Properties

Label 3024.2.cz.g.2719.2
Level $3024$
Weight $2$
Character 3024.2719
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1279,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1279");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cz (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2719.2
Character \(\chi\) \(=\) 3024.2719
Dual form 3024.2.cz.g.1279.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.47441 - 1.42860i) q^{5} +(2.59845 + 0.498066i) q^{7} +(1.95865 - 1.13083i) q^{11} +(-5.59072 + 3.22780i) q^{13} +(4.74820 + 2.74137i) q^{17} +(1.59123 + 2.75609i) q^{19} +(-5.17495 - 2.98776i) q^{23} +(1.58180 + 2.73976i) q^{25} +(-1.06838 + 1.85049i) q^{29} +4.03351 q^{31} +(-5.71808 - 4.94456i) q^{35} +(-5.06680 - 8.77595i) q^{37} +(-9.02256 + 5.20918i) q^{41} +(-0.0397018 - 0.0229218i) q^{43} -5.74706 q^{47} +(6.50386 + 2.58840i) q^{49} +(2.43844 - 4.22350i) q^{53} -6.46199 q^{55} -6.20774 q^{59} +6.98818i q^{61} +18.4450 q^{65} +7.88250i q^{67} +15.5442i q^{71} +(11.0585 + 6.38460i) q^{73} +(5.65267 - 1.96285i) q^{77} +12.0116i q^{79} +(-1.88456 + 3.26415i) q^{83} +(-7.83265 - 13.5666i) q^{85} +(3.95155 - 2.28143i) q^{89} +(-16.1349 + 5.60273i) q^{91} -9.09294i q^{95} +(4.62721 + 2.67152i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 3 q^{5} - 4 q^{7} - 9 q^{11} - 3 q^{13} + 3 q^{17} + 4 q^{19} - 6 q^{23} + 15 q^{25} - 18 q^{29} - 34 q^{31} - 42 q^{35} - 3 q^{37} - 36 q^{41} - 24 q^{43} - 42 q^{47} + 30 q^{49} + 12 q^{53} + 30 q^{55}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.47441 1.42860i −1.10659 0.638890i −0.168646 0.985677i \(-0.553939\pi\)
−0.937944 + 0.346787i \(0.887273\pi\)
\(6\) 0 0
\(7\) 2.59845 + 0.498066i 0.982121 + 0.188251i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.95865 1.13083i 0.590554 0.340957i −0.174762 0.984611i \(-0.555916\pi\)
0.765317 + 0.643654i \(0.222582\pi\)
\(12\) 0 0
\(13\) −5.59072 + 3.22780i −1.55059 + 0.895232i −0.552493 + 0.833517i \(0.686323\pi\)
−0.998094 + 0.0617145i \(0.980343\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.74820 + 2.74137i 1.15161 + 0.664880i 0.949278 0.314437i \(-0.101816\pi\)
0.202328 + 0.979318i \(0.435149\pi\)
\(18\) 0 0
\(19\) 1.59123 + 2.75609i 0.365054 + 0.632292i 0.988785 0.149347i \(-0.0477173\pi\)
−0.623731 + 0.781639i \(0.714384\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.17495 2.98776i −1.07905 0.622990i −0.148411 0.988926i \(-0.547416\pi\)
−0.930640 + 0.365936i \(0.880749\pi\)
\(24\) 0 0
\(25\) 1.58180 + 2.73976i 0.316360 + 0.547952i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.06838 + 1.85049i −0.198394 + 0.343628i −0.948008 0.318247i \(-0.896906\pi\)
0.749614 + 0.661875i \(0.230239\pi\)
\(30\) 0 0
\(31\) 4.03351 0.724440 0.362220 0.932093i \(-0.382019\pi\)
0.362220 + 0.932093i \(0.382019\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.71808 4.94456i −0.966533 0.835784i
\(36\) 0 0
\(37\) −5.06680 8.77595i −0.832977 1.44276i −0.895667 0.444725i \(-0.853301\pi\)
0.0626906 0.998033i \(-0.480032\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.02256 + 5.20918i −1.40909 + 0.813537i −0.995300 0.0968362i \(-0.969128\pi\)
−0.413788 + 0.910373i \(0.635794\pi\)
\(42\) 0 0
\(43\) −0.0397018 0.0229218i −0.00605446 0.00349555i 0.496970 0.867768i \(-0.334446\pi\)
−0.503024 + 0.864272i \(0.667779\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.74706 −0.838295 −0.419147 0.907918i \(-0.637671\pi\)
−0.419147 + 0.907918i \(0.637671\pi\)
\(48\) 0 0
\(49\) 6.50386 + 2.58840i 0.929123 + 0.369771i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.43844 4.22350i 0.334945 0.580142i −0.648529 0.761190i \(-0.724616\pi\)
0.983474 + 0.181048i \(0.0579488\pi\)
\(54\) 0 0
\(55\) −6.46199 −0.871335
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.20774 −0.808179 −0.404090 0.914719i \(-0.632412\pi\)
−0.404090 + 0.914719i \(0.632412\pi\)
\(60\) 0 0
\(61\) 6.98818i 0.894744i 0.894348 + 0.447372i \(0.147640\pi\)
−0.894348 + 0.447372i \(0.852360\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.4450 2.28782
\(66\) 0 0
\(67\) 7.88250i 0.963001i 0.876446 + 0.481500i \(0.159908\pi\)
−0.876446 + 0.481500i \(0.840092\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.5442i 1.84475i 0.386291 + 0.922377i \(0.373756\pi\)
−0.386291 + 0.922377i \(0.626244\pi\)
\(72\) 0 0
\(73\) 11.0585 + 6.38460i 1.29429 + 0.747261i 0.979412 0.201870i \(-0.0647018\pi\)
0.314882 + 0.949131i \(0.398035\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.65267 1.96285i 0.644181 0.223688i
\(78\) 0 0
\(79\) 12.0116i 1.35141i 0.737172 + 0.675706i \(0.236161\pi\)
−0.737172 + 0.675706i \(0.763839\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.88456 + 3.26415i −0.206857 + 0.358287i −0.950723 0.310042i \(-0.899657\pi\)
0.743866 + 0.668329i \(0.232990\pi\)
\(84\) 0 0
\(85\) −7.83265 13.5666i −0.849571 1.47150i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.95155 2.28143i 0.418864 0.241831i −0.275727 0.961236i \(-0.588919\pi\)
0.694591 + 0.719405i \(0.255585\pi\)
\(90\) 0 0
\(91\) −16.1349 + 5.60273i −1.69139 + 0.587326i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.09294i 0.932916i
\(96\) 0 0
\(97\) 4.62721 + 2.67152i 0.469822 + 0.271252i 0.716165 0.697931i \(-0.245896\pi\)
−0.246343 + 0.969183i \(0.579229\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.16618 2.98270i 0.514055 0.296790i −0.220444 0.975400i \(-0.570751\pi\)
0.734499 + 0.678610i \(0.237417\pi\)
\(102\) 0 0
\(103\) 4.43678 7.68473i 0.437169 0.757199i −0.560301 0.828289i \(-0.689315\pi\)
0.997470 + 0.0710903i \(0.0226479\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.10984 + 2.95016i −0.493986 + 0.285203i −0.726227 0.687455i \(-0.758728\pi\)
0.232240 + 0.972658i \(0.425394\pi\)
\(108\) 0 0
\(109\) −0.416247 + 0.720960i −0.0398692 + 0.0690555i −0.885271 0.465075i \(-0.846027\pi\)
0.845402 + 0.534130i \(0.179361\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.0601629 + 0.104205i 0.00565965 + 0.00980279i 0.868841 0.495091i \(-0.164865\pi\)
−0.863182 + 0.504893i \(0.831532\pi\)
\(114\) 0 0
\(115\) 8.53662 + 14.7859i 0.796044 + 1.37879i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.9726 + 9.48823i 1.00585 + 0.869784i
\(120\) 0 0
\(121\) −2.94247 + 5.09650i −0.267497 + 0.463319i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.24696i 0.469302i
\(126\) 0 0
\(127\) 5.57295i 0.494520i −0.968949 0.247260i \(-0.920470\pi\)
0.968949 0.247260i \(-0.0795301\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.0314616 + 0.0544931i −0.00274882 + 0.00476109i −0.867397 0.497618i \(-0.834208\pi\)
0.864648 + 0.502379i \(0.167542\pi\)
\(132\) 0 0
\(133\) 2.76202 + 7.95411i 0.239497 + 0.689709i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.0178475 + 0.0309127i 0.00152481 + 0.00264105i 0.866787 0.498679i \(-0.166181\pi\)
−0.865262 + 0.501320i \(0.832848\pi\)
\(138\) 0 0
\(139\) 4.34888 + 7.53249i 0.368868 + 0.638897i 0.989389 0.145292i \(-0.0464123\pi\)
−0.620521 + 0.784190i \(0.713079\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.30017 + 12.6443i −0.610471 + 1.05737i
\(144\) 0 0
\(145\) 5.28723 3.05258i 0.439080 0.253503i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.44314 + 7.69574i −0.363996 + 0.630459i −0.988614 0.150471i \(-0.951921\pi\)
0.624619 + 0.780930i \(0.285254\pi\)
\(150\) 0 0
\(151\) −13.9709 + 8.06613i −1.13694 + 0.656412i −0.945671 0.325126i \(-0.894593\pi\)
−0.191268 + 0.981538i \(0.561260\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.98055 5.76227i −0.801657 0.462837i
\(156\) 0 0
\(157\) 11.0788i 0.884187i −0.896969 0.442093i \(-0.854236\pi\)
0.896969 0.442093i \(-0.145764\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.9587 10.3410i −0.942479 0.814984i
\(162\) 0 0
\(163\) −6.35131 + 3.66693i −0.497473 + 0.287216i −0.727670 0.685928i \(-0.759397\pi\)
0.230196 + 0.973144i \(0.426063\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.6879 + 21.9760i 0.981816 + 1.70056i 0.655308 + 0.755362i \(0.272539\pi\)
0.326508 + 0.945194i \(0.394128\pi\)
\(168\) 0 0
\(169\) 14.3374 24.8332i 1.10288 1.91024i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.2227i 1.23339i 0.787202 + 0.616695i \(0.211529\pi\)
−0.787202 + 0.616695i \(0.788471\pi\)
\(174\) 0 0
\(175\) 2.74565 + 7.90696i 0.207551 + 0.597710i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.9324 10.3533i −1.34033 0.773839i −0.353474 0.935445i \(-0.615000\pi\)
−0.986855 + 0.161605i \(0.948333\pi\)
\(180\) 0 0
\(181\) 16.3983i 1.21888i 0.792833 + 0.609439i \(0.208605\pi\)
−0.792833 + 0.609439i \(0.791395\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 28.9537i 2.12872i
\(186\) 0 0
\(187\) 12.4001 0.906782
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.42747i 0.392718i −0.980532 0.196359i \(-0.937088\pi\)
0.980532 0.196359i \(-0.0629117\pi\)
\(192\) 0 0
\(193\) 5.60988 0.403808 0.201904 0.979405i \(-0.435287\pi\)
0.201904 + 0.979405i \(0.435287\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.09436 −0.647946 −0.323973 0.946066i \(-0.605019\pi\)
−0.323973 + 0.946066i \(0.605019\pi\)
\(198\) 0 0
\(199\) −0.330072 + 0.571701i −0.0233982 + 0.0405268i −0.877487 0.479600i \(-0.840782\pi\)
0.854089 + 0.520127i \(0.174115\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.69780 + 4.27628i −0.259535 + 0.300136i
\(204\) 0 0
\(205\) 29.7674 2.07904
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.23332 + 3.59881i 0.431168 + 0.248935i
\(210\) 0 0
\(211\) −18.2479 + 10.5354i −1.25624 + 0.725290i −0.972341 0.233564i \(-0.924961\pi\)
−0.283898 + 0.958854i \(0.591628\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0654923 + 0.113436i 0.00446654 + 0.00773627i
\(216\) 0 0
\(217\) 10.4809 + 2.00896i 0.711487 + 0.136377i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −35.3945 −2.38089
\(222\) 0 0
\(223\) −3.66945 + 6.35568i −0.245725 + 0.425608i −0.962335 0.271866i \(-0.912359\pi\)
0.716610 + 0.697474i \(0.245693\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.70310 + 2.94986i 0.113039 + 0.195789i 0.916994 0.398901i \(-0.130608\pi\)
−0.803955 + 0.594690i \(0.797275\pi\)
\(228\) 0 0
\(229\) 16.5722 + 9.56799i 1.09512 + 0.632271i 0.934936 0.354816i \(-0.115456\pi\)
0.160189 + 0.987086i \(0.448790\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.734443 + 1.27209i 0.0481150 + 0.0833376i 0.889080 0.457752i \(-0.151345\pi\)
−0.840965 + 0.541090i \(0.818012\pi\)
\(234\) 0 0
\(235\) 14.2206 + 8.21025i 0.927648 + 0.535578i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.40142 5.42791i 0.608127 0.351103i −0.164105 0.986443i \(-0.552474\pi\)
0.772232 + 0.635340i \(0.219140\pi\)
\(240\) 0 0
\(241\) −5.39678 + 3.11583i −0.347637 + 0.200708i −0.663644 0.748048i \(-0.730991\pi\)
0.316007 + 0.948757i \(0.397658\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.3954 15.6962i −0.791915 1.00279i
\(246\) 0 0
\(247\) −17.7923 10.2724i −1.13210 0.653615i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.2337 −1.27714 −0.638569 0.769565i \(-0.720473\pi\)
−0.638569 + 0.769565i \(0.720473\pi\)
\(252\) 0 0
\(253\) −13.5145 −0.849651
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.1732 + 13.9564i 1.50788 + 0.870577i 0.999958 + 0.00917598i \(0.00292085\pi\)
0.507926 + 0.861401i \(0.330412\pi\)
\(258\) 0 0
\(259\) −8.79481 25.3275i −0.546483 1.57377i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.17765 2.41197i 0.257605 0.148728i −0.365637 0.930758i \(-0.619149\pi\)
0.623242 + 0.782029i \(0.285815\pi\)
\(264\) 0 0
\(265\) −12.0674 + 6.96711i −0.741294 + 0.427986i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.82686 + 2.78679i 0.294299 + 0.169913i 0.639879 0.768476i \(-0.278985\pi\)
−0.345580 + 0.938389i \(0.612318\pi\)
\(270\) 0 0
\(271\) −10.8266 18.7521i −0.657666 1.13911i −0.981218 0.192901i \(-0.938210\pi\)
0.323552 0.946210i \(-0.395123\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.19638 + 3.57748i 0.373656 + 0.215730i
\(276\) 0 0
\(277\) −7.22330 12.5111i −0.434006 0.751720i 0.563208 0.826315i \(-0.309567\pi\)
−0.997214 + 0.0745949i \(0.976234\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.82235 + 17.0128i −0.585952 + 1.01490i 0.408804 + 0.912622i \(0.365946\pi\)
−0.994756 + 0.102277i \(0.967387\pi\)
\(282\) 0 0
\(283\) 30.9384 1.83910 0.919549 0.392976i \(-0.128554\pi\)
0.919549 + 0.392976i \(0.128554\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.0392 + 9.04195i −1.53704 + 0.533729i
\(288\) 0 0
\(289\) 6.53024 + 11.3107i 0.384132 + 0.665336i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.154987 0.0894817i 0.00905443 0.00522758i −0.495466 0.868627i \(-0.665003\pi\)
0.504520 + 0.863400i \(0.331669\pi\)
\(294\) 0 0
\(295\) 15.3605 + 8.86839i 0.894323 + 0.516337i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 38.5756 2.23088
\(300\) 0 0
\(301\) −0.0917464 0.0793353i −0.00528817 0.00457281i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.98331 17.2916i 0.571643 0.990115i
\(306\) 0 0
\(307\) 9.20787 0.525521 0.262760 0.964861i \(-0.415367\pi\)
0.262760 + 0.964861i \(0.415367\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −31.4074 −1.78095 −0.890476 0.455030i \(-0.849629\pi\)
−0.890476 + 0.455030i \(0.849629\pi\)
\(312\) 0 0
\(313\) 5.18230i 0.292921i 0.989217 + 0.146460i \(0.0467881\pi\)
−0.989217 + 0.146460i \(0.953212\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.3977 1.08949 0.544743 0.838603i \(-0.316627\pi\)
0.544743 + 0.838603i \(0.316627\pi\)
\(318\) 0 0
\(319\) 4.83261i 0.270574i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.4486i 0.970868i
\(324\) 0 0
\(325\) −17.6868 10.2115i −0.981088 0.566431i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −14.9334 2.86242i −0.823307 0.157810i
\(330\) 0 0
\(331\) 15.7609i 0.866300i −0.901322 0.433150i \(-0.857402\pi\)
0.901322 0.433150i \(-0.142598\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.2610 19.5045i 0.615251 1.06565i
\(336\) 0 0
\(337\) −0.00326615 0.00565714i −0.000177918 0.000308164i 0.865936 0.500154i \(-0.166723\pi\)
−0.866114 + 0.499846i \(0.833390\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.90022 4.56119i 0.427821 0.247003i
\(342\) 0 0
\(343\) 15.6107 + 9.96517i 0.842901 + 0.538069i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.21508i 0.172594i −0.996269 0.0862972i \(-0.972497\pi\)
0.996269 0.0862972i \(-0.0275035\pi\)
\(348\) 0 0
\(349\) −29.6288 17.1062i −1.58599 0.915674i −0.993958 0.109762i \(-0.964991\pi\)
−0.592035 0.805912i \(-0.701675\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.89661 3.40441i 0.313845 0.181198i −0.334801 0.942289i \(-0.608669\pi\)
0.648646 + 0.761091i \(0.275336\pi\)
\(354\) 0 0
\(355\) 22.2064 38.4627i 1.17859 2.04139i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 19.5302 11.2758i 1.03077 0.595114i 0.113563 0.993531i \(-0.463774\pi\)
0.917204 + 0.398417i \(0.130440\pi\)
\(360\) 0 0
\(361\) 4.43596 7.68331i 0.233472 0.404385i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.2421 31.5962i −0.954835 1.65382i
\(366\) 0 0
\(367\) −11.5456 19.9975i −0.602674 1.04386i −0.992414 0.122937i \(-0.960769\pi\)
0.389741 0.920925i \(-0.372565\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.43974 9.76004i 0.438169 0.506716i
\(372\) 0 0
\(373\) 6.23406 10.7977i 0.322787 0.559084i −0.658275 0.752778i \(-0.728713\pi\)
0.981062 + 0.193694i \(0.0620468\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.7941i 0.710433i
\(378\) 0 0
\(379\) 0.865461i 0.0444557i 0.999753 + 0.0222279i \(0.00707593\pi\)
−0.999753 + 0.0222279i \(0.992924\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.77345 + 9.99991i −0.295010 + 0.510971i −0.974987 0.222261i \(-0.928656\pi\)
0.679978 + 0.733233i \(0.261989\pi\)
\(384\) 0 0
\(385\) −16.7911 3.21850i −0.855756 0.164030i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.26417 3.92165i −0.114798 0.198836i 0.802901 0.596112i \(-0.203289\pi\)
−0.917699 + 0.397277i \(0.869955\pi\)
\(390\) 0 0
\(391\) −16.3811 28.3729i −0.828428 1.43488i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17.1598 29.7216i 0.863403 1.49546i
\(396\) 0 0
\(397\) −1.62853 + 0.940235i −0.0817338 + 0.0471890i −0.540310 0.841466i \(-0.681693\pi\)
0.458576 + 0.888655i \(0.348360\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.44812 + 16.3646i −0.471817 + 0.817210i −0.999480 0.0322433i \(-0.989735\pi\)
0.527664 + 0.849453i \(0.323068\pi\)
\(402\) 0 0
\(403\) −22.5502 + 13.0194i −1.12331 + 0.648541i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.8481 11.4593i −0.983836 0.568018i
\(408\) 0 0
\(409\) 30.2959i 1.49803i −0.662551 0.749017i \(-0.730526\pi\)
0.662551 0.749017i \(-0.269474\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.1305 3.09187i −0.793730 0.152141i
\(414\) 0 0
\(415\) 9.32634 5.38456i 0.457812 0.264318i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.90705 + 5.03516i 0.142019 + 0.245984i 0.928257 0.371940i \(-0.121307\pi\)
−0.786238 + 0.617924i \(0.787974\pi\)
\(420\) 0 0
\(421\) −7.49878 + 12.9883i −0.365468 + 0.633009i −0.988851 0.148907i \(-0.952424\pi\)
0.623383 + 0.781917i \(0.285758\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17.3452i 0.841367i
\(426\) 0 0
\(427\) −3.48058 + 18.1584i −0.168437 + 0.878747i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.0076 11.5514i −0.963732 0.556411i −0.0664126 0.997792i \(-0.521155\pi\)
−0.897320 + 0.441381i \(0.854489\pi\)
\(432\) 0 0
\(433\) 11.1544i 0.536045i −0.963413 0.268022i \(-0.913630\pi\)
0.963413 0.268022i \(-0.0863701\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 19.0169i 0.909699i
\(438\) 0 0
\(439\) −7.38929 −0.352672 −0.176336 0.984330i \(-0.556424\pi\)
−0.176336 + 0.984330i \(0.556424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.72740i 0.0820712i 0.999158 + 0.0410356i \(0.0130657\pi\)
−0.999158 + 0.0410356i \(0.986934\pi\)
\(444\) 0 0
\(445\) −13.0370 −0.618014
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.3078 1.76067 0.880333 0.474357i \(-0.157319\pi\)
0.880333 + 0.474357i \(0.157319\pi\)
\(450\) 0 0
\(451\) −11.7813 + 20.4059i −0.554762 + 0.960876i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 47.9283 + 9.18682i 2.24691 + 0.430685i
\(456\) 0 0
\(457\) −11.2540 −0.526441 −0.263220 0.964736i \(-0.584785\pi\)
−0.263220 + 0.964736i \(0.584785\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 31.6005 + 18.2446i 1.47178 + 0.849734i 0.999497 0.0317125i \(-0.0100961\pi\)
0.472285 + 0.881446i \(0.343429\pi\)
\(462\) 0 0
\(463\) −20.7706 + 11.9919i −0.965294 + 0.557313i −0.897798 0.440407i \(-0.854834\pi\)
−0.0674955 + 0.997720i \(0.521501\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.322176 + 0.558026i 0.0149085 + 0.0258224i 0.873383 0.487033i \(-0.161921\pi\)
−0.858475 + 0.512856i \(0.828588\pi\)
\(468\) 0 0
\(469\) −3.92601 + 20.4823i −0.181286 + 0.945783i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.103682 −0.00476732
\(474\) 0 0
\(475\) −5.03403 + 8.71919i −0.230977 + 0.400064i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.9804 31.1430i −0.821547 1.42296i −0.904530 0.426411i \(-0.859778\pi\)
0.0829823 0.996551i \(-0.473556\pi\)
\(480\) 0 0
\(481\) 56.6541 + 32.7093i 2.58321 + 1.49141i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.63308 13.2209i −0.346600 0.600329i
\(486\) 0 0
\(487\) 24.4569 + 14.1202i 1.10825 + 0.639848i 0.938376 0.345617i \(-0.112330\pi\)
0.169874 + 0.985466i \(0.445664\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.6928 + 6.75082i −0.527687 + 0.304660i −0.740074 0.672526i \(-0.765210\pi\)
0.212387 + 0.977186i \(0.431876\pi\)
\(492\) 0 0
\(493\) −10.1458 + 5.85767i −0.456943 + 0.263816i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.74203 + 40.3907i −0.347278 + 1.81177i
\(498\) 0 0
\(499\) −11.9450 6.89643i −0.534730 0.308727i 0.208210 0.978084i \(-0.433236\pi\)
−0.742941 + 0.669357i \(0.766570\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.6371 1.00934 0.504669 0.863313i \(-0.331615\pi\)
0.504669 + 0.863313i \(0.331615\pi\)
\(504\) 0 0
\(505\) −17.0443 −0.758463
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.36782 + 3.09911i 0.237925 + 0.137366i 0.614222 0.789133i \(-0.289470\pi\)
−0.376298 + 0.926499i \(0.622803\pi\)
\(510\) 0 0
\(511\) 25.5549 + 22.0979i 1.13048 + 0.977553i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.9568 + 12.6768i −0.967533 + 0.558605i
\(516\) 0 0
\(517\) −11.2565 + 6.49892i −0.495059 + 0.285822i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −33.7303 19.4742i −1.47775 0.853181i −0.478068 0.878323i \(-0.658663\pi\)
−0.999684 + 0.0251422i \(0.991996\pi\)
\(522\) 0 0
\(523\) 4.02860 + 6.97774i 0.176158 + 0.305115i 0.940562 0.339623i \(-0.110300\pi\)
−0.764403 + 0.644739i \(0.776966\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.1519 + 11.0573i 0.834269 + 0.481666i
\(528\) 0 0
\(529\) 6.35337 + 11.0044i 0.276234 + 0.478451i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 33.6284 58.2461i 1.45661 2.52292i
\(534\) 0 0
\(535\) 16.8584 0.728854
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.6658 2.28497i 0.674773 0.0984207i
\(540\) 0 0
\(541\) −7.96878 13.8023i −0.342605 0.593409i 0.642311 0.766444i \(-0.277976\pi\)
−0.984916 + 0.173035i \(0.944643\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.05993 1.18930i 0.0882377 0.0509440i
\(546\) 0 0
\(547\) 4.79363 + 2.76760i 0.204961 + 0.118334i 0.598967 0.800773i \(-0.295578\pi\)
−0.394006 + 0.919108i \(0.628911\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.80018 −0.289697
\(552\) 0 0
\(553\) −5.98258 + 31.2115i −0.254405 + 1.32725i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.2941 19.5619i 0.478546 0.828866i −0.521151 0.853464i \(-0.674497\pi\)
0.999697 + 0.0245983i \(0.00783067\pi\)
\(558\) 0 0
\(559\) 0.295949 0.0125173
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.9543 0.840975 0.420488 0.907298i \(-0.361859\pi\)
0.420488 + 0.907298i \(0.361859\pi\)
\(564\) 0 0
\(565\) 0.343795i 0.0144636i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 31.5615 1.32313 0.661563 0.749889i \(-0.269893\pi\)
0.661563 + 0.749889i \(0.269893\pi\)
\(570\) 0 0
\(571\) 9.88433i 0.413646i 0.978378 + 0.206823i \(0.0663125\pi\)
−0.978378 + 0.206823i \(0.933688\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.9041i 0.788357i
\(576\) 0 0
\(577\) 17.9384 + 10.3568i 0.746787 + 0.431157i 0.824532 0.565816i \(-0.191439\pi\)
−0.0777451 + 0.996973i \(0.524772\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.52269 + 7.54309i −0.270607 + 0.312940i
\(582\) 0 0
\(583\) 11.0298i 0.456807i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.4423 + 19.8186i −0.472272 + 0.818000i −0.999497 0.0317264i \(-0.989899\pi\)
0.527224 + 0.849726i \(0.323233\pi\)
\(588\) 0 0
\(589\) 6.41825 + 11.1167i 0.264459 + 0.458057i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.8909 + 21.2990i −1.51493 + 0.874644i −0.515081 + 0.857141i \(0.672238\pi\)
−0.999847 + 0.0175029i \(0.994428\pi\)
\(594\) 0 0
\(595\) −13.5957 39.1532i −0.557369 1.60512i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.44324i 0.0998283i 0.998754 + 0.0499141i \(0.0158948\pi\)
−0.998754 + 0.0499141i \(0.984105\pi\)
\(600\) 0 0
\(601\) −11.6323 6.71589i −0.474490 0.273947i 0.243627 0.969869i \(-0.421663\pi\)
−0.718117 + 0.695922i \(0.754996\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.5617 8.40722i 0.592019 0.341802i
\(606\) 0 0
\(607\) −11.5370 + 19.9826i −0.468271 + 0.811068i −0.999342 0.0362583i \(-0.988456\pi\)
0.531072 + 0.847327i \(0.321789\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 32.1302 18.5504i 1.29985 0.750468i
\(612\) 0 0
\(613\) −6.57373 + 11.3860i −0.265511 + 0.459878i −0.967697 0.252115i \(-0.918874\pi\)
0.702187 + 0.711993i \(0.252207\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.44699 + 5.97036i 0.138771 + 0.240358i 0.927032 0.374983i \(-0.122352\pi\)
−0.788261 + 0.615341i \(0.789018\pi\)
\(618\) 0 0
\(619\) −17.7739 30.7853i −0.714394 1.23737i −0.963193 0.268811i \(-0.913369\pi\)
0.248799 0.968555i \(-0.419964\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.4042 3.96004i 0.456900 0.158656i
\(624\) 0 0
\(625\) 15.4048 26.6819i 0.616193 1.06728i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 55.5599i 2.21532i
\(630\) 0 0
\(631\) 24.2459i 0.965213i −0.875837 0.482607i \(-0.839690\pi\)
0.875837 0.482607i \(-0.160310\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.96153 + 13.7898i −0.315944 + 0.547230i
\(636\) 0 0
\(637\) −44.7161 + 6.52217i −1.77172 + 0.258418i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.1194 27.9196i −0.636677 1.10276i −0.986157 0.165814i \(-0.946975\pi\)
0.349480 0.936944i \(-0.386358\pi\)
\(642\) 0 0
\(643\) −7.26173 12.5777i −0.286375 0.496016i 0.686567 0.727067i \(-0.259117\pi\)
−0.972942 + 0.231051i \(0.925784\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.5332 + 19.9760i −0.453416 + 0.785339i −0.998596 0.0529801i \(-0.983128\pi\)
0.545180 + 0.838319i \(0.316461\pi\)
\(648\) 0 0
\(649\) −12.1588 + 7.01987i −0.477274 + 0.275554i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.0767 24.3816i 0.550865 0.954126i −0.447348 0.894360i \(-0.647631\pi\)
0.998212 0.0597655i \(-0.0190353\pi\)
\(654\) 0 0
\(655\) 0.155698 0.0898922i 0.00608362 0.00351238i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.32112 3.07215i −0.207281 0.119674i 0.392766 0.919638i \(-0.371518\pi\)
−0.600047 + 0.799965i \(0.704852\pi\)
\(660\) 0 0
\(661\) 1.66168i 0.0646317i 0.999478 + 0.0323159i \(0.0102882\pi\)
−0.999478 + 0.0323159i \(0.989712\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.52889 23.6275i 0.175623 0.916237i
\(666\) 0 0
\(667\) 11.0576 6.38413i 0.428153 0.247194i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.90241 + 13.6874i 0.305069 + 0.528395i
\(672\) 0 0
\(673\) −5.12788 + 8.88175i −0.197665 + 0.342366i −0.947771 0.318952i \(-0.896669\pi\)
0.750106 + 0.661318i \(0.230003\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.3830i 0.860247i 0.902770 + 0.430123i \(0.141530\pi\)
−0.902770 + 0.430123i \(0.858470\pi\)
\(678\) 0 0
\(679\) 10.6930 + 9.24647i 0.410359 + 0.354847i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.3196 + 15.7730i 1.04535 + 0.603536i 0.921345 0.388745i \(-0.127091\pi\)
0.124009 + 0.992281i \(0.460425\pi\)
\(684\) 0 0
\(685\) 0.101988i 0.00389675i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 31.4832i 1.19941i
\(690\) 0 0
\(691\) 26.3023 1.00059 0.500294 0.865856i \(-0.333225\pi\)
0.500294 + 0.865856i \(0.333225\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 24.8513i 0.942663i
\(696\) 0 0
\(697\) −57.1212 −2.16362
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.62320 0.212385 0.106193 0.994346i \(-0.466134\pi\)
0.106193 + 0.994346i \(0.466134\pi\)
\(702\) 0 0
\(703\) 16.1249 27.9292i 0.608162 1.05337i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.9096 5.17728i 0.560735 0.194712i
\(708\) 0 0
\(709\) 25.1226 0.943500 0.471750 0.881732i \(-0.343622\pi\)
0.471750 + 0.881732i \(0.343622\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.8732 12.0511i −0.781707 0.451319i
\(714\) 0 0
\(715\) 36.1272 20.8580i 1.35108 0.780047i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.846263 1.46577i −0.0315603 0.0546640i 0.849814 0.527083i \(-0.176714\pi\)
−0.881374 + 0.472419i \(0.843381\pi\)
\(720\) 0 0
\(721\) 15.3562 17.7586i 0.571896 0.661363i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.75987 −0.251055
\(726\) 0 0
\(727\) 16.1636 27.9962i 0.599476 1.03832i −0.393423 0.919358i \(-0.628709\pi\)
0.992898 0.118965i \(-0.0379576\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.125674 0.217675i −0.00464824 0.00805099i
\(732\) 0 0
\(733\) −39.4670 22.7863i −1.45775 0.841631i −0.458847 0.888516i \(-0.651737\pi\)
−0.998900 + 0.0468850i \(0.985071\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.91373 + 15.4390i 0.328342 + 0.568704i
\(738\) 0 0
\(739\) −1.86030 1.07404i −0.0684321 0.0395093i 0.465394 0.885104i \(-0.345913\pi\)
−0.533826 + 0.845595i \(0.679246\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.9145 22.4673i 1.42763 0.824244i 0.430700 0.902495i \(-0.358267\pi\)
0.996934 + 0.0782508i \(0.0249335\pi\)
\(744\) 0 0
\(745\) 21.9883 12.6949i 0.805588 0.465107i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −14.7470 + 5.12081i −0.538844 + 0.187110i
\(750\) 0 0
\(751\) −23.9954 13.8537i −0.875604 0.505530i −0.00639780 0.999980i \(-0.502036\pi\)
−0.869207 + 0.494449i \(0.835370\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 46.0931 1.67750
\(756\) 0 0
\(757\) −8.18716 −0.297568 −0.148784 0.988870i \(-0.547536\pi\)
−0.148784 + 0.988870i \(0.547536\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.8605 15.5079i −0.973693 0.562162i −0.0733328 0.997308i \(-0.523364\pi\)
−0.900360 + 0.435146i \(0.856697\pi\)
\(762\) 0 0
\(763\) −1.44068 + 1.66606i −0.0521562 + 0.0603154i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 34.7058 20.0374i 1.25315 0.723508i
\(768\) 0 0
\(769\) −4.32392 + 2.49641i −0.155924 + 0.0900230i −0.575932 0.817498i \(-0.695361\pi\)
0.420008 + 0.907521i \(0.362027\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.5944 + 6.69400i 0.417020 + 0.240767i 0.693802 0.720166i \(-0.255935\pi\)
−0.276782 + 0.960933i \(0.589268\pi\)
\(774\) 0 0
\(775\) 6.38021 + 11.0508i 0.229184 + 0.396958i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.7140 16.5780i −1.02879 0.593970i
\(780\) 0 0
\(781\) 17.5777 + 30.4456i 0.628981 + 1.08943i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.8272 + 27.4136i −0.564898 + 0.978432i
\(786\) 0 0
\(787\) −24.2635 −0.864900 −0.432450 0.901658i \(-0.642351\pi\)
−0.432450 + 0.901658i \(0.642351\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.104429 + 0.300737i 0.00371307 + 0.0106930i
\(792\) 0 0
\(793\) −22.5565 39.0689i −0.801004 1.38738i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −36.4623 + 21.0515i −1.29156 + 0.745682i −0.978931 0.204193i \(-0.934543\pi\)
−0.312629 + 0.949875i \(0.601210\pi\)
\(798\) 0 0
\(799\) −27.2882 15.7548i −0.965386 0.557366i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.8795 1.01913
\(804\) 0 0
\(805\) 14.8176 + 42.6721i 0.522253 + 1.50399i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.07111 + 1.85521i −0.0376582 + 0.0652258i −0.884240 0.467032i \(-0.845323\pi\)
0.846582 + 0.532258i \(0.178656\pi\)
\(810\) 0 0
\(811\) 11.5213 0.404566 0.202283 0.979327i \(-0.435164\pi\)
0.202283 + 0.979327i \(0.435164\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.9543 0.733998
\(816\) 0 0
\(817\) 0.145896i 0.00510425i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.8542 0.658018 0.329009 0.944327i \(-0.393285\pi\)
0.329009 + 0.944327i \(0.393285\pi\)
\(822\) 0 0
\(823\) 29.3902i 1.02448i −0.858843 0.512240i \(-0.828816\pi\)
0.858843 0.512240i \(-0.171184\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.6869i 0.788900i −0.918917 0.394450i \(-0.870935\pi\)
0.918917 0.394450i \(-0.129065\pi\)
\(828\) 0 0
\(829\) −19.3396 11.1657i −0.671691 0.387801i 0.125026 0.992153i \(-0.460098\pi\)
−0.796717 + 0.604353i \(0.793432\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 23.7858 + 30.1197i 0.824130 + 1.04359i
\(834\) 0 0
\(835\) 72.5036i 2.50909i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.6526 + 42.6995i −0.851101 + 1.47415i 0.0291142 + 0.999576i \(0.490731\pi\)
−0.880215 + 0.474574i \(0.842602\pi\)
\(840\) 0 0
\(841\) 12.2171 + 21.1607i 0.421280 + 0.729678i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −70.9534 + 40.9650i −2.44087 + 1.40924i
\(846\) 0 0
\(847\) −10.1842 + 11.7775i −0.349935 + 0.404678i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 60.5534i 2.07575i
\(852\) 0 0
\(853\) −2.37362 1.37041i −0.0812712 0.0469220i 0.458814 0.888533i \(-0.348275\pi\)
−0.540085 + 0.841611i \(0.681608\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.29909 + 1.32738i −0.0785355 + 0.0453425i −0.538753 0.842463i \(-0.681105\pi\)
0.460218 + 0.887806i \(0.347771\pi\)
\(858\) 0 0
\(859\) −20.4410 + 35.4049i −0.697440 + 1.20800i 0.271912 + 0.962322i \(0.412344\pi\)
−0.969351 + 0.245679i \(0.920989\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −36.5486 + 21.1013i −1.24413 + 0.718298i −0.969932 0.243376i \(-0.921745\pi\)
−0.274196 + 0.961674i \(0.588412\pi\)
\(864\) 0 0
\(865\) 23.1758 40.1416i 0.788000 1.36486i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.5830 + 23.5265i 0.460773 + 0.798082i
\(870\) 0 0
\(871\) −25.4432 44.0689i −0.862109 1.49322i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.61333 + 13.6339i −0.0883468 + 0.460912i
\(876\) 0 0
\(877\) 27.9149 48.3501i 0.942620 1.63267i 0.182171 0.983267i \(-0.441687\pi\)
0.760448 0.649399i \(-0.224979\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 49.2533i 1.65939i −0.558219 0.829693i \(-0.688515\pi\)
0.558219 0.829693i \(-0.311485\pi\)
\(882\) 0 0
\(883\) 3.87310i 0.130340i −0.997874 0.0651701i \(-0.979241\pi\)
0.997874 0.0651701i \(-0.0207590\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.897157 1.55392i 0.0301236 0.0521756i −0.850571 0.525861i \(-0.823743\pi\)
0.880694 + 0.473685i \(0.157077\pi\)
\(888\) 0 0
\(889\) 2.77570 14.4810i 0.0930940 0.485678i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.14491 15.8394i −0.306023 0.530047i
\(894\) 0 0
\(895\) 29.5814 + 51.2364i 0.988796 + 1.71265i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.30933 + 7.46398i −0.143724 + 0.248938i
\(900\) 0 0
\(901\) 23.1564 13.3693i 0.771450 0.445397i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.4267 40.5761i 0.778728 1.34880i
\(906\) 0 0
\(907\) −13.4331 + 7.75561i −0.446039 + 0.257521i −0.706156 0.708056i \(-0.749572\pi\)
0.260117 + 0.965577i \(0.416239\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −38.1263 22.0122i −1.26318 0.729297i −0.289491 0.957181i \(-0.593486\pi\)
−0.973688 + 0.227883i \(0.926819\pi\)
\(912\) 0 0
\(913\) 8.52443i 0.282117i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.108893 + 0.125928i −0.00359595 + 0.00415850i
\(918\) 0 0
\(919\) −30.4488 + 17.5796i −1.00441 + 0.579899i −0.909551 0.415591i \(-0.863575\pi\)
−0.0948631 + 0.995490i \(0.530241\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −50.1736 86.9032i −1.65148 2.86045i
\(924\) 0 0
\(925\) 16.0293 27.7636i 0.527041 0.912862i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.6223i 0.939069i 0.882914 + 0.469534i \(0.155578\pi\)
−0.882914 + 0.469534i \(0.844422\pi\)
\(930\) 0 0
\(931\) 3.21528 + 22.0440i 0.105377 + 0.722463i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −30.6828 17.7147i −1.00344 0.579334i
\(936\) 0 0
\(937\) 2.42605i 0.0792555i −0.999215 0.0396277i \(-0.987383\pi\)
0.999215 0.0396277i \(-0.0126172\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 33.6961i 1.09846i −0.835671 0.549231i \(-0.814921\pi\)
0.835671 0.549231i \(-0.185079\pi\)
\(942\) 0 0
\(943\) 62.2550 2.02730
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 54.7789i 1.78007i −0.455888 0.890037i \(-0.650678\pi\)
0.455888 0.890037i \(-0.349322\pi\)
\(948\) 0 0
\(949\) −82.4330 −2.67589
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 34.7473 1.12558 0.562789 0.826601i \(-0.309729\pi\)
0.562789 + 0.826601i \(0.309729\pi\)
\(954\) 0 0
\(955\) −7.75368 + 13.4298i −0.250903 + 0.434577i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.0309791 + 0.0892143i 0.00100037 + 0.00288088i
\(960\) 0 0
\(961\) −14.7308 −0.475187
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.8811 8.01428i −0.446850 0.257989i
\(966\) 0 0
\(967\) −9.75555 + 5.63237i −0.313717 + 0.181125i −0.648589 0.761139i \(-0.724640\pi\)
0.334871 + 0.942264i \(0.391307\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.41975 16.3155i −0.302294 0.523589i 0.674361 0.738402i \(-0.264419\pi\)
−0.976655 + 0.214813i \(0.931086\pi\)
\(972\) 0 0
\(973\) 7.54867 + 21.7388i 0.241999 + 0.696914i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.17446 0.197538 0.0987692 0.995110i \(-0.468509\pi\)
0.0987692 + 0.995110i \(0.468509\pi\)
\(978\) 0 0
\(979\) 5.15980 8.93704i 0.164908 0.285629i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.3296 + 23.0876i 0.425150 + 0.736381i 0.996434 0.0843710i \(-0.0268881\pi\)
−0.571285 + 0.820752i \(0.693555\pi\)
\(984\) 0 0
\(985\) 22.5032 + 12.9922i 0.717010 + 0.413966i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.136970 + 0.237238i 0.00435538 + 0.00754374i
\(990\) 0 0
\(991\) 42.6887 + 24.6463i 1.35605 + 0.782917i 0.989089 0.147319i \(-0.0470644\pi\)
0.366962 + 0.930236i \(0.380398\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.63347 0.943082i 0.0517844 0.0298977i
\(996\) 0 0
\(997\) −6.78110 + 3.91507i −0.214760 + 0.123992i −0.603521 0.797347i \(-0.706236\pi\)
0.388762 + 0.921338i \(0.372903\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cz.g.2719.2 24
3.2 odd 2 1008.2.cz.h.367.6 yes 24
4.3 odd 2 3024.2.cz.h.2719.2 24
7.5 odd 6 3024.2.bf.g.2287.2 24
9.4 even 3 3024.2.bf.h.1711.11 24
9.5 odd 6 1008.2.bf.g.31.2 24
12.11 even 2 1008.2.cz.g.367.7 yes 24
21.5 even 6 1008.2.bf.h.943.11 yes 24
28.19 even 6 3024.2.bf.h.2287.2 24
36.23 even 6 1008.2.bf.h.31.11 yes 24
36.31 odd 6 3024.2.bf.g.1711.11 24
63.5 even 6 1008.2.cz.g.607.7 yes 24
63.40 odd 6 3024.2.cz.h.1279.2 24
84.47 odd 6 1008.2.bf.g.943.2 yes 24
252.103 even 6 inner 3024.2.cz.g.1279.2 24
252.131 odd 6 1008.2.cz.h.607.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.2 24 9.5 odd 6
1008.2.bf.g.943.2 yes 24 84.47 odd 6
1008.2.bf.h.31.11 yes 24 36.23 even 6
1008.2.bf.h.943.11 yes 24 21.5 even 6
1008.2.cz.g.367.7 yes 24 12.11 even 2
1008.2.cz.g.607.7 yes 24 63.5 even 6
1008.2.cz.h.367.6 yes 24 3.2 odd 2
1008.2.cz.h.607.6 yes 24 252.131 odd 6
3024.2.bf.g.1711.11 24 36.31 odd 6
3024.2.bf.g.2287.2 24 7.5 odd 6
3024.2.bf.h.1711.11 24 9.4 even 3
3024.2.bf.h.2287.2 24 28.19 even 6
3024.2.cz.g.1279.2 24 252.103 even 6 inner
3024.2.cz.g.2719.2 24 1.1 even 1 trivial
3024.2.cz.h.1279.2 24 63.40 odd 6
3024.2.cz.h.2719.2 24 4.3 odd 2