Properties

Label 7938.2.a.ca
Level $7938$
Weight $2$
Character orbit 7938.a
Self dual yes
Analytic conductor $63.385$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_{2} q^{5} + q^{8} - \beta_{2} q^{10} + \beta_{2} q^{11} + (\beta_{2} + 2 \beta_1 - 3) q^{13} + q^{16} + (2 \beta_1 - 2) q^{17} + ( - 3 \beta_1 + 2) q^{19} - \beta_{2} q^{20}+ \cdots + (2 \beta_{2} - 2 \beta_1 - 8) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + q^{5} + 3 q^{8} + q^{10} - q^{11} - 8 q^{13} + 3 q^{16} - 4 q^{17} + 3 q^{19} + q^{20} - q^{22} - 7 q^{23} - 2 q^{25} - 8 q^{26} - 5 q^{29} - 20 q^{31} + 3 q^{32} - 4 q^{34}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69963
2.46050
0.239123
1.00000 0 1.00000 −1.58836 0 0 1.00000 0 −1.58836
1.2 1.00000 0 1.00000 −0.593579 0 0 1.00000 0 −0.593579
1.3 1.00000 0 1.00000 3.18194 0 0 1.00000 0 3.18194
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7938.2.a.ca 3
3.b odd 2 1 7938.2.a.bv 3
7.b odd 2 1 7938.2.a.bz 3
7.c even 3 2 1134.2.g.l 6
9.c even 3 2 2646.2.f.l 6
9.d odd 6 2 882.2.f.n 6
21.c even 2 1 7938.2.a.bw 3
21.h odd 6 2 1134.2.g.m 6
63.g even 3 2 378.2.h.c 6
63.h even 3 2 378.2.e.d 6
63.i even 6 2 882.2.e.o 6
63.j odd 6 2 126.2.e.c 6
63.k odd 6 2 2646.2.h.o 6
63.l odd 6 2 2646.2.f.m 6
63.n odd 6 2 126.2.h.d yes 6
63.o even 6 2 882.2.f.o 6
63.s even 6 2 882.2.h.p 6
63.t odd 6 2 2646.2.e.p 6
252.o even 6 2 1008.2.t.h 6
252.u odd 6 2 3024.2.q.g 6
252.bb even 6 2 1008.2.q.g 6
252.bl odd 6 2 3024.2.t.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.c 6 63.j odd 6 2
126.2.h.d yes 6 63.n odd 6 2
378.2.e.d 6 63.h even 3 2
378.2.h.c 6 63.g even 3 2
882.2.e.o 6 63.i even 6 2
882.2.f.n 6 9.d odd 6 2
882.2.f.o 6 63.o even 6 2
882.2.h.p 6 63.s even 6 2
1008.2.q.g 6 252.bb even 6 2
1008.2.t.h 6 252.o even 6 2
1134.2.g.l 6 7.c even 3 2
1134.2.g.m 6 21.h odd 6 2
2646.2.e.p 6 63.t odd 6 2
2646.2.f.l 6 9.c even 3 2
2646.2.f.m 6 63.l odd 6 2
2646.2.h.o 6 63.k odd 6 2
3024.2.q.g 6 252.u odd 6 2
3024.2.t.h 6 252.bl odd 6 2
7938.2.a.bv 3 3.b odd 2 1
7938.2.a.bw 3 21.c even 2 1
7938.2.a.bz 3 7.b odd 2 1
7938.2.a.ca 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7938))\):

\( T_{5}^{3} - T_{5}^{2} - 6T_{5} - 3 \) Copy content Toggle raw display
\( T_{11}^{3} + T_{11}^{2} - 6T_{11} + 3 \) Copy content Toggle raw display
\( T_{13}^{3} + 8T_{13}^{2} + T_{13} - 69 \) Copy content Toggle raw display
\( T_{17}^{3} + 4T_{17}^{2} - 12T_{17} - 24 \) Copy content Toggle raw display
\( T_{23}^{3} + 7T_{23}^{2} + 12T_{23} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 6T - 3 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + T^{2} - 6T + 3 \) Copy content Toggle raw display
$13$ \( T^{3} + 8T^{2} + T - 69 \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 24 \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots + 49 \) Copy content Toggle raw display
$23$ \( T^{3} + 7 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$29$ \( T^{3} + 5 T^{2} + \cdots - 363 \) Copy content Toggle raw display
$31$ \( T^{3} + 20 T^{2} + \cdots + 201 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 33T - 9 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots + 127 \) Copy content Toggle raw display
$47$ \( T^{3} + 9 T^{2} + \cdots - 189 \) Copy content Toggle raw display
$53$ \( T^{3} - 15 T^{2} + \cdots - 81 \) Copy content Toggle raw display
$59$ \( T^{3} + 14 T^{2} + \cdots - 63 \) Copy content Toggle raw display
$61$ \( T^{3} + 8 T^{2} + \cdots - 93 \) Copy content Toggle raw display
$67$ \( T^{3} + T^{2} + \cdots - 211 \) Copy content Toggle raw display
$71$ \( T^{3} + 7 T^{2} + \cdots - 1593 \) Copy content Toggle raw display
$73$ \( T^{3} + 19 T^{2} + \cdots - 631 \) Copy content Toggle raw display
$79$ \( T^{3} + 5 T^{2} + \cdots - 321 \) Copy content Toggle raw display
$83$ \( T^{3} - 2 T^{2} + \cdots + 147 \) Copy content Toggle raw display
$89$ \( T^{3} + 9 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$97$ \( T^{3} + 28 T^{2} + \cdots + 248 \) Copy content Toggle raw display
show more
show less