Properties

Label 3024.2.q.g
Level 30243024
Weight 22
Character orbit 3024.q
Analytic conductor 24.14724.147
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(2305,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.2305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3024=24337 3024 = 2^{4} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3024.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.146761571224.1467615712
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q5+(β5β4β3)q7+(β3+β2)q11+(2β5+3β4++2β1)q13+(2β52β4+2)q17+(3β5+2β4+3β1)q19++(2β58β4++8)q97+O(q100) q - \beta_{2} q^{5} + (\beta_{5} - \beta_{4} - \beta_{3}) q^{7} + (\beta_{3} + \beta_{2}) q^{11} + ( - 2 \beta_{5} + 3 \beta_{4} + \cdots + 2 \beta_1) q^{13} + (2 \beta_{5} - 2 \beta_{4} + 2) q^{17} + ( - 3 \beta_{5} + 2 \beta_{4} + 3 \beta_1) q^{19}+ \cdots + ( - 2 \beta_{5} - 8 \beta_{4} + \cdots + 8) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq52q7q11+8q13+4q17+3q197q23+2q25+5q29+40q3113q35+3q37+6q43+18q47+12q4915q53+26q55+28q59++28q97+O(q100) 6 q - q^{5} - 2 q^{7} - q^{11} + 8 q^{13} + 4 q^{17} + 3 q^{19} - 7 q^{23} + 2 q^{25} + 5 q^{29} + 40 q^{31} - 13 q^{35} + 3 q^{37} + 6 q^{43} + 18 q^{47} + 12 q^{49} - 15 q^{53} + 26 q^{55} + 28 q^{59}+ \cdots + 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν2ν+2 \nu^{2} - \nu + 2 Copy content Toggle raw display
β2\beta_{2}== (ν5+ν48ν3+5ν218ν+6)/3 ( -\nu^{5} + \nu^{4} - 8\nu^{3} + 5\nu^{2} - 18\nu + 6 ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν42ν3+6ν25ν+3 \nu^{4} - 2\nu^{3} + 6\nu^{2} - 5\nu + 3 Copy content Toggle raw display
β4\beta_{4}== (2ν5+5ν416ν3+19ν221ν+9)/3 ( -2\nu^{5} + 5\nu^{4} - 16\nu^{3} + 19\nu^{2} - 21\nu + 9 ) / 3 Copy content Toggle raw display
β5\beta_{5}== (2ν55ν4+19ν322ν2+30ν9)/3 ( 2\nu^{5} - 5\nu^{4} + 19\nu^{3} - 22\nu^{2} + 30\nu - 9 ) / 3 Copy content Toggle raw display
ν\nu== (2β5β4β32β2+β1+2)/3 ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β5β4β32β2+4β14)/3 ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + 4\beta _1 - 4 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (7β5+5β4+2β3+4β2+β110)/3 ( 7\beta_{5} + 5\beta_{4} + 2\beta_{3} + 4\beta_{2} + \beta _1 - 10 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (16β5+11β4+8β3+10β217β1+5)/3 ( 16\beta_{5} + 11\beta_{4} + 8\beta_{3} + 10\beta_{2} - 17\beta _1 + 5 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (14β516β4+5β35β223β1+47)/3 ( -14\beta_{5} - 16\beta_{4} + 5\beta_{3} - 5\beta_{2} - 23\beta _1 + 47 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3024Z)×\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times.

nn 757757 785785 11351135 25932593
χ(n)\chi(n) 11 β4-\beta_{4} 11 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2305.1
0.500000 1.41036i
0.500000 + 2.05195i
0.500000 + 0.224437i
0.500000 + 1.41036i
0.500000 2.05195i
0.500000 0.224437i
0 0 0 −1.59097 2.75564i 0 2.56238 + 0.658939i 0 0 0
2305.2 0 0 0 0.296790 + 0.514055i 0 −2.32383 1.26483i 0 0 0
2305.3 0 0 0 0.794182 + 1.37556i 0 −1.23855 + 2.33795i 0 0 0
2881.1 0 0 0 −1.59097 + 2.75564i 0 2.56238 0.658939i 0 0 0
2881.2 0 0 0 0.296790 0.514055i 0 −2.32383 + 1.26483i 0 0 0
2881.3 0 0 0 0.794182 1.37556i 0 −1.23855 2.33795i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2305.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.q.g 6
3.b odd 2 1 1008.2.q.g 6
4.b odd 2 1 378.2.e.d 6
7.c even 3 1 3024.2.t.h 6
9.c even 3 1 3024.2.t.h 6
9.d odd 6 1 1008.2.t.h 6
12.b even 2 1 126.2.e.c 6
21.h odd 6 1 1008.2.t.h 6
28.d even 2 1 2646.2.e.p 6
28.f even 6 1 2646.2.f.m 6
28.f even 6 1 2646.2.h.o 6
28.g odd 6 1 378.2.h.c 6
28.g odd 6 1 2646.2.f.l 6
36.f odd 6 1 378.2.h.c 6
36.f odd 6 1 1134.2.g.l 6
36.h even 6 1 126.2.h.d yes 6
36.h even 6 1 1134.2.g.m 6
63.h even 3 1 inner 3024.2.q.g 6
63.j odd 6 1 1008.2.q.g 6
84.h odd 2 1 882.2.e.o 6
84.j odd 6 1 882.2.f.o 6
84.j odd 6 1 882.2.h.p 6
84.n even 6 1 126.2.h.d yes 6
84.n even 6 1 882.2.f.n 6
252.n even 6 1 2646.2.f.m 6
252.o even 6 1 882.2.f.n 6
252.o even 6 1 1134.2.g.m 6
252.r odd 6 1 882.2.e.o 6
252.r odd 6 1 7938.2.a.bw 3
252.s odd 6 1 882.2.h.p 6
252.u odd 6 1 378.2.e.d 6
252.u odd 6 1 7938.2.a.ca 3
252.bb even 6 1 126.2.e.c 6
252.bb even 6 1 7938.2.a.bv 3
252.bi even 6 1 2646.2.h.o 6
252.bj even 6 1 2646.2.e.p 6
252.bj even 6 1 7938.2.a.bz 3
252.bl odd 6 1 1134.2.g.l 6
252.bl odd 6 1 2646.2.f.l 6
252.bn odd 6 1 882.2.f.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.c 6 12.b even 2 1
126.2.e.c 6 252.bb even 6 1
126.2.h.d yes 6 36.h even 6 1
126.2.h.d yes 6 84.n even 6 1
378.2.e.d 6 4.b odd 2 1
378.2.e.d 6 252.u odd 6 1
378.2.h.c 6 28.g odd 6 1
378.2.h.c 6 36.f odd 6 1
882.2.e.o 6 84.h odd 2 1
882.2.e.o 6 252.r odd 6 1
882.2.f.n 6 84.n even 6 1
882.2.f.n 6 252.o even 6 1
882.2.f.o 6 84.j odd 6 1
882.2.f.o 6 252.bn odd 6 1
882.2.h.p 6 84.j odd 6 1
882.2.h.p 6 252.s odd 6 1
1008.2.q.g 6 3.b odd 2 1
1008.2.q.g 6 63.j odd 6 1
1008.2.t.h 6 9.d odd 6 1
1008.2.t.h 6 21.h odd 6 1
1134.2.g.l 6 36.f odd 6 1
1134.2.g.l 6 252.bl odd 6 1
1134.2.g.m 6 36.h even 6 1
1134.2.g.m 6 252.o even 6 1
2646.2.e.p 6 28.d even 2 1
2646.2.e.p 6 252.bj even 6 1
2646.2.f.l 6 28.g odd 6 1
2646.2.f.l 6 252.bl odd 6 1
2646.2.f.m 6 28.f even 6 1
2646.2.f.m 6 252.n even 6 1
2646.2.h.o 6 28.f even 6 1
2646.2.h.o 6 252.bi even 6 1
3024.2.q.g 6 1.a even 1 1 trivial
3024.2.q.g 6 63.h even 3 1 inner
3024.2.t.h 6 7.c even 3 1
3024.2.t.h 6 9.c even 3 1
7938.2.a.bv 3 252.bb even 6 1
7938.2.a.bw 3 252.r odd 6 1
7938.2.a.bz 3 252.bj even 6 1
7938.2.a.ca 3 252.u odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3024,[χ])S_{2}^{\mathrm{new}}(3024, [\chi]):

T56+T55+7T5412T53+33T5218T5+9 T_{5}^{6} + T_{5}^{5} + 7T_{5}^{4} - 12T_{5}^{3} + 33T_{5}^{2} - 18T_{5} + 9 Copy content Toggle raw display
T116+T115+7T11412T113+33T11218T11+9 T_{11}^{6} + T_{11}^{5} + 7T_{11}^{4} - 12T_{11}^{3} + 33T_{11}^{2} - 18T_{11} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6+T5+7T4++9 T^{6} + T^{5} + 7 T^{4} + \cdots + 9 Copy content Toggle raw display
77 T6+2T5++343 T^{6} + 2 T^{5} + \cdots + 343 Copy content Toggle raw display
1111 T6+T5+7T4++9 T^{6} + T^{5} + 7 T^{4} + \cdots + 9 Copy content Toggle raw display
1313 T68T5++4761 T^{6} - 8 T^{5} + \cdots + 4761 Copy content Toggle raw display
1717 T64T5++576 T^{6} - 4 T^{5} + \cdots + 576 Copy content Toggle raw display
1919 T63T5++2401 T^{6} - 3 T^{5} + \cdots + 2401 Copy content Toggle raw display
2323 T6+7T5++9 T^{6} + 7 T^{5} + \cdots + 9 Copy content Toggle raw display
2929 T65T5++131769 T^{6} - 5 T^{5} + \cdots + 131769 Copy content Toggle raw display
3131 (T320T2+201)2 (T^{3} - 20 T^{2} + \cdots - 201)^{2} Copy content Toggle raw display
3737 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
4141 T6+33T4++81 T^{6} + 33 T^{4} + \cdots + 81 Copy content Toggle raw display
4343 T66T5++16129 T^{6} - 6 T^{5} + \cdots + 16129 Copy content Toggle raw display
4747 (T39T2++189)2 (T^{3} - 9 T^{2} + \cdots + 189)^{2} Copy content Toggle raw display
5353 T6+15T5++6561 T^{6} + 15 T^{5} + \cdots + 6561 Copy content Toggle raw display
5959 (T314T2++63)2 (T^{3} - 14 T^{2} + \cdots + 63)^{2} Copy content Toggle raw display
6161 (T3+8T25T93)2 (T^{3} + 8 T^{2} - 5 T - 93)^{2} Copy content Toggle raw display
6767 (T3T2112T+211)2 (T^{3} - T^{2} - 112 T + 211)^{2} Copy content Toggle raw display
7171 (T37T2++1593)2 (T^{3} - 7 T^{2} + \cdots + 1593)^{2} Copy content Toggle raw display
7373 T619T5++398161 T^{6} - 19 T^{5} + \cdots + 398161 Copy content Toggle raw display
7979 (T35T2++321)2 (T^{3} - 5 T^{2} + \cdots + 321)^{2} Copy content Toggle raw display
8383 T62T5++21609 T^{6} - 2 T^{5} + \cdots + 21609 Copy content Toggle raw display
8989 T69T5++81 T^{6} - 9 T^{5} + \cdots + 81 Copy content Toggle raw display
9797 T628T5++61504 T^{6} - 28 T^{5} + \cdots + 61504 Copy content Toggle raw display
show more
show less