) q^{35} +(-2.62132 + 4.54026i) q^{37} +(0.257359 + 0.148586i) q^{41} +(2.74264 - 1.58346i) q^{43} +8.48528 q^{47} +(-5.00000 - 4.89898i) q^{49} +(-3.62132 - 6.27231i) q^{53} +7.24264 q^{55} +6.00000 q^{59} +6.92820i q^{61} -3.00000 q^{65} -6.33386i q^{71} +(-7.50000 + 4.33013i) q^{73} +(3.62132 - 2.80821i) q^{77} -11.8272i q^{79} +(2.74264 + 4.75039i) q^{83} +(13.8640 - 24.0131i) q^{85} +(-11.2279 - 6.48244i) q^{89} +(-1.50000 + 1.16320i) q^{91} -4.18154i q^{95} +(2.74264 - 1.58346i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} - 4 q^{7} - 6 q^{11} - 6 q^{13} - 6 q^{17} - 2 q^{19} - 18 q^{23} + 8 q^{25} + 6 q^{29} - 16 q^{31} - 6 q^{35} - 2 q^{37} + 18 q^{41} - 6 q^{43} - 20 q^{49} - 6 q^{53} + 12 q^{55} + 24 q^{59}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.62132 + 2.09077i −1.61950 + 0.935021i −0.632456 + 0.774597i \(0.717953\pi\)
−0.987048 + 0.160424i \(0.948714\pi\)
\(6\) 0 0
\(7\) −1.00000 + 2.44949i −0.377964 + 0.925820i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 0.866025i −0.452267 0.261116i 0.256520 0.966539i \(-0.417424\pi\)
−0.708787 + 0.705422i \(0.750757\pi\)
\(12\) 0 0
\(13\) 0.621320 + 0.358719i 0.172323 + 0.0994909i 0.583681 0.811983i \(-0.301612\pi\)
−0.411358 + 0.911474i \(0.634945\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.74264 + 3.31552i −1.39279 + 0.804131i −0.993624 0.112746i \(-0.964035\pi\)
−0.399171 + 0.916876i \(0.630702\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.62132 + 3.82282i −1.38064 + 0.797113i −0.992235 0.124375i \(-0.960307\pi\)
−0.388405 + 0.921489i \(0.626974\pi\)
\(24\) 0 0
\(25\) 6.24264 10.8126i 1.24853 2.16251i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.62132 + 6.27231i 0.672462 + 1.16474i 0.977204 + 0.212304i \(0.0680966\pi\)
−0.304741 + 0.952435i \(0.598570\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 10.9612i −0.253546 1.85277i
\(36\) 0 0
\(37\) −2.62132 + 4.54026i −0.430942 + 0.746414i −0.996955 0.0779826i \(-0.975152\pi\)
0.566012 + 0.824397i \(0.308485\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.257359 + 0.148586i 0.0401928 + 0.0232053i 0.519962 0.854190i \(-0.325946\pi\)
−0.479769 + 0.877395i \(0.659280\pi\)
\(42\) 0 0
\(43\) 2.74264 1.58346i 0.418249 0.241476i −0.276079 0.961135i \(-0.589035\pi\)
0.694328 + 0.719659i \(0.255702\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.48528 1.23771 0.618853 0.785507i \(-0.287598\pi\)
0.618853 + 0.785507i \(0.287598\pi\)
\(48\) 0 0
\(49\) −5.00000 4.89898i −0.714286 0.699854i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.62132 6.27231i −0.497427 0.861568i 0.502569 0.864537i \(-0.332388\pi\)
−0.999996 + 0.00296896i \(0.999055\pi\)
\(54\) 0 0
\(55\) 7.24264 0.976597
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 6.92820i 0.887066i 0.896258 + 0.443533i \(0.146275\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.00000 −0.372104
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.33386i 0.751691i −0.926682 0.375845i \(-0.877352\pi\)
0.926682 0.375845i \(-0.122648\pi\)
\(72\) 0 0
\(73\) −7.50000 + 4.33013i −0.877809 + 0.506803i −0.869935 0.493166i \(-0.835840\pi\)
−0.00787336 + 0.999969i \(0.502506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.62132 2.80821i 0.412688 0.320025i
\(78\) 0 0
\(79\) 11.8272i 1.33066i −0.746548 0.665331i \(-0.768290\pi\)
0.746548 0.665331i \(-0.231710\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.74264 + 4.75039i 0.301044 + 0.521423i 0.976373 0.216093i \(-0.0693316\pi\)
−0.675329 + 0.737517i \(0.735998\pi\)
\(84\) 0 0
\(85\) 13.8640 24.0131i 1.50376 2.60458i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.2279 6.48244i −1.19016 0.687138i −0.231815 0.972760i \(-0.574466\pi\)
−0.958342 + 0.285622i \(0.907800\pi\)
\(90\) 0 0
\(91\) −1.50000 + 1.16320i −0.157243 + 0.121936i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.18154i 0.429017i
\(96\) 0 0
\(97\) 2.74264 1.58346i 0.278473 0.160776i −0.354259 0.935147i \(-0.615267\pi\)
0.632732 + 0.774371i \(0.281934\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.621320 + 0.358719i 0.0618237 + 0.0356939i 0.530593 0.847627i \(-0.321969\pi\)
−0.468770 + 0.883321i \(0.655303\pi\)
\(102\) 0 0
\(103\) 6.86396 + 11.8887i 0.676326 + 1.17143i 0.976079 + 0.217415i \(0.0697623\pi\)
−0.299753 + 0.954017i \(0.596904\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.98528 + 4.03295i 0.675293 + 0.389880i 0.798079 0.602553i \(-0.205850\pi\)
−0.122786 + 0.992433i \(0.539183\pi\)
\(108\) 0 0
\(109\) 8.62132 + 14.9326i 0.825773 + 1.43028i 0.901327 + 0.433139i \(0.142594\pi\)
−0.0755546 + 0.997142i \(0.524073\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.74264 4.75039i 0.258006 0.446879i −0.707702 0.706511i \(-0.750268\pi\)
0.965708 + 0.259632i \(0.0836013\pi\)
\(114\) 0 0
\(115\) 15.9853 27.6873i 1.49064 2.58186i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.37868 17.3821i −0.218053 1.59341i
\(120\) 0 0
\(121\) −4.00000 6.92820i −0.363636 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31.3000i 2.79956i
\(126\) 0 0
\(127\) 20.1903i 1.79160i −0.444461 0.895798i \(-0.646605\pi\)
0.444461 0.895798i \(-0.353395\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.257359 + 0.445759i 0.0224856 + 0.0389462i 0.877049 0.480400i \(-0.159509\pi\)
−0.854564 + 0.519347i \(0.826175\pi\)
\(132\) 0 0
\(133\) −1.62132 2.09077i −0.140586 0.181293i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) 0 0
\(139\) 6.50000 11.2583i 0.551323 0.954919i −0.446857 0.894606i \(-0.647457\pi\)
0.998179 0.0603135i \(-0.0192101\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.621320 1.07616i −0.0519574 0.0899929i
\(144\) 0 0
\(145\) −26.2279 15.1427i −2.17811 1.25753i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.37868 9.31615i −0.440639 0.763208i 0.557098 0.830447i \(-0.311915\pi\)
−0.997737 + 0.0672381i \(0.978581\pi\)
\(150\) 0 0
\(151\) 17.5919 + 10.1567i 1.43161 + 0.826539i 0.997243 0.0741988i \(-0.0236399\pi\)
0.434364 + 0.900738i \(0.356973\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.4853 8.36308i 1.16349 0.671739i
\(156\) 0 0
\(157\) 11.8272i 0.943912i 0.881622 + 0.471956i \(0.156452\pi\)
−0.881622 + 0.471956i \(0.843548\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.74264 20.0417i −0.216150 1.57951i
\(162\) 0 0
\(163\) 8.74264 + 5.04757i 0.684776 + 0.395356i 0.801652 0.597791i \(-0.203955\pi\)
−0.116876 + 0.993147i \(0.537288\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.86396 8.42463i 0.376385 0.651917i −0.614149 0.789190i \(-0.710500\pi\)
0.990533 + 0.137273i \(0.0438338\pi\)
\(168\) 0 0
\(169\) −6.24264 10.8126i −0.480203 0.831736i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.79796i 0.744925i −0.928047 0.372463i \(-0.878514\pi\)
0.928047 0.372463i \(-0.121486\pi\)
\(174\) 0 0
\(175\) 20.2426 + 26.1039i 1.53020 + 1.97327i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.9853 9.22911i 1.19480 0.689816i 0.235406 0.971897i \(-0.424358\pi\)
0.959390 + 0.282081i \(0.0910248\pi\)
\(180\) 0 0
\(181\) 6.33386i 0.470792i 0.971900 + 0.235396i \(0.0756387\pi\)
−0.971900 + 0.235396i \(0.924361\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.9223i 1.61176i
\(186\) 0 0
\(187\) 11.4853 0.839887
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.2328i 0.812780i −0.913700 0.406390i \(-0.866788\pi\)
0.913700 0.406390i \(-0.133212\pi\)
\(192\) 0 0
\(193\) −12.9706 −0.933642 −0.466821 0.884352i \(-0.654601\pi\)
−0.466821 + 0.884352i \(0.654601\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.48528 −0.177069 −0.0885345 0.996073i \(-0.528218\pi\)
−0.0885345 + 0.996073i \(0.528218\pi\)
\(198\) 0 0
\(199\) 2.86396 + 4.96053i 0.203021 + 0.351642i 0.949500 0.313766i \(-0.101591\pi\)
−0.746480 + 0.665408i \(0.768257\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.9853 + 2.59808i −1.33251 + 0.182349i
\(204\) 0 0
\(205\) −1.24264 −0.0867898
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.50000 0.866025i 0.103757 0.0599042i
\(210\) 0 0
\(211\) −6.25736 3.61269i −0.430774 0.248708i 0.268902 0.963168i \(-0.413339\pi\)
−0.699676 + 0.714460i \(0.746673\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.62132 + 11.4685i −0.451570 + 0.782143i
\(216\) 0 0
\(217\) 4.00000 9.79796i 0.271538 0.665129i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.75736 −0.320015
\(222\) 0 0
\(223\) 1.62132 + 2.80821i 0.108572 + 0.188052i 0.915192 0.403019i \(-0.132039\pi\)
−0.806620 + 0.591070i \(0.798706\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.257359 + 0.445759i −0.0170815 + 0.0295861i −0.874440 0.485134i \(-0.838771\pi\)
0.857358 + 0.514720i \(0.172104\pi\)
\(228\) 0 0
\(229\) −21.6213 + 12.4831i −1.42878 + 0.824905i −0.997024 0.0770872i \(-0.975438\pi\)
−0.431753 + 0.901992i \(0.642105\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.7426 + 25.5350i −0.965823 + 1.67285i −0.258434 + 0.966029i \(0.583206\pi\)
−0.707389 + 0.706825i \(0.750127\pi\)
\(234\) 0 0
\(235\) −30.7279 + 17.7408i −2.00447 + 1.15728i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.1066 12.1859i −1.36527 0.788240i −0.374953 0.927044i \(-0.622341\pi\)
−0.990320 + 0.138803i \(0.955674\pi\)
\(240\) 0 0
\(241\) −8.74264 5.04757i −0.563163 0.325142i 0.191251 0.981541i \(-0.438746\pi\)
−0.754414 + 0.656399i \(0.772079\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28.3492 + 7.28692i 1.81117 + 0.465544i
\(246\) 0 0
\(247\) −0.621320 + 0.358719i −0.0395337 + 0.0228248i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.51472 −0.600564 −0.300282 0.953851i \(-0.597081\pi\)
−0.300282 + 0.953851i \(0.597081\pi\)
\(252\) 0 0
\(253\) 13.2426 0.832558
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.01472 + 2.89525i −0.312810 + 0.180601i −0.648183 0.761485i \(-0.724471\pi\)
0.335373 + 0.942085i \(0.391137\pi\)
\(258\) 0 0
\(259\) −8.50000 10.9612i −0.528164 0.681093i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.10660 + 5.25770i 0.561537 + 0.324204i 0.753762 0.657147i \(-0.228237\pi\)
−0.192225 + 0.981351i \(0.561570\pi\)
\(264\) 0 0
\(265\) 26.2279 + 15.1427i 1.61117 + 0.930209i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.3492 + 5.97514i −0.631004 + 0.364311i −0.781141 0.624355i \(-0.785362\pi\)
0.150137 + 0.988665i \(0.452029\pi\)
\(270\) 0 0
\(271\) 6.86396 11.8887i 0.416956 0.722189i −0.578676 0.815558i \(-0.696430\pi\)
0.995632 + 0.0933689i \(0.0297636\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −18.7279 + 10.8126i −1.12934 + 0.652023i
\(276\) 0 0
\(277\) −6.86396 + 11.8887i −0.412415 + 0.714325i −0.995153 0.0983357i \(-0.968648\pi\)
0.582738 + 0.812660i \(0.301981\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.985281 + 1.70656i 0.0587770 + 0.101805i 0.893917 0.448233i \(-0.147947\pi\)
−0.835140 + 0.550038i \(0.814613\pi\)
\(282\) 0 0
\(283\) −22.4853 −1.33661 −0.668306 0.743887i \(-0.732980\pi\)
−0.668306 + 0.743887i \(0.732980\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.621320 + 0.481813i −0.0366754 + 0.0284405i
\(288\) 0 0
\(289\) 13.4853 23.3572i 0.793252 1.37395i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.5919 + 13.6208i 1.37825 + 0.795734i 0.991949 0.126637i \(-0.0404184\pi\)
0.386303 + 0.922372i \(0.373752\pi\)
\(294\) 0 0
\(295\) −21.7279 + 12.5446i −1.26505 + 0.730376i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.48528 −0.317222
\(300\) 0 0
\(301\) 1.13604 + 8.30153i 0.0654802 + 0.478492i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.4853 25.0892i −0.829425 1.43661i
\(306\) 0 0
\(307\) 1.51472 0.0864496 0.0432248 0.999065i \(-0.486237\pi\)
0.0432248 + 0.999065i \(0.486237\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.9706 −0.622084 −0.311042 0.950396i \(-0.600678\pi\)
−0.311042 + 0.950396i \(0.600678\pi\)
\(312\) 0 0
\(313\) 8.36308i 0.472709i 0.971667 + 0.236355i \(0.0759527\pi\)
−0.971667 + 0.236355i \(0.924047\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 12.5446i 0.702364i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.63103i 0.368960i
\(324\) 0 0
\(325\) 7.75736 4.47871i 0.430301 0.248434i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.48528 + 20.7846i −0.467809 + 1.14589i
\(330\) 0 0
\(331\) 30.5826i 1.68097i 0.541835 + 0.840485i \(0.317730\pi\)
−0.541835 + 0.840485i \(0.682270\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.50000 + 4.33013i −0.136184 + 0.235877i −0.926049 0.377403i \(-0.876817\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.00000 + 3.46410i 0.324918 + 0.187592i
\(342\) 0 0
\(343\) 17.0000 7.34847i 0.917914 0.396780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.7128i 1.48770i −0.668346 0.743851i \(-0.732997\pi\)
0.668346 0.743851i \(-0.267003\pi\)
\(348\) 0 0
\(349\) 6.62132 3.82282i 0.354431 0.204631i −0.312204 0.950015i \(-0.601067\pi\)
0.666635 + 0.745384i \(0.267734\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.74264 + 1.58346i 0.145976 + 0.0842793i 0.571209 0.820805i \(-0.306475\pi\)
−0.425233 + 0.905084i \(0.639808\pi\)
\(354\) 0 0
\(355\) 13.2426 + 22.9369i 0.702846 + 1.21737i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.62132 5.55487i −0.507794 0.293175i 0.224132 0.974559i \(-0.428045\pi\)
−0.731926 + 0.681384i \(0.761379\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.1066 31.3616i 0.947743 1.64154i
\(366\) 0 0
\(367\) −15.8640 + 27.4772i −0.828092 + 1.43430i 0.0714411 + 0.997445i \(0.477240\pi\)
−0.899533 + 0.436853i \(0.856093\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.9853 2.59808i 0.985667 0.134885i
\(372\) 0 0
\(373\) −5.13604 8.89588i −0.265934 0.460611i 0.701874 0.712301i \(-0.252347\pi\)
−0.967808 + 0.251690i \(0.919014\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.19615i 0.267615i
\(378\) 0 0
\(379\) 11.8272i 0.607522i −0.952748 0.303761i \(-0.901758\pi\)
0.952748 0.303761i \(-0.0982424\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.37868 + 9.31615i 0.274838 + 0.476033i 0.970094 0.242729i \(-0.0780425\pi\)
−0.695256 + 0.718762i \(0.744709\pi\)
\(384\) 0 0
\(385\) −7.24264 + 17.7408i −0.369119 + 0.904154i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.6213 32.2531i 0.944138 1.63530i 0.186671 0.982422i \(-0.440230\pi\)
0.757467 0.652873i \(-0.226437\pi\)
\(390\) 0 0
\(391\) 25.3492 43.9062i 1.28197 2.22043i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.7279 + 42.8300i 1.24420 + 2.15501i
\(396\) 0 0
\(397\) −11.8934 6.86666i −0.596913 0.344628i 0.170913 0.985286i \(-0.445328\pi\)
−0.767826 + 0.640658i \(0.778661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.22792 14.2512i −0.410883 0.711670i 0.584104 0.811679i \(-0.301446\pi\)
−0.994987 + 0.100009i \(0.968113\pi\)
\(402\) 0 0
\(403\) −2.48528 1.43488i −0.123801 0.0714764i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.86396 4.54026i 0.389802 0.225052i
\(408\) 0 0
\(409\) 22.2195i 1.09868i 0.835598 + 0.549341i \(0.185121\pi\)
−0.835598 + 0.549341i \(0.814879\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 + 14.6969i −0.295241 + 0.723189i
\(414\) 0 0
\(415\) −19.8640 11.4685i −0.975083 0.562965i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.9853 + 22.4912i −0.634373 + 1.09877i 0.352275 + 0.935896i \(0.385408\pi\)
−0.986648 + 0.162869i \(0.947925\pi\)
\(420\) 0 0
\(421\) 5.86396 + 10.1567i 0.285792 + 0.495006i 0.972801 0.231643i \(-0.0744100\pi\)
−0.687009 + 0.726649i \(0.741077\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 82.7903i 4.01592i
\(426\) 0 0
\(427\) −16.9706 6.92820i −0.821263 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8345 + 7.41002i −0.618217 + 0.356928i −0.776175 0.630518i \(-0.782842\pi\)
0.157957 + 0.987446i \(0.449509\pi\)
\(432\) 0 0
\(433\) 6.33386i 0.304386i −0.988351 0.152193i \(-0.951367\pi\)
0.988351 0.152193i \(-0.0486335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.64564i 0.365741i
\(438\) 0 0
\(439\) −6.97056 −0.332687 −0.166343 0.986068i \(-0.553196\pi\)
−0.166343 + 0.986068i \(0.553196\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.7554i 0.891095i 0.895258 + 0.445548i \(0.146991\pi\)
−0.895258 + 0.445548i \(0.853009\pi\)
\(444\) 0 0
\(445\) 54.2132 2.56995
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −0.257359 0.445759i −0.0121186 0.0209900i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 7.34847i 0.140642 0.344502i
\(456\) 0 0
\(457\) −5.02944 −0.235267 −0.117634 0.993057i \(-0.537531\pi\)
−0.117634 + 0.993057i \(0.537531\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.1360 5.85204i 0.472082 0.272557i −0.245029 0.969516i \(-0.578797\pi\)
0.717111 + 0.696959i \(0.245464\pi\)
\(462\) 0 0
\(463\) 15.6213 + 9.01897i 0.725984 + 0.419147i 0.816951 0.576707i \(-0.195662\pi\)
−0.0909670 + 0.995854i \(0.528996\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.25736 5.64191i 0.150733 0.261077i −0.780764 0.624826i \(-0.785170\pi\)
0.931497 + 0.363749i \(0.118503\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.48528 −0.252214
\(474\) 0 0
\(475\) 6.24264 + 10.8126i 0.286432 + 0.496115i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.621320 1.07616i 0.0283889 0.0491709i −0.851482 0.524384i \(-0.824296\pi\)
0.879871 + 0.475213i \(0.157629\pi\)
\(480\) 0 0
\(481\) −3.25736 + 1.88064i −0.148523 + 0.0857497i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.62132 + 11.4685i −0.300659 + 0.520756i
\(486\) 0 0
\(487\) −33.1066 + 19.1141i −1.50020 + 0.866143i −0.500203 + 0.865908i \(0.666741\pi\)
−1.00000 0.000234827i \(0.999925\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.98528 + 2.30090i 0.179853 + 0.103838i 0.587224 0.809425i \(-0.300221\pi\)
−0.407370 + 0.913263i \(0.633554\pi\)
\(492\) 0 0
\(493\) −41.5919 24.0131i −1.87320 1.08149i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.5147 + 6.33386i 0.695930 + 0.284112i
\(498\) 0 0
\(499\) −3.77208 + 2.17781i −0.168861 + 0.0974922i −0.582049 0.813154i \(-0.697749\pi\)
0.413187 + 0.910646i \(0.364415\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.3492 12.9033i 0.990613 0.571931i 0.0851554 0.996368i \(-0.472861\pi\)
0.905457 + 0.424437i \(0.139528\pi\)
\(510\) 0 0
\(511\) −3.10660 22.7013i −0.137428 1.00425i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −49.7132 28.7019i −2.19063 1.26476i
\(516\) 0 0
\(517\) −12.7279 7.34847i −0.559773 0.323185i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.50000 + 4.33013i −0.328581 + 0.189706i −0.655211 0.755446i \(-0.727420\pi\)
0.326630 + 0.945152i \(0.394087\pi\)
\(522\) 0 0
\(523\) 0.500000 0.866025i 0.0218635 0.0378686i −0.854887 0.518815i \(-0.826373\pi\)
0.876750 + 0.480946i \(0.159707\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.9706 13.2621i 1.00061 0.577704i
\(528\) 0 0
\(529\) 17.7279 30.7057i 0.770779 1.33503i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.106602 + 0.184640i 0.00461743 + 0.00799763i
\(534\) 0 0
\(535\) −33.7279 −1.45819
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.25736 + 11.6786i 0.140304 + 0.503033i
\(540\) 0 0
\(541\) 0.893398 1.54741i 0.0384102 0.0665284i −0.846181 0.532895i \(-0.821104\pi\)
0.884591 + 0.466367i \(0.154437\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −62.4411 36.0504i −2.67468 1.54423i
\(546\) 0 0
\(547\) −2.22792 + 1.28629i −0.0952591 + 0.0549978i −0.546873 0.837216i \(-0.684182\pi\)
0.451614 + 0.892214i \(0.350849\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.24264 −0.308547
\(552\) 0 0
\(553\) 28.9706 + 11.8272i 1.23195 + 0.502943i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.1066 + 20.9692i 0.512973 + 0.888496i 0.999887 + 0.0150455i \(0.00478931\pi\)
−0.486914 + 0.873450i \(0.661877\pi\)
\(558\) 0 0
\(559\) 2.27208 0.0960987
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.9706 1.47383 0.736917 0.675984i \(-0.236281\pi\)
0.736917 + 0.675984i \(0.236281\pi\)
\(564\) 0 0
\(565\) 22.9369i 0.964964i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.9706 0.459910 0.229955 0.973201i \(-0.426142\pi\)
0.229955 + 0.973201i \(0.426142\pi\)
\(570\) 0 0
\(571\) 46.1200i 1.93006i −0.262133 0.965032i \(-0.584426\pi\)
0.262133 0.965032i \(-0.415574\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 95.4580i 3.98087i
\(576\) 0 0
\(577\) 38.9558 22.4912i 1.62175 0.936320i 0.635302 0.772264i \(-0.280876\pi\)
0.986451 0.164056i \(-0.0524577\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.3787 + 1.96768i −0.596528 + 0.0816330i
\(582\) 0 0
\(583\) 12.5446i 0.519545i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.98528 12.0989i −0.288313 0.499373i 0.685094 0.728455i \(-0.259761\pi\)
−0.973407 + 0.229081i \(0.926428\pi\)
\(588\) 0 0
\(589\) 2.00000 3.46410i 0.0824086 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.2279 8.21449i −0.584271 0.337329i 0.178558 0.983929i \(-0.442857\pi\)
−0.762829 + 0.646601i \(0.776190\pi\)
\(594\) 0 0
\(595\) 44.9558 + 57.9727i 1.84301 + 2.37665i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.1185i 1.10803i 0.832507 + 0.554015i \(0.186905\pi\)
−0.832507 + 0.554015i \(0.813095\pi\)
\(600\) 0 0
\(601\) 5.01472 2.89525i 0.204555 0.118100i −0.394224 0.919015i \(-0.628986\pi\)
0.598778 + 0.800915i \(0.295653\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.9706 + 16.7262i 1.17782 + 0.680015i
\(606\) 0 0
\(607\) −12.3492 21.3895i −0.501240 0.868174i −0.999999 0.00143275i \(-0.999544\pi\)
0.498759 0.866741i \(-0.333789\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.27208 + 3.04384i 0.213285 + 0.123140i
\(612\) 0 0
\(613\) 2.62132 + 4.54026i 0.105874 + 0.183379i 0.914095 0.405500i \(-0.132903\pi\)
−0.808221 + 0.588879i \(0.799569\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.74264 + 9.94655i −0.231190 + 0.400433i −0.958159 0.286238i \(-0.907595\pi\)
0.726969 + 0.686671i \(0.240929\pi\)
\(618\) 0 0
\(619\) 17.9853 31.1514i 0.722889 1.25208i −0.236947 0.971522i \(-0.576147\pi\)
0.959837 0.280559i \(-0.0905198\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 27.1066 21.0202i 1.08600 0.842158i
\(624\) 0 0
\(625\) −34.2279 59.2845i −1.36912 2.37138i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.7641i 1.38614i
\(630\) 0 0
\(631\) 5.49333i 0.218686i −0.994004 0.109343i \(-0.965125\pi\)
0.994004 0.109343i \(-0.0348747\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 42.2132 + 73.1154i 1.67518 + 2.90150i
\(636\) 0 0
\(637\) −1.34924 4.83743i −0.0534589 0.191666i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.4706 + 26.7958i −0.611050 + 1.05837i 0.380013 + 0.924981i \(0.375919\pi\)
−0.991064 + 0.133389i \(0.957414\pi\)
\(642\) 0 0
\(643\) −13.2279 + 22.9114i −0.521658 + 0.903539i 0.478024 + 0.878347i \(0.341353\pi\)
−0.999683 + 0.0251921i \(0.991980\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.86396 + 8.42463i 0.191222 + 0.331206i 0.945655 0.325170i \(-0.105422\pi\)
−0.754433 + 0.656377i \(0.772088\pi\)
\(648\) 0 0
\(649\) −9.00000 5.19615i −0.353281 0.203967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −17.3787 30.1008i −0.680080 1.17793i −0.974956 0.222398i \(-0.928612\pi\)
0.294876 0.955536i \(-0.404722\pi\)
\(654\) 0 0
\(655\) −1.86396 1.07616i −0.0728310 0.0420490i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.4706 + 7.19988i −0.485784 + 0.280468i −0.722824 0.691032i \(-0.757156\pi\)
0.237040 + 0.971500i \(0.423823\pi\)
\(660\) 0 0
\(661\) 15.5375i 0.604338i 0.953254 + 0.302169i \(0.0977106\pi\)
−0.953254 + 0.302169i \(0.902289\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.2426 + 4.18154i 0.397193 + 0.162153i
\(666\) 0 0
\(667\) −47.9558 27.6873i −1.85686 1.07206i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 10.3923i 0.231627 0.401190i
\(672\) 0 0
\(673\) 4.98528 + 8.63476i 0.192168 + 0.332846i 0.945969 0.324258i \(-0.105115\pi\)
−0.753800 + 0.657104i \(0.771781\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.6251i 0.831122i 0.909565 + 0.415561i \(0.136415\pi\)
−0.909565 + 0.415561i \(0.863585\pi\)
\(678\) 0 0
\(679\) 1.13604 + 8.30153i 0.0435972 + 0.318584i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.9853 17.8894i 1.18562 0.684517i 0.228311 0.973588i \(-0.426680\pi\)
0.957308 + 0.289071i \(0.0933463\pi\)
\(684\) 0 0
\(685\) 37.6339i 1.43792i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.19615i 0.197958i
\(690\) 0 0
\(691\) −43.9411 −1.67160 −0.835800 0.549035i \(-0.814995\pi\)
−0.835800 + 0.549035i \(0.814995\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 54.3600i 2.06199i
\(696\) 0 0
\(697\) −1.97056 −0.0746404
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.9706 −1.32082 −0.660410 0.750905i \(-0.729617\pi\)
−0.660410 + 0.750905i \(0.729617\pi\)
\(702\) 0 0
\(703\) −2.62132 4.54026i −0.0988650 0.171239i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.50000 + 1.16320i −0.0564133 + 0.0437466i
\(708\) 0 0
\(709\) 11.5147 0.432444 0.216222 0.976344i \(-0.430626\pi\)
0.216222 + 0.976344i \(0.430626\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 26.4853 15.2913i 0.991882 0.572663i
\(714\) 0 0
\(715\) 4.50000 + 2.59808i 0.168290 + 0.0971625i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.3787 35.2969i 0.759997 1.31635i −0.182855 0.983140i \(-0.558534\pi\)
0.942852 0.333213i \(-0.108133\pi\)
\(720\) 0 0
\(721\) −35.9853 + 4.92447i −1.34016 + 0.183397i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 90.4264 3.35835
\(726\) 0 0
\(727\) −8.34924 14.4613i −0.309656 0.536340i 0.668631 0.743594i \(-0.266881\pi\)
−0.978287 + 0.207254i \(0.933547\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.5000 + 18.1865i −0.388357 + 0.672653i
\(732\) 0 0
\(733\) −42.6213 + 24.6074i −1.57425 + 0.908896i −0.578616 + 0.815600i \(0.696407\pi\)
−0.995638 + 0.0932961i \(0.970260\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 35.7426 20.6360i 1.31481 0.759108i 0.331925 0.943306i \(-0.392302\pi\)
0.982889 + 0.184197i \(0.0589686\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.8640 14.9326i −0.948857 0.547823i −0.0561311 0.998423i \(-0.517876\pi\)
−0.892726 + 0.450601i \(0.851210\pi\)
\(744\) 0 0
\(745\) 38.9558 + 22.4912i 1.42723 + 0.824013i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −16.8640 + 13.0774i −0.616196 + 0.477839i
\(750\) 0 0
\(751\) −1.65076 + 0.953065i −0.0602370 + 0.0347778i −0.529816 0.848113i \(-0.677739\pi\)
0.469579 + 0.882890i \(0.344406\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −84.9411 −3.09132
\(756\) 0 0
\(757\) −43.9411 −1.59707 −0.798534 0.601950i \(-0.794391\pi\)
−0.798534 + 0.601950i \(0.794391\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.2574 + 7.07679i −0.444329 + 0.256533i −0.705432 0.708777i \(-0.749247\pi\)
0.261103 + 0.965311i \(0.415914\pi\)
\(762\) 0 0
\(763\) −45.1985 + 6.18527i −1.63630 + 0.223922i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.72792 + 2.15232i 0.134607 + 0.0777157i
\(768\) 0 0
\(769\) −34.1985 19.7445i −1.23323 0.712005i −0.265527 0.964103i \(-0.585546\pi\)
−0.967702 + 0.252098i \(0.918879\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28.3492 16.3674i 1.01965 0.588696i 0.105648 0.994404i \(-0.466308\pi\)
0.914003 + 0.405708i \(0.132975\pi\)
\(774\) 0 0
\(775\) −24.9706 + 43.2503i −0.896969 + 1.55360i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.257359 + 0.148586i −0.00922085 + 0.00532366i
\(780\) 0 0
\(781\) −5.48528 + 9.50079i −0.196279 + 0.339965i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24.7279 42.8300i −0.882577 1.52867i
\(786\) 0 0
\(787\) −6.48528 −0.231175 −0.115588 0.993297i \(-0.536875\pi\)
−0.115588 + 0.993297i \(0.536875\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.89340 + 11.4685i 0.316213 + 0.407772i
\(792\) 0 0
\(793\) −2.48528 + 4.30463i −0.0882549 + 0.152862i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.1066 + 8.72180i 0.535103 + 0.308942i 0.743092 0.669189i \(-0.233358\pi\)
−0.207989 + 0.978131i \(0.566692\pi\)
\(798\) 0 0
\(799\) −48.7279 + 28.1331i −1.72387 + 0.995277i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 15.0000 0.529339
\(804\) 0 0
\(805\) 51.8345 + 66.8431i 1.82693 + 2.35591i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.985281 + 1.70656i 0.0346406 + 0.0599994i 0.882826 0.469700i \(-0.155638\pi\)
−0.848185 + 0.529700i \(0.822305\pi\)
\(810\) 0 0
\(811\) 29.9411 1.05138 0.525688 0.850678i \(-0.323808\pi\)
0.525688 + 0.850678i \(0.323808\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.2132 −1.47866
\(816\) 0 0
\(817\) 3.16693i 0.110797i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.45584 0.0508093 0.0254047 0.999677i \(-0.491913\pi\)
0.0254047 + 0.999677i \(0.491913\pi\)
\(822\) 0 0
\(823\) 0.246186i 0.00858151i 0.999991 + 0.00429075i \(0.00136579\pi\)
−0.999991 + 0.00429075i \(0.998634\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.76874i 0.270145i 0.990836 + 0.135073i \(0.0431268\pi\)
−0.990836 + 0.135073i \(0.956873\pi\)
\(828\) 0 0
\(829\) 27.8345 16.0703i 0.966733 0.558144i 0.0684943 0.997652i \(-0.478181\pi\)
0.898239 + 0.439508i \(0.144847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 44.9558 + 11.5555i 1.55763 + 0.400374i
\(834\) 0 0
\(835\) 40.6777i 1.40771i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.37868 + 9.31615i 0.185693 + 0.321629i 0.943810 0.330489i \(-0.107214\pi\)
−0.758117 + 0.652118i \(0.773880\pi\)
\(840\) 0 0
\(841\) −11.7279 + 20.3134i −0.404411 + 0.700461i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 45.2132 + 26.1039i 1.55538 + 0.898000i
\(846\) 0 0
\(847\) 20.9706 2.86976i 0.720557 0.0986060i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0834i 1.37404i
\(852\) 0 0
\(853\) −4.86396 + 2.80821i −0.166539 + 0.0961513i −0.580953 0.813937i \(-0.697320\pi\)
0.414414 + 0.910089i \(0.363987\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.9853 + 7.49706i 0.443569 + 0.256095i 0.705110 0.709098i \(-0.250897\pi\)
−0.261541 + 0.965192i \(0.584231\pi\)
\(858\) 0 0
\(859\) 0.0147186 + 0.0254934i 0.000502193 + 0.000869824i 0.866276 0.499565i \(-0.166507\pi\)
−0.865774 + 0.500435i \(0.833173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.5919 + 18.8169i 1.10944 + 0.640536i 0.938684 0.344777i \(-0.112046\pi\)
0.170756 + 0.985313i \(0.445379\pi\)
\(864\) 0 0
\(865\) 20.4853 + 35.4815i 0.696520 + 1.20641i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.2426 + 17.7408i −0.347458 + 0.601815i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −76.6690 31.3000i −2.59189 1.05813i
\(876\) 0 0
\(877\) −23.3492 40.4421i −0.788448 1.36563i −0.926918 0.375265i \(-0.877552\pi\)
0.138470 0.990367i \(-0.455782\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.4215i 0.418492i 0.977863 + 0.209246i \(0.0671009\pi\)
−0.977863 + 0.209246i \(0.932899\pi\)
\(882\) 0 0
\(883\) 4.89898i 0.164864i −0.996597 0.0824319i \(-0.973731\pi\)
0.996597 0.0824319i \(-0.0262687\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.8345 43.0147i −0.833862 1.44429i −0.894954 0.446159i \(-0.852792\pi\)
0.0610922 0.998132i \(-0.480542\pi\)
\(888\) 0 0
\(889\) 49.4558 + 20.1903i 1.65870 + 0.677160i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.24264 + 7.34847i −0.141975 + 0.245907i
\(894\) 0 0
\(895\) −38.5919 + 66.8431i −1.28998 + 2.23432i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.4853 25.0892i −0.483111 0.836773i
\(900\) 0 0
\(901\) 41.5919 + 24.0131i 1.38563 + 0.799992i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.2426 22.9369i −0.440200 0.762449i
\(906\) 0 0
\(907\) 15.9853 + 9.22911i 0.530783 + 0.306447i 0.741335 0.671135i \(-0.234193\pi\)
−0.210553 + 0.977583i \(0.567526\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.8640 + 16.6646i −0.956306 + 0.552123i −0.895034 0.445998i \(-0.852849\pi\)
−0.0612716 + 0.998121i \(0.519516\pi\)
\(912\) 0 0
\(913\) 9.50079i 0.314430i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.34924 + 0.184640i −0.0445559 + 0.00609734i
\(918\) 0 0
\(919\) 16.8640 + 9.73641i 0.556291 + 0.321175i 0.751655 0.659556i \(-0.229256\pi\)
−0.195365 + 0.980731i \(0.562589\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.27208 3.93535i 0.0747864 0.129534i
\(924\) 0 0
\(925\) 32.7279 + 56.6864i 1.07609 + 1.86384i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.3072i 0.928728i 0.885645 + 0.464364i \(0.153717\pi\)
−0.885645 + 0.464364i \(0.846283\pi\)
\(930\) 0 0
\(931\) 6.74264 1.88064i 0.220981 0.0616354i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −41.5919 + 24.0131i −1.36020 + 0.785312i
\(936\) 0 0
\(937\) 45.5257i 1.48726i −0.668592 0.743630i \(-0.733103\pi\)
0.668592 0.743630i \(-0.266897\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.4657i 0.732360i −0.930544 0.366180i \(-0.880665\pi\)
0.930544 0.366180i \(-0.119335\pi\)
\(942\) 0 0
\(943\) −2.27208 −0.0739890
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.5092i 0.601468i 0.953708 + 0.300734i \(0.0972317\pi\)
−0.953708 + 0.300734i \(0.902768\pi\)
\(948\) 0 0
\(949\) −6.21320 −0.201689
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −44.4853 −1.44102 −0.720510 0.693445i \(-0.756092\pi\)
−0.720510 + 0.693445i \(0.756092\pi\)
\(954\) 0 0
\(955\) 23.4853 + 40.6777i 0.759966 + 1.31630i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.5919 + 18.8169i 0.471196 + 0.607630i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46.9706 27.1185i 1.51204 0.872974i
\(966\) 0 0
\(967\) 5.59188 + 3.22848i 0.179823 + 0.103821i 0.587209 0.809435i \(-0.300227\pi\)
−0.407387 + 0.913256i \(0.633560\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.7426 25.5350i 0.473114 0.819457i −0.526413 0.850229i \(-0.676463\pi\)
0.999526 + 0.0307720i \(0.00979659\pi\)
\(972\) 0 0
\(973\) 21.0772 + 27.1800i 0.675703 + 0.871351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.9706 −0.542936 −0.271468 0.962447i \(-0.587509\pi\)
−0.271468 + 0.962447i \(0.587509\pi\)
\(978\) 0 0
\(979\) 11.2279 + 19.4473i 0.358846 + 0.621539i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.37868 14.5123i 0.267238 0.462870i −0.700909 0.713250i \(-0.747222\pi\)
0.968148 + 0.250380i \(0.0805556\pi\)
\(984\) 0 0
\(985\) 9.00000 5.19615i 0.286764 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.1066 + 20.9692i −0.384968 + 0.666783i
\(990\) 0 0
\(991\) 37.8640 21.8608i 1.20279 0.694430i 0.241614 0.970372i \(-0.422323\pi\)
0.961174 + 0.275942i \(0.0889898\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.7426 11.9758i −0.657586 0.379657i
\(996\) 0 0
\(997\) 4.86396 + 2.80821i 0.154043 + 0.0889369i 0.575040 0.818125i \(-0.304986\pi\)
−0.420997 + 0.907062i \(0.638320\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cz.e.1279.1 4
3.2 odd 2 1008.2.cz.e.607.2 yes 4
4.3 odd 2 3024.2.cz.f.1279.1 4
7.3 odd 6 3024.2.bf.e.1711.2 4
9.2 odd 6 1008.2.bf.e.943.2 yes 4
9.7 even 3 3024.2.bf.f.2287.1 4
12.11 even 2 1008.2.cz.f.607.2 yes 4
21.17 even 6 1008.2.bf.f.31.1 yes 4
28.3 even 6 3024.2.bf.f.1711.2 4
36.7 odd 6 3024.2.bf.e.2287.1 4
36.11 even 6 1008.2.bf.f.943.2 yes 4
63.38 even 6 1008.2.cz.f.367.2 yes 4
63.52 odd 6 3024.2.cz.f.2719.1 4
84.59 odd 6 1008.2.bf.e.31.1 4
252.115 even 6 inner 3024.2.cz.e.2719.1 4
252.227 odd 6 1008.2.cz.e.367.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.e.31.1 4 84.59 odd 6
1008.2.bf.e.943.2 yes 4 9.2 odd 6
1008.2.bf.f.31.1 yes 4 21.17 even 6
1008.2.bf.f.943.2 yes 4 36.11 even 6
1008.2.cz.e.367.2 yes 4 252.227 odd 6
1008.2.cz.e.607.2 yes 4 3.2 odd 2
1008.2.cz.f.367.2 yes 4 63.38 even 6
1008.2.cz.f.607.2 yes 4 12.11 even 2
3024.2.bf.e.1711.2 4 7.3 odd 6
3024.2.bf.e.2287.1 4 36.7 odd 6
3024.2.bf.f.1711.2 4 28.3 even 6
3024.2.bf.f.2287.1 4 9.7 even 3
3024.2.cz.e.1279.1 4 1.1 even 1 trivial
3024.2.cz.e.2719.1 4 252.115 even 6 inner
3024.2.cz.f.1279.1 4 4.3 odd 2
3024.2.cz.f.2719.1 4 63.52 odd 6