Properties

Label 3024.2.q.i.2305.5
Level $3024$
Weight $2$
Character 3024.2305
Analytic conductor $24.147$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(2305,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.2305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2305.5
Root \(-0.335166 - 0.580525i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2305
Dual form 3024.2.q.i.2881.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.712469 + 1.23403i) q^{5} +(2.36039 - 1.19522i) q^{7} +(2.46539 - 4.27018i) q^{11} +(-1.37730 + 2.38556i) q^{13} +(-0.559839 - 0.969670i) q^{17} +(2.00752 - 3.47713i) q^{19} +(-2.71830 - 4.70824i) q^{23} +(1.48478 - 2.57171i) q^{25} +(-3.40555 - 5.89858i) q^{29} -2.50584 q^{31} +(3.15664 + 2.06124i) q^{35} +(0.709787 - 1.22939i) q^{37} +(-0.124384 + 0.215440i) q^{41} +(0.498313 + 0.863104i) q^{43} -9.47579 q^{47} +(4.14291 - 5.64237i) q^{49} +(0.410229 + 0.710537i) q^{53} +7.02604 q^{55} -6.58407 q^{59} +0.0752645 q^{61} -3.92514 q^{65} +12.5877 q^{67} +0.0804951 q^{71} +(5.34551 + 9.25869i) q^{73} +(0.715488 - 13.0260i) q^{77} +1.84491 q^{79} +(-7.23583 - 12.5328i) q^{83} +(0.797736 - 1.38172i) q^{85} +(-6.76292 + 11.7137i) q^{89} +(-0.399711 + 7.27703i) q^{91} +5.72119 q^{95} +(2.70160 + 4.67930i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{5} + 4 q^{7} + 4 q^{11} - 8 q^{13} - 12 q^{17} - q^{19} + 3 q^{23} - q^{25} - 7 q^{29} - 6 q^{31} + 5 q^{35} - 5 q^{41} + 7 q^{43} - 54 q^{47} - 8 q^{49} + 21 q^{53} - 4 q^{55} - 60 q^{59}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.712469 + 1.23403i 0.318626 + 0.551876i 0.980202 0.198002i \(-0.0634454\pi\)
−0.661576 + 0.749878i \(0.730112\pi\)
\(6\) 0 0
\(7\) 2.36039 1.19522i 0.892144 0.451750i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.46539 4.27018i 0.743342 1.28751i −0.207623 0.978209i \(-0.566573\pi\)
0.950965 0.309297i \(-0.100094\pi\)
\(12\) 0 0
\(13\) −1.37730 + 2.38556i −0.381995 + 0.661635i −0.991347 0.131265i \(-0.958096\pi\)
0.609352 + 0.792900i \(0.291429\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.559839 0.969670i −0.135781 0.235180i 0.790115 0.612959i \(-0.210021\pi\)
−0.925896 + 0.377780i \(0.876688\pi\)
\(18\) 0 0
\(19\) 2.00752 3.47713i 0.460557 0.797709i −0.538431 0.842669i \(-0.680983\pi\)
0.998989 + 0.0449606i \(0.0143162\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.71830 4.70824i −0.566806 0.981736i −0.996879 0.0789424i \(-0.974846\pi\)
0.430073 0.902794i \(-0.358488\pi\)
\(24\) 0 0
\(25\) 1.48478 2.57171i 0.296955 0.514342i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.40555 5.89858i −0.632394 1.09534i −0.987061 0.160346i \(-0.948739\pi\)
0.354667 0.934993i \(-0.384594\pi\)
\(30\) 0 0
\(31\) −2.50584 −0.450061 −0.225031 0.974352i \(-0.572248\pi\)
−0.225031 + 0.974352i \(0.572248\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.15664 + 2.06124i 0.533570 + 0.348414i
\(36\) 0 0
\(37\) 0.709787 1.22939i 0.116688 0.202110i −0.801765 0.597639i \(-0.796106\pi\)
0.918453 + 0.395529i \(0.129439\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.124384 + 0.215440i −0.0194256 + 0.0336460i −0.875575 0.483083i \(-0.839517\pi\)
0.856149 + 0.516729i \(0.172850\pi\)
\(42\) 0 0
\(43\) 0.498313 + 0.863104i 0.0759921 + 0.131622i 0.901517 0.432743i \(-0.142454\pi\)
−0.825525 + 0.564365i \(0.809121\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.47579 −1.38219 −0.691093 0.722766i \(-0.742871\pi\)
−0.691093 + 0.722766i \(0.742871\pi\)
\(48\) 0 0
\(49\) 4.14291 5.64237i 0.591844 0.806053i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.410229 + 0.710537i 0.0563493 + 0.0975998i 0.892824 0.450406i \(-0.148721\pi\)
−0.836475 + 0.548005i \(0.815387\pi\)
\(54\) 0 0
\(55\) 7.02604 0.947392
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.58407 −0.857173 −0.428586 0.903501i \(-0.640988\pi\)
−0.428586 + 0.903501i \(0.640988\pi\)
\(60\) 0 0
\(61\) 0.0752645 0.00963663 0.00481831 0.999988i \(-0.498466\pi\)
0.00481831 + 0.999988i \(0.498466\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.92514 −0.486854
\(66\) 0 0
\(67\) 12.5877 1.53783 0.768916 0.639350i \(-0.220796\pi\)
0.768916 + 0.639350i \(0.220796\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.0804951 0.00955301 0.00477651 0.999989i \(-0.498480\pi\)
0.00477651 + 0.999989i \(0.498480\pi\)
\(72\) 0 0
\(73\) 5.34551 + 9.25869i 0.625644 + 1.08365i 0.988416 + 0.151769i \(0.0484971\pi\)
−0.362772 + 0.931878i \(0.618170\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.715488 13.0260i 0.0815374 1.48445i
\(78\) 0 0
\(79\) 1.84491 0.207569 0.103785 0.994600i \(-0.466905\pi\)
0.103785 + 0.994600i \(0.466905\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.23583 12.5328i −0.794236 1.37566i −0.923323 0.384023i \(-0.874538\pi\)
0.129088 0.991633i \(-0.458795\pi\)
\(84\) 0 0
\(85\) 0.797736 1.38172i 0.0865266 0.149868i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.76292 + 11.7137i −0.716868 + 1.24165i 0.245366 + 0.969430i \(0.421092\pi\)
−0.962235 + 0.272222i \(0.912242\pi\)
\(90\) 0 0
\(91\) −0.399711 + 7.27703i −0.0419011 + 0.762840i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.72119 0.586982
\(96\) 0 0
\(97\) 2.70160 + 4.67930i 0.274306 + 0.475111i 0.969960 0.243266i \(-0.0782187\pi\)
−0.695654 + 0.718377i \(0.744885\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.56770 + 4.44739i −0.255496 + 0.442531i −0.965030 0.262139i \(-0.915572\pi\)
0.709534 + 0.704671i \(0.248905\pi\)
\(102\) 0 0
\(103\) −7.10561 12.3073i −0.700137 1.21267i −0.968418 0.249332i \(-0.919789\pi\)
0.268282 0.963341i \(-0.413544\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.83015 6.63401i 0.370274 0.641334i −0.619333 0.785128i \(-0.712597\pi\)
0.989608 + 0.143794i \(0.0459303\pi\)
\(108\) 0 0
\(109\) −0.849394 1.47119i −0.0813572 0.140915i 0.822476 0.568800i \(-0.192592\pi\)
−0.903833 + 0.427885i \(0.859259\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.300351 0.520224i 0.0282547 0.0489385i −0.851552 0.524270i \(-0.824338\pi\)
0.879807 + 0.475331i \(0.157672\pi\)
\(114\) 0 0
\(115\) 3.87341 6.70895i 0.361198 0.625613i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.48041 1.61967i −0.227379 0.148475i
\(120\) 0 0
\(121\) −6.65626 11.5290i −0.605115 1.04809i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3561 1.01572
\(126\) 0 0
\(127\) −7.25977 −0.644200 −0.322100 0.946706i \(-0.604389\pi\)
−0.322100 + 0.946706i \(0.604389\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.2265 + 17.7128i 0.893492 + 1.54757i 0.835660 + 0.549248i \(0.185086\pi\)
0.0578326 + 0.998326i \(0.481581\pi\)
\(132\) 0 0
\(133\) 0.582610 10.6068i 0.0505187 0.919728i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.10581 10.5756i 0.521655 0.903532i −0.478028 0.878345i \(-0.658648\pi\)
0.999683 0.0251879i \(-0.00801840\pi\)
\(138\) 0 0
\(139\) 1.24092 2.14933i 0.105253 0.182304i −0.808588 0.588375i \(-0.799768\pi\)
0.913842 + 0.406071i \(0.133101\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.79117 + 11.7626i 0.567906 + 0.983642i
\(144\) 0 0
\(145\) 4.85269 8.40511i 0.402994 0.698006i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.27797 7.40966i −0.350465 0.607023i 0.635866 0.771799i \(-0.280643\pi\)
−0.986331 + 0.164777i \(0.947310\pi\)
\(150\) 0 0
\(151\) −8.82962 + 15.2933i −0.718544 + 1.24455i 0.243033 + 0.970018i \(0.421858\pi\)
−0.961577 + 0.274537i \(0.911476\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.78533 3.09228i −0.143401 0.248378i
\(156\) 0 0
\(157\) 6.32149 0.504510 0.252255 0.967661i \(-0.418828\pi\)
0.252255 + 0.967661i \(0.418828\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0436 7.86433i −0.949172 0.619796i
\(162\) 0 0
\(163\) 4.01134 6.94784i 0.314192 0.544197i −0.665073 0.746778i \(-0.731600\pi\)
0.979265 + 0.202581i \(0.0649331\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.06038 1.83663i 0.0820545 0.142123i −0.822078 0.569375i \(-0.807185\pi\)
0.904132 + 0.427253i \(0.140518\pi\)
\(168\) 0 0
\(169\) 2.70608 + 4.68706i 0.208160 + 0.360543i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.2881 1.39042 0.695208 0.718808i \(-0.255312\pi\)
0.695208 + 0.718808i \(0.255312\pi\)
\(174\) 0 0
\(175\) 0.430902 7.84487i 0.0325731 0.593017i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.81276 + 6.60389i 0.284979 + 0.493598i 0.972604 0.232468i \(-0.0746801\pi\)
−0.687625 + 0.726066i \(0.741347\pi\)
\(180\) 0 0
\(181\) 15.5305 1.15438 0.577188 0.816611i \(-0.304150\pi\)
0.577188 + 0.816611i \(0.304150\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.02280 0.148719
\(186\) 0 0
\(187\) −5.52088 −0.403727
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.8325 1.07324 0.536620 0.843824i \(-0.319701\pi\)
0.536620 + 0.843824i \(0.319701\pi\)
\(192\) 0 0
\(193\) 16.5677 1.19257 0.596286 0.802772i \(-0.296642\pi\)
0.596286 + 0.802772i \(0.296642\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.03740 0.287653 0.143826 0.989603i \(-0.454059\pi\)
0.143826 + 0.989603i \(0.454059\pi\)
\(198\) 0 0
\(199\) 12.6407 + 21.8943i 0.896076 + 1.55205i 0.832468 + 0.554074i \(0.186927\pi\)
0.0636081 + 0.997975i \(0.479739\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −15.0885 9.85259i −1.05901 0.691516i
\(204\) 0 0
\(205\) −0.354480 −0.0247579
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.89864 17.1449i −0.684703 1.18594i
\(210\) 0 0
\(211\) 3.76246 6.51678i 0.259019 0.448634i −0.706961 0.707253i \(-0.749934\pi\)
0.965979 + 0.258619i \(0.0832675\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.710065 + 1.22987i −0.0484261 + 0.0838764i
\(216\) 0 0
\(217\) −5.91476 + 2.99502i −0.401520 + 0.203315i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.08427 0.207471
\(222\) 0 0
\(223\) −6.49230 11.2450i −0.434757 0.753020i 0.562519 0.826784i \(-0.309832\pi\)
−0.997276 + 0.0737638i \(0.976499\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.4832 25.0857i 0.961286 1.66500i 0.242009 0.970274i \(-0.422194\pi\)
0.719277 0.694723i \(-0.244473\pi\)
\(228\) 0 0
\(229\) −7.71790 13.3678i −0.510013 0.883369i −0.999933 0.0116012i \(-0.996307\pi\)
0.489919 0.871768i \(-0.337026\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.47324 4.28378i 0.162027 0.280640i −0.773568 0.633713i \(-0.781530\pi\)
0.935596 + 0.353073i \(0.114863\pi\)
\(234\) 0 0
\(235\) −6.75121 11.6934i −0.440400 0.762795i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.51732 11.2883i 0.421571 0.730182i −0.574523 0.818489i \(-0.694812\pi\)
0.996093 + 0.0883069i \(0.0281456\pi\)
\(240\) 0 0
\(241\) −7.29123 + 12.6288i −0.469670 + 0.813492i −0.999399 0.0346754i \(-0.988960\pi\)
0.529729 + 0.848167i \(0.322294\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.91456 + 1.09247i 0.633418 + 0.0697951i
\(246\) 0 0
\(247\) 5.52993 + 9.57812i 0.351861 + 0.609441i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.0715 −0.888187 −0.444094 0.895980i \(-0.646474\pi\)
−0.444094 + 0.895980i \(0.646474\pi\)
\(252\) 0 0
\(253\) −26.8067 −1.68532
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.18108 7.24184i −0.260808 0.451733i 0.705649 0.708562i \(-0.250656\pi\)
−0.966457 + 0.256829i \(0.917322\pi\)
\(258\) 0 0
\(259\) 0.205989 3.75019i 0.0127996 0.233025i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.63533 + 2.83247i −0.100839 + 0.174658i −0.912030 0.410122i \(-0.865486\pi\)
0.811192 + 0.584780i \(0.198819\pi\)
\(264\) 0 0
\(265\) −0.584551 + 1.01247i −0.0359087 + 0.0621956i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.69349 + 13.3255i 0.469081 + 0.812471i 0.999375 0.0353420i \(-0.0112521\pi\)
−0.530295 + 0.847813i \(0.677919\pi\)
\(270\) 0 0
\(271\) −4.06308 + 7.03747i −0.246815 + 0.427496i −0.962640 0.270783i \(-0.912717\pi\)
0.715825 + 0.698279i \(0.246051\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.32110 12.6805i −0.441479 0.764664i
\(276\) 0 0
\(277\) −6.42287 + 11.1247i −0.385913 + 0.668421i −0.991895 0.127057i \(-0.959447\pi\)
0.605982 + 0.795478i \(0.292780\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.724081 + 1.25415i 0.0431951 + 0.0748161i 0.886815 0.462125i \(-0.152913\pi\)
−0.843620 + 0.536941i \(0.819580\pi\)
\(282\) 0 0
\(283\) 17.4385 1.03661 0.518306 0.855195i \(-0.326563\pi\)
0.518306 + 0.855195i \(0.326563\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.0360979 + 0.657189i −0.00213079 + 0.0387926i
\(288\) 0 0
\(289\) 7.87316 13.6367i 0.463127 0.802160i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.900048 1.55893i 0.0525814 0.0910736i −0.838537 0.544845i \(-0.816588\pi\)
0.891118 + 0.453772i \(0.149922\pi\)
\(294\) 0 0
\(295\) −4.69094 8.12495i −0.273117 0.473053i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 14.9757 0.866068
\(300\) 0 0
\(301\) 2.20781 + 1.44167i 0.127256 + 0.0830965i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0536236 + 0.0928787i 0.00307048 + 0.00531822i
\(306\) 0 0
\(307\) −1.06478 −0.0607699 −0.0303850 0.999538i \(-0.509673\pi\)
−0.0303850 + 0.999538i \(0.509673\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.9293 −0.959970 −0.479985 0.877277i \(-0.659358\pi\)
−0.479985 + 0.877277i \(0.659358\pi\)
\(312\) 0 0
\(313\) −8.27856 −0.467932 −0.233966 0.972245i \(-0.575170\pi\)
−0.233966 + 0.972245i \(0.575170\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.54741 −0.367739 −0.183870 0.982951i \(-0.558862\pi\)
−0.183870 + 0.982951i \(0.558862\pi\)
\(318\) 0 0
\(319\) −33.5840 −1.88034
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.49556 −0.250140
\(324\) 0 0
\(325\) 4.08997 + 7.08404i 0.226871 + 0.392952i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −22.3666 + 11.3256i −1.23311 + 0.624403i
\(330\) 0 0
\(331\) 26.7258 1.46899 0.734493 0.678617i \(-0.237420\pi\)
0.734493 + 0.678617i \(0.237420\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.96834 + 15.5336i 0.489993 + 0.848692i
\(336\) 0 0
\(337\) −4.76164 + 8.24740i −0.259383 + 0.449264i −0.966077 0.258255i \(-0.916853\pi\)
0.706694 + 0.707520i \(0.250186\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.17786 + 10.7004i −0.334550 + 0.579457i
\(342\) 0 0
\(343\) 3.03502 18.2699i 0.163876 0.986481i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.7031 −1.00404 −0.502018 0.864857i \(-0.667409\pi\)
−0.502018 + 0.864857i \(0.667409\pi\)
\(348\) 0 0
\(349\) −15.0542 26.0747i −0.805834 1.39574i −0.915727 0.401801i \(-0.868384\pi\)
0.109893 0.993943i \(-0.464949\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.12966 5.42074i 0.166575 0.288517i −0.770638 0.637273i \(-0.780062\pi\)
0.937214 + 0.348756i \(0.113396\pi\)
\(354\) 0 0
\(355\) 0.0573502 + 0.0993335i 0.00304383 + 0.00527208i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.09755 + 8.82921i −0.269038 + 0.465988i −0.968614 0.248571i \(-0.920039\pi\)
0.699575 + 0.714559i \(0.253372\pi\)
\(360\) 0 0
\(361\) 1.43970 + 2.49364i 0.0757739 + 0.131244i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.61701 + 13.1931i −0.398693 + 0.690556i
\(366\) 0 0
\(367\) −14.3278 + 24.8165i −0.747906 + 1.29541i 0.200918 + 0.979608i \(0.435608\pi\)
−0.948824 + 0.315804i \(0.897726\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.81755 + 1.18683i 0.0943624 + 0.0616173i
\(372\) 0 0
\(373\) 8.03670 + 13.9200i 0.416124 + 0.720749i 0.995546 0.0942796i \(-0.0300548\pi\)
−0.579421 + 0.815028i \(0.696721\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.7619 0.966286
\(378\) 0 0
\(379\) 1.01893 0.0523388 0.0261694 0.999658i \(-0.491669\pi\)
0.0261694 + 0.999658i \(0.491669\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.79327 + 10.0342i 0.296022 + 0.512725i 0.975222 0.221228i \(-0.0710065\pi\)
−0.679200 + 0.733953i \(0.737673\pi\)
\(384\) 0 0
\(385\) 16.5842 8.39766i 0.845210 0.427984i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.90675 15.4270i 0.451590 0.782178i −0.546895 0.837201i \(-0.684190\pi\)
0.998485 + 0.0550239i \(0.0175235\pi\)
\(390\) 0 0
\(391\) −3.04363 + 5.27172i −0.153923 + 0.266602i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.31444 + 2.27668i 0.0661369 + 0.114552i
\(396\) 0 0
\(397\) −6.54229 + 11.3316i −0.328348 + 0.568715i −0.982184 0.187921i \(-0.939825\pi\)
0.653836 + 0.756636i \(0.273159\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.05165 + 12.2138i 0.352143 + 0.609929i 0.986625 0.163009i \(-0.0521199\pi\)
−0.634482 + 0.772938i \(0.718787\pi\)
\(402\) 0 0
\(403\) 3.45129 5.97782i 0.171921 0.297776i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.49980 6.06183i −0.173479 0.300474i
\(408\) 0 0
\(409\) −2.64599 −0.130836 −0.0654179 0.997858i \(-0.520838\pi\)
−0.0654179 + 0.997858i \(0.520838\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.5410 + 7.86940i −0.764722 + 0.387228i
\(414\) 0 0
\(415\) 10.3106 17.8585i 0.506128 0.876639i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.7567 29.0235i 0.818619 1.41789i −0.0880816 0.996113i \(-0.528074\pi\)
0.906700 0.421776i \(-0.138593\pi\)
\(420\) 0 0
\(421\) −2.41950 4.19071i −0.117919 0.204242i 0.801024 0.598633i \(-0.204289\pi\)
−0.918943 + 0.394390i \(0.870956\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.32495 −0.161284
\(426\) 0 0
\(427\) 0.177654 0.0899575i 0.00859726 0.00435335i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.6643 + 30.5954i 0.850858 + 1.47373i 0.880435 + 0.474166i \(0.157251\pi\)
−0.0295774 + 0.999562i \(0.509416\pi\)
\(432\) 0 0
\(433\) 5.47404 0.263066 0.131533 0.991312i \(-0.458010\pi\)
0.131533 + 0.991312i \(0.458010\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.8282 −1.04419
\(438\) 0 0
\(439\) −6.39812 −0.305365 −0.152683 0.988275i \(-0.548791\pi\)
−0.152683 + 0.988275i \(0.548791\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.38682 −0.303447 −0.151723 0.988423i \(-0.548482\pi\)
−0.151723 + 0.988423i \(0.548482\pi\)
\(444\) 0 0
\(445\) −19.2735 −0.913650
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.7460 0.554327 0.277163 0.960823i \(-0.410606\pi\)
0.277163 + 0.960823i \(0.410606\pi\)
\(450\) 0 0
\(451\) 0.613311 + 1.06229i 0.0288797 + 0.0500210i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.26487 + 4.69140i −0.434344 + 0.219936i
\(456\) 0 0
\(457\) 10.5224 0.492217 0.246108 0.969242i \(-0.420848\pi\)
0.246108 + 0.969242i \(0.420848\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.54278 + 6.13627i 0.165004 + 0.285794i 0.936657 0.350249i \(-0.113903\pi\)
−0.771653 + 0.636044i \(0.780570\pi\)
\(462\) 0 0
\(463\) −16.3760 + 28.3641i −0.761059 + 1.31819i 0.181246 + 0.983438i \(0.441987\pi\)
−0.942305 + 0.334755i \(0.891346\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.96216 3.39856i 0.0907978 0.157266i −0.817049 0.576568i \(-0.804392\pi\)
0.907847 + 0.419301i \(0.137725\pi\)
\(468\) 0 0
\(469\) 29.7119 15.0450i 1.37197 0.694716i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.91414 0.225952
\(474\) 0 0
\(475\) −5.96145 10.3255i −0.273530 0.473768i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.04324 + 13.9313i −0.367505 + 0.636537i −0.989175 0.146742i \(-0.953121\pi\)
0.621670 + 0.783279i \(0.286455\pi\)
\(480\) 0 0
\(481\) 1.95518 + 3.38647i 0.0891486 + 0.154410i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.84961 + 6.66771i −0.174802 + 0.302765i
\(486\) 0 0
\(487\) 1.75172 + 3.03407i 0.0793781 + 0.137487i 0.902982 0.429679i \(-0.141373\pi\)
−0.823604 + 0.567166i \(0.808040\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.5546 + 35.6017i −0.927618 + 1.60668i −0.140321 + 0.990106i \(0.544814\pi\)
−0.787296 + 0.616575i \(0.788520\pi\)
\(492\) 0 0
\(493\) −3.81312 + 6.60452i −0.171734 + 0.297452i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.190000 0.0962092i 0.00852267 0.00431557i
\(498\) 0 0
\(499\) 5.91486 + 10.2448i 0.264785 + 0.458622i 0.967507 0.252843i \(-0.0813655\pi\)
−0.702722 + 0.711465i \(0.748032\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.8595 0.974665 0.487332 0.873217i \(-0.337970\pi\)
0.487332 + 0.873217i \(0.337970\pi\)
\(504\) 0 0
\(505\) −7.31762 −0.325630
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.44831 + 14.6329i 0.374465 + 0.648592i 0.990247 0.139324i \(-0.0444931\pi\)
−0.615782 + 0.787917i \(0.711160\pi\)
\(510\) 0 0
\(511\) 23.6836 + 15.4651i 1.04770 + 0.684135i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.1250 17.5371i 0.446163 0.772777i
\(516\) 0 0
\(517\) −23.3615 + 40.4633i −1.02744 + 1.77957i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.2466 + 29.8720i 0.755587 + 1.30872i 0.945082 + 0.326834i \(0.105982\pi\)
−0.189495 + 0.981882i \(0.560685\pi\)
\(522\) 0 0
\(523\) −0.995615 + 1.72445i −0.0435352 + 0.0754051i −0.886972 0.461823i \(-0.847195\pi\)
0.843437 + 0.537229i \(0.180529\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.40287 + 2.42983i 0.0611098 + 0.105845i
\(528\) 0 0
\(529\) −3.27836 + 5.67829i −0.142538 + 0.246882i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.342629 0.593452i −0.0148409 0.0257052i
\(534\) 0 0
\(535\) 10.9154 0.471916
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −13.8800 31.6016i −0.597856 1.36118i
\(540\) 0 0
\(541\) −15.0681 + 26.0988i −0.647830 + 1.12207i 0.335810 + 0.941930i \(0.390990\pi\)
−0.983640 + 0.180145i \(0.942343\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.21033 2.09636i 0.0518450 0.0897982i
\(546\) 0 0
\(547\) −7.68070 13.3034i −0.328403 0.568810i 0.653792 0.756674i \(-0.273177\pi\)
−0.982195 + 0.187864i \(0.939844\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −27.3469 −1.16502
\(552\) 0 0
\(553\) 4.35472 2.20508i 0.185182 0.0937694i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.6412 + 20.1631i 0.493252 + 0.854338i 0.999970 0.00777438i \(-0.00247469\pi\)
−0.506718 + 0.862112i \(0.669141\pi\)
\(558\) 0 0
\(559\) −2.74531 −0.116114
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.55885 0.192133 0.0960663 0.995375i \(-0.469374\pi\)
0.0960663 + 0.995375i \(0.469374\pi\)
\(564\) 0 0
\(565\) 0.855964 0.0360107
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.1995 −0.762963 −0.381482 0.924376i \(-0.624586\pi\)
−0.381482 + 0.924376i \(0.624586\pi\)
\(570\) 0 0
\(571\) 17.0455 0.713332 0.356666 0.934232i \(-0.383913\pi\)
0.356666 + 0.934232i \(0.383913\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.1443 −0.673264
\(576\) 0 0
\(577\) −5.70473 9.88088i −0.237491 0.411346i 0.722503 0.691368i \(-0.242992\pi\)
−0.959994 + 0.280022i \(0.909658\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32.0589 20.9340i −1.33003 0.868488i
\(582\) 0 0
\(583\) 4.04549 0.167547
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.52544 + 4.37420i 0.104236 + 0.180543i 0.913426 0.407005i \(-0.133427\pi\)
−0.809190 + 0.587548i \(0.800094\pi\)
\(588\) 0 0
\(589\) −5.03052 + 8.71312i −0.207279 + 0.359018i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.98892 17.3013i 0.410196 0.710480i −0.584715 0.811239i \(-0.698794\pi\)
0.994911 + 0.100759i \(0.0321271\pi\)
\(594\) 0 0
\(595\) 0.231513 4.21487i 0.00949113 0.172793i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.39321 0.179502 0.0897508 0.995964i \(-0.471393\pi\)
0.0897508 + 0.995964i \(0.471393\pi\)
\(600\) 0 0
\(601\) 12.1778 + 21.0926i 0.496743 + 0.860385i 0.999993 0.00375637i \(-0.00119569\pi\)
−0.503250 + 0.864141i \(0.667862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.48476 16.4281i 0.385610 0.667897i
\(606\) 0 0
\(607\) 6.56281 + 11.3671i 0.266376 + 0.461377i 0.967923 0.251246i \(-0.0808403\pi\)
−0.701547 + 0.712623i \(0.747507\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.0510 22.6051i 0.527988 0.914502i
\(612\) 0 0
\(613\) −23.2403 40.2534i −0.938667 1.62582i −0.767960 0.640497i \(-0.778728\pi\)
−0.170707 0.985322i \(-0.554605\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.1948 + 24.5862i −0.571463 + 0.989803i 0.424953 + 0.905215i \(0.360291\pi\)
−0.996416 + 0.0845873i \(0.973043\pi\)
\(618\) 0 0
\(619\) 15.9606 27.6446i 0.641511 1.11113i −0.343585 0.939122i \(-0.611641\pi\)
0.985096 0.172008i \(-0.0550254\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.96269 + 35.7322i −0.0786335 + 1.43158i
\(624\) 0 0
\(625\) 0.666993 + 1.15527i 0.0266797 + 0.0462106i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.58947 −0.0633762
\(630\) 0 0
\(631\) −38.7184 −1.54135 −0.770677 0.637226i \(-0.780082\pi\)
−0.770677 + 0.637226i \(0.780082\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.17236 8.95878i −0.205259 0.355519i
\(636\) 0 0
\(637\) 7.75417 + 17.6544i 0.307231 + 0.699492i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20.2001 + 34.9875i −0.797854 + 1.38192i 0.123157 + 0.992387i \(0.460698\pi\)
−0.921011 + 0.389537i \(0.872635\pi\)
\(642\) 0 0
\(643\) −6.27355 + 10.8661i −0.247405 + 0.428517i −0.962805 0.270198i \(-0.912911\pi\)
0.715400 + 0.698715i \(0.246244\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.2774 + 29.9253i 0.679245 + 1.17649i 0.975209 + 0.221287i \(0.0710258\pi\)
−0.295964 + 0.955199i \(0.595641\pi\)
\(648\) 0 0
\(649\) −16.2323 + 28.1151i −0.637173 + 1.10362i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.1472 19.3075i −0.436223 0.755560i 0.561172 0.827699i \(-0.310351\pi\)
−0.997395 + 0.0721392i \(0.977017\pi\)
\(654\) 0 0
\(655\) −14.5721 + 25.2396i −0.569379 + 0.986194i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.57493 + 6.19196i 0.139259 + 0.241204i 0.927217 0.374526i \(-0.122194\pi\)
−0.787957 + 0.615730i \(0.788861\pi\)
\(660\) 0 0
\(661\) 42.9060 1.66885 0.834425 0.551122i \(-0.185800\pi\)
0.834425 + 0.551122i \(0.185800\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.5043 6.83807i 0.523672 0.265169i
\(666\) 0 0
\(667\) −18.5146 + 32.0683i −0.716889 + 1.24169i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.185556 0.321392i 0.00716331 0.0124072i
\(672\) 0 0
\(673\) −18.8270 32.6094i −0.725729 1.25700i −0.958673 0.284510i \(-0.908169\pi\)
0.232944 0.972490i \(-0.425164\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.3616 1.01316 0.506580 0.862193i \(-0.330910\pi\)
0.506580 + 0.862193i \(0.330910\pi\)
\(678\) 0 0
\(679\) 11.9696 + 7.81599i 0.459352 + 0.299950i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.96588 + 3.40500i 0.0752222 + 0.130289i 0.901183 0.433439i \(-0.142700\pi\)
−0.825961 + 0.563728i \(0.809367\pi\)
\(684\) 0 0
\(685\) 17.4008 0.664850
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.26004 −0.0861006
\(690\) 0 0
\(691\) −19.9010 −0.757072 −0.378536 0.925587i \(-0.623572\pi\)
−0.378536 + 0.925587i \(0.623572\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.53645 0.134145
\(696\) 0 0
\(697\) 0.278541 0.0105505
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −43.7908 −1.65396 −0.826979 0.562234i \(-0.809942\pi\)
−0.826979 + 0.562234i \(0.809942\pi\)
\(702\) 0 0
\(703\) −2.84983 4.93604i −0.107483 0.186166i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.745180 + 13.5665i −0.0280254 + 0.510222i
\(708\) 0 0
\(709\) 44.6344 1.67628 0.838139 0.545457i \(-0.183644\pi\)
0.838139 + 0.545457i \(0.183644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.81163 + 11.7981i 0.255097 + 0.441842i
\(714\) 0 0
\(715\) −9.67699 + 16.7610i −0.361899 + 0.626827i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.5096 + 33.7917i −0.727586 + 1.26022i 0.230315 + 0.973116i \(0.426024\pi\)
−0.957901 + 0.287100i \(0.907309\pi\)
\(720\) 0 0
\(721\) −31.4819 20.5572i −1.17245 0.765592i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20.2259 −0.751171
\(726\) 0 0
\(727\) 11.2554 + 19.4949i 0.417439 + 0.723025i 0.995681 0.0928402i \(-0.0295946\pi\)
−0.578242 + 0.815865i \(0.696261\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.557951 0.966399i 0.0206366 0.0357436i
\(732\) 0 0
\(733\) 0.448519 + 0.776858i 0.0165664 + 0.0286939i 0.874190 0.485584i \(-0.161393\pi\)
−0.857623 + 0.514278i \(0.828060\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.0335 53.7517i 1.14314 1.97997i
\(738\) 0 0
\(739\) −1.79032 3.10092i −0.0658578 0.114069i 0.831216 0.555949i \(-0.187645\pi\)
−0.897074 + 0.441880i \(0.854312\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.7964 + 42.9486i −0.909691 + 1.57563i −0.0951977 + 0.995458i \(0.530348\pi\)
−0.814493 + 0.580173i \(0.802985\pi\)
\(744\) 0 0
\(745\) 6.09583 10.5583i 0.223334 0.386826i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.11156 20.2367i 0.0406155 0.739434i
\(750\) 0 0
\(751\) −21.4515 37.1551i −0.782776 1.35581i −0.930319 0.366752i \(-0.880470\pi\)
0.147543 0.989056i \(-0.452864\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −25.1633 −0.915786
\(756\) 0 0
\(757\) 13.8029 0.501677 0.250838 0.968029i \(-0.419294\pi\)
0.250838 + 0.968029i \(0.419294\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.3599 + 35.2643i 0.738044 + 1.27833i 0.953375 + 0.301789i \(0.0975839\pi\)
−0.215330 + 0.976541i \(0.569083\pi\)
\(762\) 0 0
\(763\) −3.76330 2.45738i −0.136241 0.0889633i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.06826 15.7067i 0.327436 0.567135i
\(768\) 0 0
\(769\) 5.57381 9.65413i 0.200997 0.348137i −0.747853 0.663864i \(-0.768915\pi\)
0.948850 + 0.315728i \(0.102249\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.462831 + 0.801647i 0.0166469 + 0.0288332i 0.874229 0.485514i \(-0.161368\pi\)
−0.857582 + 0.514347i \(0.828034\pi\)
\(774\) 0 0
\(775\) −3.72061 + 6.44428i −0.133648 + 0.231485i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.499408 + 0.865001i 0.0178932 + 0.0309919i
\(780\) 0 0
\(781\) 0.198452 0.343728i 0.00710116 0.0122996i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.50386 + 7.80092i 0.160750 + 0.278427i
\(786\) 0 0
\(787\) −23.0240 −0.820716 −0.410358 0.911925i \(-0.634596\pi\)
−0.410358 + 0.911925i \(0.634596\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.0871659 1.58692i 0.00309926 0.0564243i
\(792\) 0 0
\(793\) −0.103662 + 0.179548i −0.00368114 + 0.00637593i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.3925 + 19.7325i −0.403544 + 0.698960i −0.994151 0.108000i \(-0.965555\pi\)
0.590606 + 0.806960i \(0.298889\pi\)
\(798\) 0 0
\(799\) 5.30492 + 9.18839i 0.187675 + 0.325062i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 52.7150 1.86027
\(804\) 0 0
\(805\) 1.12412 20.4653i 0.0396199 0.721308i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.73753 11.6697i −0.236879 0.410286i 0.722938 0.690913i \(-0.242791\pi\)
−0.959817 + 0.280627i \(0.909458\pi\)
\(810\) 0 0
\(811\) 30.7348 1.07924 0.539622 0.841907i \(-0.318567\pi\)
0.539622 + 0.841907i \(0.318567\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.4318 0.400439
\(816\) 0 0
\(817\) 4.00150 0.139995
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.9864 0.592829 0.296414 0.955059i \(-0.404209\pi\)
0.296414 + 0.955059i \(0.404209\pi\)
\(822\) 0 0
\(823\) 18.5831 0.647768 0.323884 0.946097i \(-0.395011\pi\)
0.323884 + 0.946097i \(0.395011\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.5419 0.505670 0.252835 0.967509i \(-0.418637\pi\)
0.252835 + 0.967509i \(0.418637\pi\)
\(828\) 0 0
\(829\) 4.78717 + 8.29161i 0.166265 + 0.287980i 0.937104 0.349051i \(-0.113496\pi\)
−0.770839 + 0.637030i \(0.780163\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.79060 0.858431i −0.269928 0.0297429i
\(834\) 0 0
\(835\) 3.02195 0.104579
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.2303 + 36.7720i 0.732952 + 1.26951i 0.955616 + 0.294615i \(0.0951913\pi\)
−0.222664 + 0.974895i \(0.571475\pi\)
\(840\) 0 0
\(841\) −8.69551 + 15.0611i −0.299845 + 0.519347i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.85599 + 6.67877i −0.132650 + 0.229757i
\(846\) 0 0
\(847\) −29.4911 19.2572i −1.01332 0.661687i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.71767 −0.264558
\(852\) 0 0
\(853\) 7.14039 + 12.3675i 0.244482 + 0.423456i 0.961986 0.273099i \(-0.0880486\pi\)
−0.717504 + 0.696555i \(0.754715\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.3895 30.1195i 0.594013 1.02886i −0.399672 0.916658i \(-0.630876\pi\)
0.993685 0.112203i \(-0.0357907\pi\)
\(858\) 0 0
\(859\) −6.32429 10.9540i −0.215782 0.373745i 0.737732 0.675093i \(-0.235897\pi\)
−0.953514 + 0.301348i \(0.902563\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13.2398 22.9321i 0.450690 0.780617i −0.547739 0.836649i \(-0.684511\pi\)
0.998429 + 0.0560318i \(0.0178448\pi\)
\(864\) 0 0
\(865\) 13.0297 + 22.5681i 0.443022 + 0.767337i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.54843 7.87811i 0.154295 0.267247i
\(870\) 0 0
\(871\) −17.3371 + 30.0287i −0.587444 + 1.01748i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 26.8049 13.5730i 0.906171 0.458852i
\(876\) 0 0
\(877\) −14.2267 24.6414i −0.480402 0.832081i 0.519345 0.854565i \(-0.326176\pi\)
−0.999747 + 0.0224835i \(0.992843\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.3637 0.686071 0.343036 0.939322i \(-0.388545\pi\)
0.343036 + 0.939322i \(0.388545\pi\)
\(882\) 0 0
\(883\) −49.1950 −1.65554 −0.827772 0.561065i \(-0.810392\pi\)
−0.827772 + 0.561065i \(0.810392\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.10846 + 3.65196i 0.0707952 + 0.122621i 0.899250 0.437435i \(-0.144113\pi\)
−0.828455 + 0.560056i \(0.810780\pi\)
\(888\) 0 0
\(889\) −17.1359 + 8.67701i −0.574720 + 0.291018i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −19.0229 + 32.9486i −0.636576 + 1.10258i
\(894\) 0 0
\(895\) −5.43294 + 9.41013i −0.181603 + 0.314546i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.53374 + 14.7809i 0.284616 + 0.492970i
\(900\) 0 0
\(901\) 0.459325 0.795574i 0.0153023 0.0265044i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.0650 + 19.1652i 0.367814 + 0.637072i
\(906\) 0 0
\(907\) 23.9925 41.5563i 0.796659 1.37985i −0.125121 0.992142i \(-0.539932\pi\)
0.921780 0.387713i \(-0.126735\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.8667 22.2858i −0.426294 0.738362i 0.570247 0.821474i \(-0.306848\pi\)
−0.996540 + 0.0831113i \(0.973514\pi\)
\(912\) 0 0
\(913\) −71.3565 −2.36155
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.3092 + 29.5863i 1.49624 + 0.977024i
\(918\) 0 0
\(919\) −1.13478 + 1.96550i −0.0374330 + 0.0648359i −0.884135 0.467232i \(-0.845251\pi\)
0.846702 + 0.532068i \(0.178585\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.110866 + 0.192026i −0.00364920 + 0.00632060i
\(924\) 0 0
\(925\) −2.10775 3.65073i −0.0693024 0.120035i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.8496 −1.50428 −0.752138 0.659006i \(-0.770977\pi\)
−0.752138 + 0.659006i \(0.770977\pi\)
\(930\) 0 0
\(931\) −11.3023 25.7326i −0.370417 0.843352i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.93346 6.81294i −0.128638 0.222807i
\(936\) 0 0
\(937\) −56.2075 −1.83622 −0.918110 0.396325i \(-0.870285\pi\)
−0.918110 + 0.396325i \(0.870285\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.2803 1.15011 0.575053 0.818116i \(-0.304982\pi\)
0.575053 + 0.818116i \(0.304982\pi\)
\(942\) 0 0
\(943\) 1.35246 0.0440421
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −50.7130 −1.64795 −0.823976 0.566625i \(-0.808249\pi\)
−0.823976 + 0.566625i \(0.808249\pi\)
\(948\) 0 0
\(949\) −29.4495 −0.955972
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −25.9988 −0.842184 −0.421092 0.907018i \(-0.638353\pi\)
−0.421092 + 0.907018i \(0.638353\pi\)
\(954\) 0 0
\(955\) 10.5677 + 18.3038i 0.341962 + 0.592296i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.77199 32.2603i 0.0572204 1.04174i
\(960\) 0 0
\(961\) −24.7208 −0.797445
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.8040 + 20.4451i 0.379984 + 0.658152i
\(966\) 0 0
\(967\) 12.9810 22.4838i 0.417442 0.723031i −0.578239 0.815867i \(-0.696260\pi\)
0.995681 + 0.0928360i \(0.0295932\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.97206 + 6.87981i −0.127469 + 0.220783i −0.922696 0.385530i \(-0.874019\pi\)
0.795226 + 0.606313i \(0.207352\pi\)
\(972\) 0 0
\(973\) 0.360130 6.55643i 0.0115452 0.210189i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 52.2548 1.67178 0.835889 0.548898i \(-0.184952\pi\)
0.835889 + 0.548898i \(0.184952\pi\)
\(978\) 0 0
\(979\) 33.3464 + 57.7577i 1.06576 + 1.84594i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.4190 33.6346i 0.619369 1.07278i −0.370232 0.928939i \(-0.620722\pi\)
0.989601 0.143839i \(-0.0459448\pi\)
\(984\) 0 0
\(985\) 2.87652 + 4.98228i 0.0916535 + 0.158749i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.70914 4.69236i 0.0861455 0.149208i
\(990\) 0 0
\(991\) 15.4689 + 26.7929i 0.491385 + 0.851104i 0.999951 0.00991892i \(-0.00315734\pi\)
−0.508565 + 0.861023i \(0.669824\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −18.0122 + 31.1981i −0.571025 + 0.989045i
\(996\) 0 0
\(997\) −23.5335 + 40.7612i −0.745313 + 1.29092i 0.204735 + 0.978817i \(0.434367\pi\)
−0.950048 + 0.312103i \(0.898967\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.q.i.2305.5 10
3.2 odd 2 1008.2.q.i.625.1 10
4.3 odd 2 189.2.h.b.37.2 10
7.4 even 3 3024.2.t.i.1873.1 10
9.2 odd 6 1008.2.t.i.961.4 10
9.7 even 3 3024.2.t.i.289.1 10
12.11 even 2 63.2.h.b.58.4 yes 10
21.11 odd 6 1008.2.t.i.193.4 10
28.3 even 6 1323.2.g.f.361.4 10
28.11 odd 6 189.2.g.b.172.4 10
28.19 even 6 1323.2.f.f.442.4 10
28.23 odd 6 1323.2.f.e.442.4 10
28.27 even 2 1323.2.h.f.226.2 10
36.7 odd 6 189.2.g.b.100.4 10
36.11 even 6 63.2.g.b.16.2 yes 10
36.23 even 6 567.2.e.f.163.2 10
36.31 odd 6 567.2.e.e.163.4 10
63.11 odd 6 1008.2.q.i.529.1 10
63.25 even 3 inner 3024.2.q.i.2881.5 10
84.11 even 6 63.2.g.b.4.2 10
84.23 even 6 441.2.f.e.148.2 10
84.47 odd 6 441.2.f.f.148.2 10
84.59 odd 6 441.2.g.f.67.2 10
84.83 odd 2 441.2.h.f.373.4 10
252.11 even 6 63.2.h.b.25.4 yes 10
252.23 even 6 3969.2.a.z.1.4 5
252.47 odd 6 441.2.f.f.295.2 10
252.67 odd 6 567.2.e.e.487.4 10
252.79 odd 6 1323.2.f.e.883.4 10
252.83 odd 6 441.2.g.f.79.2 10
252.95 even 6 567.2.e.f.487.2 10
252.103 even 6 3969.2.a.bb.1.2 5
252.115 even 6 1323.2.h.f.802.2 10
252.131 odd 6 3969.2.a.ba.1.4 5
252.151 odd 6 189.2.h.b.46.2 10
252.187 even 6 1323.2.f.f.883.4 10
252.191 even 6 441.2.f.e.295.2 10
252.223 even 6 1323.2.g.f.667.4 10
252.227 odd 6 441.2.h.f.214.4 10
252.247 odd 6 3969.2.a.bc.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.2 10 84.11 even 6
63.2.g.b.16.2 yes 10 36.11 even 6
63.2.h.b.25.4 yes 10 252.11 even 6
63.2.h.b.58.4 yes 10 12.11 even 2
189.2.g.b.100.4 10 36.7 odd 6
189.2.g.b.172.4 10 28.11 odd 6
189.2.h.b.37.2 10 4.3 odd 2
189.2.h.b.46.2 10 252.151 odd 6
441.2.f.e.148.2 10 84.23 even 6
441.2.f.e.295.2 10 252.191 even 6
441.2.f.f.148.2 10 84.47 odd 6
441.2.f.f.295.2 10 252.47 odd 6
441.2.g.f.67.2 10 84.59 odd 6
441.2.g.f.79.2 10 252.83 odd 6
441.2.h.f.214.4 10 252.227 odd 6
441.2.h.f.373.4 10 84.83 odd 2
567.2.e.e.163.4 10 36.31 odd 6
567.2.e.e.487.4 10 252.67 odd 6
567.2.e.f.163.2 10 36.23 even 6
567.2.e.f.487.2 10 252.95 even 6
1008.2.q.i.529.1 10 63.11 odd 6
1008.2.q.i.625.1 10 3.2 odd 2
1008.2.t.i.193.4 10 21.11 odd 6
1008.2.t.i.961.4 10 9.2 odd 6
1323.2.f.e.442.4 10 28.23 odd 6
1323.2.f.e.883.4 10 252.79 odd 6
1323.2.f.f.442.4 10 28.19 even 6
1323.2.f.f.883.4 10 252.187 even 6
1323.2.g.f.361.4 10 28.3 even 6
1323.2.g.f.667.4 10 252.223 even 6
1323.2.h.f.226.2 10 28.27 even 2
1323.2.h.f.802.2 10 252.115 even 6
3024.2.q.i.2305.5 10 1.1 even 1 trivial
3024.2.q.i.2881.5 10 63.25 even 3 inner
3024.2.t.i.289.1 10 9.7 even 3
3024.2.t.i.1873.1 10 7.4 even 3
3969.2.a.z.1.4 5 252.23 even 6
3969.2.a.ba.1.4 5 252.131 odd 6
3969.2.a.bb.1.2 5 252.103 even 6
3969.2.a.bc.1.2 5 252.247 odd 6