Properties

Label 567.2.e.e.163.4
Level $567$
Weight $2$
Character 567.163
Analytic conductor $4.528$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.4
Root \(-0.335166 + 0.580525i\) of defining polynomial
Character \(\chi\) \(=\) 567.163
Dual form 567.2.e.e.487.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.335166 - 0.580525i) q^{2} +(0.775327 + 1.34291i) q^{4} +(0.712469 - 1.23403i) q^{5} +(0.145107 - 2.64177i) q^{7} +2.38012 q^{8} +(-0.477591 - 0.827212i) q^{10} +(-2.46539 - 4.27018i) q^{11} +2.75460 q^{13} +(-1.48498 - 0.969670i) q^{14} +(-0.752918 + 1.30409i) q^{16} +(-0.559839 - 0.969670i) q^{17} +(-2.00752 + 3.47713i) q^{19} +2.20958 q^{20} -3.30526 q^{22} +(2.71830 - 4.70824i) q^{23} +(1.48478 + 2.57171i) q^{25} +(0.923251 - 1.59912i) q^{26} +(3.66015 - 1.85337i) q^{28} +6.81109 q^{29} +(-1.25292 - 2.17012i) q^{31} +(2.88483 + 4.99666i) q^{32} -0.750557 q^{34} +(-3.15664 - 2.06124i) q^{35} +(0.709787 - 1.22939i) q^{37} +(1.34571 + 2.33083i) q^{38} +(1.69576 - 2.93714i) q^{40} +0.248768 q^{41} +0.996627 q^{43} +(3.82296 - 6.62156i) q^{44} +(-1.82217 - 3.15609i) q^{46} +(-4.73790 + 8.20628i) q^{47} +(-6.95789 - 0.766676i) q^{49} +1.99059 q^{50} +(2.13572 + 3.69917i) q^{52} +(0.410229 + 0.710537i) q^{53} -7.02604 q^{55} +(0.345371 - 6.28773i) q^{56} +(2.28285 - 3.95401i) q^{58} +(-3.29204 - 5.70197i) q^{59} +(-0.0376322 + 0.0651809i) q^{61} -1.67974 q^{62} +0.855913 q^{64} +(1.96257 - 3.39927i) q^{65} +(6.29385 + 10.9013i) q^{67} +(0.868117 - 1.50362i) q^{68} +(-2.25460 + 1.14165i) q^{70} -0.0804951 q^{71} +(5.34551 + 9.25869i) q^{73} +(-0.475793 - 0.824098i) q^{74} -6.22595 q^{76} +(-11.6386 + 5.89335i) q^{77} +(0.922457 - 1.59774i) q^{79} +(1.07286 + 1.85825i) q^{80} +(0.0833788 - 0.144416i) q^{82} -14.4717 q^{83} -1.59547 q^{85} +(0.334036 - 0.578567i) q^{86} +(-5.86792 - 10.1635i) q^{88} +(-6.76292 + 11.7137i) q^{89} +(0.399711 - 7.27703i) q^{91} +8.43030 q^{92} +(3.17597 + 5.50094i) q^{94} +(2.86059 + 4.95469i) q^{95} -5.40319 q^{97} +(-2.77712 + 3.78226i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - 4 q^{4} - 4 q^{5} + 5 q^{7} + 6 q^{8} - 7 q^{10} - 4 q^{11} + 16 q^{13} - 4 q^{14} + 2 q^{16} - 12 q^{17} + q^{19} + 10 q^{20} + 2 q^{22} - 3 q^{23} - q^{25} - 11 q^{26} - 2 q^{28} + 14 q^{29}+ \cdots - 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.335166 0.580525i 0.236998 0.410493i −0.722853 0.691002i \(-0.757170\pi\)
0.959852 + 0.280508i \(0.0905031\pi\)
\(3\) 0 0
\(4\) 0.775327 + 1.34291i 0.387664 + 0.671453i
\(5\) 0.712469 1.23403i 0.318626 0.551876i −0.661576 0.749878i \(-0.730112\pi\)
0.980202 + 0.198002i \(0.0634454\pi\)
\(6\) 0 0
\(7\) 0.145107 2.64177i 0.0548451 0.998495i
\(8\) 2.38012 0.841499
\(9\) 0 0
\(10\) −0.477591 0.827212i −0.151028 0.261587i
\(11\) −2.46539 4.27018i −0.743342 1.28751i −0.950965 0.309297i \(-0.899906\pi\)
0.207623 0.978209i \(-0.433427\pi\)
\(12\) 0 0
\(13\) 2.75460 0.763990 0.381995 0.924164i \(-0.375237\pi\)
0.381995 + 0.924164i \(0.375237\pi\)
\(14\) −1.48498 0.969670i −0.396877 0.259155i
\(15\) 0 0
\(16\) −0.752918 + 1.30409i −0.188230 + 0.326023i
\(17\) −0.559839 0.969670i −0.135781 0.235180i 0.790115 0.612959i \(-0.210021\pi\)
−0.925896 + 0.377780i \(0.876688\pi\)
\(18\) 0 0
\(19\) −2.00752 + 3.47713i −0.460557 + 0.797709i −0.998989 0.0449606i \(-0.985684\pi\)
0.538431 + 0.842669i \(0.319017\pi\)
\(20\) 2.20958 0.494078
\(21\) 0 0
\(22\) −3.30526 −0.704684
\(23\) 2.71830 4.70824i 0.566806 0.981736i −0.430073 0.902794i \(-0.641512\pi\)
0.996879 0.0789424i \(-0.0251543\pi\)
\(24\) 0 0
\(25\) 1.48478 + 2.57171i 0.296955 + 0.514342i
\(26\) 0.923251 1.59912i 0.181064 0.313613i
\(27\) 0 0
\(28\) 3.66015 1.85337i 0.691704 0.350254i
\(29\) 6.81109 1.26479 0.632394 0.774647i \(-0.282072\pi\)
0.632394 + 0.774647i \(0.282072\pi\)
\(30\) 0 0
\(31\) −1.25292 2.17012i −0.225031 0.389765i 0.731298 0.682058i \(-0.238915\pi\)
−0.956329 + 0.292294i \(0.905582\pi\)
\(32\) 2.88483 + 4.99666i 0.509970 + 0.883294i
\(33\) 0 0
\(34\) −0.750557 −0.128719
\(35\) −3.15664 2.06124i −0.533570 0.348414i
\(36\) 0 0
\(37\) 0.709787 1.22939i 0.116688 0.202110i −0.801765 0.597639i \(-0.796106\pi\)
0.918453 + 0.395529i \(0.129439\pi\)
\(38\) 1.34571 + 2.33083i 0.218303 + 0.378111i
\(39\) 0 0
\(40\) 1.69576 2.93714i 0.268123 0.464403i
\(41\) 0.248768 0.0388511 0.0194256 0.999811i \(-0.493816\pi\)
0.0194256 + 0.999811i \(0.493816\pi\)
\(42\) 0 0
\(43\) 0.996627 0.151984 0.0759921 0.997108i \(-0.475788\pi\)
0.0759921 + 0.997108i \(0.475788\pi\)
\(44\) 3.82296 6.62156i 0.576333 0.998238i
\(45\) 0 0
\(46\) −1.82217 3.15609i −0.268664 0.465340i
\(47\) −4.73790 + 8.20628i −0.691093 + 1.19701i 0.280387 + 0.959887i \(0.409537\pi\)
−0.971480 + 0.237122i \(0.923796\pi\)
\(48\) 0 0
\(49\) −6.95789 0.766676i −0.993984 0.109525i
\(50\) 1.99059 0.281512
\(51\) 0 0
\(52\) 2.13572 + 3.69917i 0.296171 + 0.512983i
\(53\) 0.410229 + 0.710537i 0.0563493 + 0.0975998i 0.892824 0.450406i \(-0.148721\pi\)
−0.836475 + 0.548005i \(0.815387\pi\)
\(54\) 0 0
\(55\) −7.02604 −0.947392
\(56\) 0.345371 6.28773i 0.0461521 0.840233i
\(57\) 0 0
\(58\) 2.28285 3.95401i 0.299753 0.519187i
\(59\) −3.29204 5.70197i −0.428586 0.742334i 0.568161 0.822917i \(-0.307655\pi\)
−0.996748 + 0.0805836i \(0.974322\pi\)
\(60\) 0 0
\(61\) −0.0376322 + 0.0651809i −0.00481831 + 0.00834556i −0.868425 0.495821i \(-0.834867\pi\)
0.863606 + 0.504167i \(0.168200\pi\)
\(62\) −1.67974 −0.213328
\(63\) 0 0
\(64\) 0.855913 0.106989
\(65\) 1.96257 3.39927i 0.243427 0.421628i
\(66\) 0 0
\(67\) 6.29385 + 10.9013i 0.768916 + 1.33180i 0.938151 + 0.346226i \(0.112537\pi\)
−0.169235 + 0.985576i \(0.554130\pi\)
\(68\) 0.868117 1.50362i 0.105275 0.182341i
\(69\) 0 0
\(70\) −2.25460 + 1.14165i −0.269477 + 0.136453i
\(71\) −0.0804951 −0.00955301 −0.00477651 0.999989i \(-0.501520\pi\)
−0.00477651 + 0.999989i \(0.501520\pi\)
\(72\) 0 0
\(73\) 5.34551 + 9.25869i 0.625644 + 1.08365i 0.988416 + 0.151769i \(0.0484971\pi\)
−0.362772 + 0.931878i \(0.618170\pi\)
\(74\) −0.475793 0.824098i −0.0553098 0.0957995i
\(75\) 0 0
\(76\) −6.22595 −0.714165
\(77\) −11.6386 + 5.89335i −1.32634 + 0.671610i
\(78\) 0 0
\(79\) 0.922457 1.59774i 0.103785 0.179760i −0.809456 0.587180i \(-0.800238\pi\)
0.913241 + 0.407420i \(0.133571\pi\)
\(80\) 1.07286 + 1.85825i 0.119950 + 0.207759i
\(81\) 0 0
\(82\) 0.0833788 0.144416i 0.00920765 0.0159481i
\(83\) −14.4717 −1.58847 −0.794236 0.607610i \(-0.792128\pi\)
−0.794236 + 0.607610i \(0.792128\pi\)
\(84\) 0 0
\(85\) −1.59547 −0.173053
\(86\) 0.334036 0.578567i 0.0360200 0.0623885i
\(87\) 0 0
\(88\) −5.86792 10.1635i −0.625522 1.08344i
\(89\) −6.76292 + 11.7137i −0.716868 + 1.24165i 0.245366 + 0.969430i \(0.421092\pi\)
−0.962235 + 0.272222i \(0.912242\pi\)
\(90\) 0 0
\(91\) 0.399711 7.27703i 0.0419011 0.762840i
\(92\) 8.43030 0.878920
\(93\) 0 0
\(94\) 3.17597 + 5.50094i 0.327576 + 0.567378i
\(95\) 2.86059 + 4.95469i 0.293491 + 0.508341i
\(96\) 0 0
\(97\) −5.40319 −0.548611 −0.274306 0.961643i \(-0.588448\pi\)
−0.274306 + 0.961643i \(0.588448\pi\)
\(98\) −2.77712 + 3.78226i −0.280532 + 0.382066i
\(99\) 0 0
\(100\) −2.30238 + 3.98783i −0.230238 + 0.398783i
\(101\) −2.56770 4.44739i −0.255496 0.442531i 0.709534 0.704671i \(-0.248905\pi\)
−0.965030 + 0.262139i \(0.915572\pi\)
\(102\) 0 0
\(103\) 7.10561 12.3073i 0.700137 1.21267i −0.268282 0.963341i \(-0.586456\pi\)
0.968418 0.249332i \(-0.0802109\pi\)
\(104\) 6.55629 0.642897
\(105\) 0 0
\(106\) 0.549980 0.0534188
\(107\) −3.83015 + 6.63401i −0.370274 + 0.641334i −0.989608 0.143794i \(-0.954070\pi\)
0.619333 + 0.785128i \(0.287403\pi\)
\(108\) 0 0
\(109\) −0.849394 1.47119i −0.0813572 0.140915i 0.822476 0.568800i \(-0.192592\pi\)
−0.903833 + 0.427885i \(0.859259\pi\)
\(110\) −2.35489 + 4.07880i −0.224530 + 0.388898i
\(111\) 0 0
\(112\) 3.33586 + 2.17827i 0.315209 + 0.205827i
\(113\) −0.600703 −0.0565093 −0.0282547 0.999601i \(-0.508995\pi\)
−0.0282547 + 0.999601i \(0.508995\pi\)
\(114\) 0 0
\(115\) −3.87341 6.70895i −0.361198 0.625613i
\(116\) 5.28083 + 9.14666i 0.490312 + 0.849246i
\(117\) 0 0
\(118\) −4.41352 −0.406297
\(119\) −2.64288 + 1.33826i −0.242273 + 0.122678i
\(120\) 0 0
\(121\) −6.65626 + 11.5290i −0.605115 + 1.04809i
\(122\) 0.0252261 + 0.0436929i 0.00228386 + 0.00395577i
\(123\) 0 0
\(124\) 1.94284 3.36510i 0.174472 0.302195i
\(125\) 11.3561 1.01572
\(126\) 0 0
\(127\) 7.25977 0.644200 0.322100 0.946706i \(-0.395611\pi\)
0.322100 + 0.946706i \(0.395611\pi\)
\(128\) −5.48278 + 9.49645i −0.484614 + 0.839375i
\(129\) 0 0
\(130\) −1.31557 2.27864i −0.115384 0.199850i
\(131\) −10.2265 + 17.7128i −0.893492 + 1.54757i −0.0578326 + 0.998326i \(0.518419\pi\)
−0.835660 + 0.549248i \(0.814914\pi\)
\(132\) 0 0
\(133\) 8.89447 + 5.80797i 0.771249 + 0.503615i
\(134\) 8.43794 0.728927
\(135\) 0 0
\(136\) −1.33248 2.30793i −0.114260 0.197903i
\(137\) 6.10581 + 10.5756i 0.521655 + 0.903532i 0.999683 + 0.0251879i \(0.00801840\pi\)
−0.478028 + 0.878345i \(0.658648\pi\)
\(138\) 0 0
\(139\) 2.48183 0.210506 0.105253 0.994445i \(-0.466435\pi\)
0.105253 + 0.994445i \(0.466435\pi\)
\(140\) 0.320625 5.83721i 0.0270978 0.493335i
\(141\) 0 0
\(142\) −0.0269793 + 0.0467294i −0.00226405 + 0.00392145i
\(143\) −6.79117 11.7626i −0.567906 0.983642i
\(144\) 0 0
\(145\) 4.85269 8.40511i 0.402994 0.698006i
\(146\) 7.16654 0.593107
\(147\) 0 0
\(148\) 2.20127 0.180943
\(149\) −4.27797 + 7.40966i −0.350465 + 0.607023i −0.986331 0.164777i \(-0.947310\pi\)
0.635866 + 0.771799i \(0.280643\pi\)
\(150\) 0 0
\(151\) 8.82962 + 15.2933i 0.718544 + 1.24455i 0.961577 + 0.274537i \(0.0885244\pi\)
−0.243033 + 0.970018i \(0.578142\pi\)
\(152\) −4.77814 + 8.27599i −0.387559 + 0.671271i
\(153\) 0 0
\(154\) −0.479615 + 8.73173i −0.0386485 + 0.703623i
\(155\) −3.57066 −0.286802
\(156\) 0 0
\(157\) −3.16074 5.47457i −0.252255 0.436918i 0.711891 0.702289i \(-0.247839\pi\)
−0.964146 + 0.265371i \(0.914505\pi\)
\(158\) −0.618353 1.07102i −0.0491936 0.0852057i
\(159\) 0 0
\(160\) 8.22139 0.649958
\(161\) −12.0436 7.86433i −0.949172 0.619796i
\(162\) 0 0
\(163\) −4.01134 + 6.94784i −0.314192 + 0.544197i −0.979265 0.202581i \(-0.935067\pi\)
0.665073 + 0.746778i \(0.268400\pi\)
\(164\) 0.192877 + 0.334073i 0.0150612 + 0.0260867i
\(165\) 0 0
\(166\) −4.85041 + 8.40116i −0.376465 + 0.652057i
\(167\) 2.12076 0.164109 0.0820545 0.996628i \(-0.473852\pi\)
0.0820545 + 0.996628i \(0.473852\pi\)
\(168\) 0 0
\(169\) −5.41215 −0.416319
\(170\) −0.534749 + 0.926212i −0.0410133 + 0.0710372i
\(171\) 0 0
\(172\) 0.772712 + 1.33838i 0.0589187 + 0.102050i
\(173\) −9.14404 + 15.8379i −0.695208 + 1.20414i 0.274902 + 0.961472i \(0.411354\pi\)
−0.970110 + 0.242664i \(0.921979\pi\)
\(174\) 0 0
\(175\) 7.00931 3.54927i 0.529854 0.268299i
\(176\) 7.42494 0.559676
\(177\) 0 0
\(178\) 4.53341 + 7.85209i 0.339793 + 0.588539i
\(179\) −3.81276 6.60389i −0.284979 0.493598i 0.687625 0.726066i \(-0.258653\pi\)
−0.972604 + 0.232468i \(0.925320\pi\)
\(180\) 0 0
\(181\) 15.5305 1.15438 0.577188 0.816611i \(-0.304150\pi\)
0.577188 + 0.816611i \(0.304150\pi\)
\(182\) −4.09053 2.67106i −0.303210 0.197992i
\(183\) 0 0
\(184\) 6.46989 11.2062i 0.476967 0.826130i
\(185\) −1.01140 1.75180i −0.0743597 0.128795i
\(186\) 0 0
\(187\) −2.76044 + 4.78122i −0.201863 + 0.349638i
\(188\) −14.6937 −1.07165
\(189\) 0 0
\(190\) 3.83510 0.278227
\(191\) 7.41624 12.8453i 0.536620 0.929454i −0.462463 0.886639i \(-0.653034\pi\)
0.999083 0.0428150i \(-0.0136326\pi\)
\(192\) 0 0
\(193\) −8.28387 14.3481i −0.596286 1.03280i −0.993364 0.115013i \(-0.963309\pi\)
0.397078 0.917785i \(-0.370024\pi\)
\(194\) −1.81097 + 3.13669i −0.130020 + 0.225201i
\(195\) 0 0
\(196\) −4.36506 9.93821i −0.311790 0.709872i
\(197\) 4.03740 0.287653 0.143826 0.989603i \(-0.454059\pi\)
0.143826 + 0.989603i \(0.454059\pi\)
\(198\) 0 0
\(199\) −12.6407 21.8943i −0.896076 1.55205i −0.832468 0.554074i \(-0.813073\pi\)
−0.0636081 0.997975i \(-0.520261\pi\)
\(200\) 3.53395 + 6.12097i 0.249888 + 0.432818i
\(201\) 0 0
\(202\) −3.44243 −0.242208
\(203\) 0.988335 17.9933i 0.0693675 1.26288i
\(204\) 0 0
\(205\) 0.177240 0.306988i 0.0123790 0.0214410i
\(206\) −4.76312 8.24997i −0.331862 0.574803i
\(207\) 0 0
\(208\) −2.07399 + 3.59226i −0.143805 + 0.249078i
\(209\) 19.7973 1.36941
\(210\) 0 0
\(211\) 7.52493 0.518037 0.259019 0.965872i \(-0.416601\pi\)
0.259019 + 0.965872i \(0.416601\pi\)
\(212\) −0.636123 + 1.10180i −0.0436891 + 0.0756718i
\(213\) 0 0
\(214\) 2.56747 + 4.44699i 0.175509 + 0.303990i
\(215\) 0.710065 1.22987i 0.0484261 0.0838764i
\(216\) 0 0
\(217\) −5.91476 + 2.99502i −0.401520 + 0.203315i
\(218\) −1.13875 −0.0771261
\(219\) 0 0
\(220\) −5.44748 9.43531i −0.367269 0.636129i
\(221\) −1.54214 2.67106i −0.103735 0.179675i
\(222\) 0 0
\(223\) −12.9846 −0.869513 −0.434757 0.900548i \(-0.643166\pi\)
−0.434757 + 0.900548i \(0.643166\pi\)
\(224\) 13.6186 6.89599i 0.909934 0.460758i
\(225\) 0 0
\(226\) −0.201335 + 0.348723i −0.0133926 + 0.0231967i
\(227\) −14.4832 25.0857i −0.961286 1.66500i −0.719277 0.694723i \(-0.755527\pi\)
−0.242009 0.970274i \(-0.577806\pi\)
\(228\) 0 0
\(229\) −7.71790 + 13.3678i −0.510013 + 0.883369i 0.489919 + 0.871768i \(0.337026\pi\)
−0.999933 + 0.0116012i \(0.996307\pi\)
\(230\) −5.19295 −0.342413
\(231\) 0 0
\(232\) 16.2112 1.06432
\(233\) 2.47324 4.28378i 0.162027 0.280640i −0.773568 0.633713i \(-0.781530\pi\)
0.935596 + 0.353073i \(0.114863\pi\)
\(234\) 0 0
\(235\) 6.75121 + 11.6934i 0.440400 + 0.762795i
\(236\) 5.10481 8.84179i 0.332295 0.575551i
\(237\) 0 0
\(238\) −0.108911 + 1.98280i −0.00705964 + 0.128526i
\(239\) 13.0346 0.843141 0.421571 0.906796i \(-0.361479\pi\)
0.421571 + 0.906796i \(0.361479\pi\)
\(240\) 0 0
\(241\) −7.29123 12.6288i −0.469670 0.813492i 0.529729 0.848167i \(-0.322294\pi\)
−0.999399 + 0.0346754i \(0.988960\pi\)
\(242\) 4.46191 + 7.72826i 0.286823 + 0.496791i
\(243\) 0 0
\(244\) −0.116709 −0.00747154
\(245\) −5.90338 + 8.04002i −0.377153 + 0.513658i
\(246\) 0 0
\(247\) −5.52993 + 9.57812i −0.351861 + 0.609441i
\(248\) −2.98209 5.16514i −0.189363 0.327987i
\(249\) 0 0
\(250\) 3.80619 6.59251i 0.240724 0.416947i
\(251\) 14.0715 0.888187 0.444094 0.895980i \(-0.353526\pi\)
0.444094 + 0.895980i \(0.353526\pi\)
\(252\) 0 0
\(253\) −26.8067 −1.68532
\(254\) 2.43323 4.21448i 0.152674 0.264440i
\(255\) 0 0
\(256\) 4.53120 + 7.84826i 0.283200 + 0.490517i
\(257\) −4.18108 + 7.24184i −0.260808 + 0.451733i −0.966457 0.256829i \(-0.917322\pi\)
0.705649 + 0.708562i \(0.250656\pi\)
\(258\) 0 0
\(259\) −3.14476 2.05349i −0.195406 0.127597i
\(260\) 6.08653 0.377471
\(261\) 0 0
\(262\) 6.85515 + 11.8735i 0.423512 + 0.733545i
\(263\) 1.63533 + 2.83247i 0.100839 + 0.174658i 0.912030 0.410122i \(-0.134514\pi\)
−0.811192 + 0.584780i \(0.801181\pi\)
\(264\) 0 0
\(265\) 1.16910 0.0718173
\(266\) 6.35280 3.21683i 0.389515 0.197237i
\(267\) 0 0
\(268\) −9.75958 + 16.9041i −0.596161 + 1.03258i
\(269\) 7.69349 + 13.3255i 0.469081 + 0.812471i 0.999375 0.0353420i \(-0.0112521\pi\)
−0.530295 + 0.847813i \(0.677919\pi\)
\(270\) 0 0
\(271\) 4.06308 7.03747i 0.246815 0.427496i −0.715825 0.698279i \(-0.753949\pi\)
0.962640 + 0.270783i \(0.0872827\pi\)
\(272\) 1.68605 0.102232
\(273\) 0 0
\(274\) 8.18585 0.494525
\(275\) 7.32110 12.6805i 0.441479 0.764664i
\(276\) 0 0
\(277\) −6.42287 11.1247i −0.385913 0.668421i 0.605982 0.795478i \(-0.292780\pi\)
−0.991895 + 0.127057i \(0.959447\pi\)
\(278\) 0.831826 1.44077i 0.0498896 0.0864114i
\(279\) 0 0
\(280\) −7.51319 4.90601i −0.448999 0.293190i
\(281\) −1.44816 −0.0863901 −0.0431951 0.999067i \(-0.513754\pi\)
−0.0431951 + 0.999067i \(0.513754\pi\)
\(282\) 0 0
\(283\) 8.71926 + 15.1022i 0.518306 + 0.897732i 0.999774 + 0.0212686i \(0.00677053\pi\)
−0.481468 + 0.876464i \(0.659896\pi\)
\(284\) −0.0624100 0.108097i −0.00370335 0.00641440i
\(285\) 0 0
\(286\) −9.10468 −0.538371
\(287\) 0.0360979 0.657189i 0.00213079 0.0387926i
\(288\) 0 0
\(289\) 7.87316 13.6367i 0.463127 0.802160i
\(290\) −3.25292 5.63422i −0.191018 0.330853i
\(291\) 0 0
\(292\) −8.28903 + 14.3570i −0.485079 + 0.840181i
\(293\) −1.80010 −0.105163 −0.0525814 0.998617i \(-0.516745\pi\)
−0.0525814 + 0.998617i \(0.516745\pi\)
\(294\) 0 0
\(295\) −9.38189 −0.546235
\(296\) 1.68938 2.92609i 0.0981931 0.170075i
\(297\) 0 0
\(298\) 2.86766 + 4.96693i 0.166119 + 0.287727i
\(299\) 7.48786 12.9693i 0.433034 0.750037i
\(300\) 0 0
\(301\) 0.144617 2.63286i 0.00833559 0.151755i
\(302\) 11.8376 0.681175
\(303\) 0 0
\(304\) −3.02300 5.23599i −0.173381 0.300305i
\(305\) 0.0536236 + 0.0928787i 0.00307048 + 0.00531822i
\(306\) 0 0
\(307\) 1.06478 0.0607699 0.0303850 0.999538i \(-0.490327\pi\)
0.0303850 + 0.999538i \(0.490327\pi\)
\(308\) −16.9379 11.0602i −0.965127 0.630214i
\(309\) 0 0
\(310\) −1.19676 + 2.07286i −0.0679717 + 0.117730i
\(311\) −8.46463 14.6612i −0.479985 0.831359i 0.519751 0.854318i \(-0.326025\pi\)
−0.999736 + 0.0229591i \(0.992691\pi\)
\(312\) 0 0
\(313\) 4.13928 7.16944i 0.233966 0.405241i −0.725006 0.688743i \(-0.758163\pi\)
0.958972 + 0.283502i \(0.0914963\pi\)
\(314\) −4.23750 −0.239136
\(315\) 0 0
\(316\) 2.86082 0.160934
\(317\) 3.27371 5.67023i 0.183870 0.318472i −0.759325 0.650711i \(-0.774471\pi\)
0.943195 + 0.332239i \(0.107804\pi\)
\(318\) 0 0
\(319\) −16.7920 29.0846i −0.940171 1.62842i
\(320\) 0.609811 1.05622i 0.0340895 0.0590447i
\(321\) 0 0
\(322\) −8.60207 + 4.35578i −0.479374 + 0.242738i
\(323\) 4.49556 0.250140
\(324\) 0 0
\(325\) 4.08997 + 7.08404i 0.226871 + 0.392952i
\(326\) 2.68893 + 4.65736i 0.148926 + 0.257947i
\(327\) 0 0
\(328\) 0.592099 0.0326932
\(329\) 20.9916 + 13.7072i 1.15730 + 0.755703i
\(330\) 0 0
\(331\) 13.3629 23.1453i 0.734493 1.27218i −0.220453 0.975398i \(-0.570754\pi\)
0.954946 0.296781i \(-0.0959131\pi\)
\(332\) −11.2203 19.4341i −0.615792 1.06658i
\(333\) 0 0
\(334\) 0.710806 1.23115i 0.0388936 0.0673657i
\(335\) 17.9367 0.979985
\(336\) 0 0
\(337\) 9.52328 0.518766 0.259383 0.965775i \(-0.416481\pi\)
0.259383 + 0.965775i \(0.416481\pi\)
\(338\) −1.81397 + 3.14189i −0.0986670 + 0.170896i
\(339\) 0 0
\(340\) −1.23701 2.14257i −0.0670864 0.116197i
\(341\) −6.17786 + 10.7004i −0.334550 + 0.579457i
\(342\) 0 0
\(343\) −3.03502 + 18.2699i −0.163876 + 0.986481i
\(344\) 2.37209 0.127895
\(345\) 0 0
\(346\) 6.12955 + 10.6167i 0.329526 + 0.570757i
\(347\) −9.35156 16.1974i −0.502018 0.869521i −0.999997 0.00233189i \(-0.999258\pi\)
0.497979 0.867189i \(-0.334076\pi\)
\(348\) 0 0
\(349\) 30.1084 1.61167 0.805834 0.592142i \(-0.201718\pi\)
0.805834 + 0.592142i \(0.201718\pi\)
\(350\) 0.288848 5.25868i 0.0154396 0.281088i
\(351\) 0 0
\(352\) 14.2244 24.6374i 0.758164 1.31318i
\(353\) 3.12966 + 5.42074i 0.166575 + 0.288517i 0.937214 0.348756i \(-0.113396\pi\)
−0.770638 + 0.637273i \(0.780062\pi\)
\(354\) 0 0
\(355\) −0.0573502 + 0.0993335i −0.00304383 + 0.00527208i
\(356\) −20.9739 −1.11161
\(357\) 0 0
\(358\) −5.11163 −0.270158
\(359\) 5.09755 8.82921i 0.269038 0.465988i −0.699575 0.714559i \(-0.746628\pi\)
0.968614 + 0.248571i \(0.0799608\pi\)
\(360\) 0 0
\(361\) 1.43970 + 2.49364i 0.0757739 + 0.131244i
\(362\) 5.20532 9.01587i 0.273585 0.473864i
\(363\) 0 0
\(364\) 10.0823 5.10530i 0.528455 0.267591i
\(365\) 15.2340 0.797385
\(366\) 0 0
\(367\) 14.3278 + 24.8165i 0.747906 + 1.29541i 0.948824 + 0.315804i \(0.102274\pi\)
−0.200918 + 0.979608i \(0.564392\pi\)
\(368\) 4.09332 + 7.08984i 0.213379 + 0.369584i
\(369\) 0 0
\(370\) −1.35595 −0.0704926
\(371\) 1.93660 0.980627i 0.100543 0.0509116i
\(372\) 0 0
\(373\) 8.03670 13.9200i 0.416124 0.720749i −0.579421 0.815028i \(-0.696721\pi\)
0.995546 + 0.0942796i \(0.0300548\pi\)
\(374\) 1.85041 + 3.20501i 0.0956826 + 0.165727i
\(375\) 0 0
\(376\) −11.2768 + 19.5319i −0.581555 + 1.00728i
\(377\) 18.7619 0.966286
\(378\) 0 0
\(379\) −1.01893 −0.0523388 −0.0261694 0.999658i \(-0.508331\pi\)
−0.0261694 + 0.999658i \(0.508331\pi\)
\(380\) −4.43579 + 7.68302i −0.227551 + 0.394130i
\(381\) 0 0
\(382\) −4.97135 8.61063i −0.254356 0.440558i
\(383\) −5.79327 + 10.0342i −0.296022 + 0.512725i −0.975222 0.221228i \(-0.928994\pi\)
0.679200 + 0.733953i \(0.262327\pi\)
\(384\) 0 0
\(385\) −1.01953 + 18.5612i −0.0519598 + 0.945966i
\(386\) −11.1059 −0.565275
\(387\) 0 0
\(388\) −4.18924 7.25598i −0.212677 0.368367i
\(389\) 8.90675 + 15.4270i 0.451590 + 0.782178i 0.998485 0.0550239i \(-0.0175235\pi\)
−0.546895 + 0.837201i \(0.684190\pi\)
\(390\) 0 0
\(391\) −6.08726 −0.307846
\(392\) −16.5606 1.82478i −0.836437 0.0921654i
\(393\) 0 0
\(394\) 1.35320 2.34381i 0.0681732 0.118079i
\(395\) −1.31444 2.27668i −0.0661369 0.114552i
\(396\) 0 0
\(397\) −6.54229 + 11.3316i −0.328348 + 0.568715i −0.982184 0.187921i \(-0.939825\pi\)
0.653836 + 0.756636i \(0.273159\pi\)
\(398\) −16.9470 −0.849474
\(399\) 0 0
\(400\) −4.47166 −0.223583
\(401\) 7.05165 12.2138i 0.352143 0.609929i −0.634482 0.772938i \(-0.718787\pi\)
0.986625 + 0.163009i \(0.0521199\pi\)
\(402\) 0 0
\(403\) −3.45129 5.97782i −0.171921 0.297776i
\(404\) 3.98161 6.89636i 0.198093 0.343107i
\(405\) 0 0
\(406\) −10.1143 6.60452i −0.501966 0.327777i
\(407\) −6.99960 −0.346957
\(408\) 0 0
\(409\) 1.32300 + 2.29150i 0.0654179 + 0.113307i 0.896879 0.442275i \(-0.145829\pi\)
−0.831461 + 0.555583i \(0.812495\pi\)
\(410\) −0.118810 0.205784i −0.00586759 0.0101630i
\(411\) 0 0
\(412\) 22.0367 1.08567
\(413\) −15.5410 + 7.86940i −0.764722 + 0.387228i
\(414\) 0 0
\(415\) −10.3106 + 17.8585i −0.506128 + 0.876639i
\(416\) 7.94655 + 13.7638i 0.389612 + 0.674827i
\(417\) 0 0
\(418\) 6.63538 11.4928i 0.324547 0.562132i
\(419\) 33.5134 1.63724 0.818619 0.574337i \(-0.194740\pi\)
0.818619 + 0.574337i \(0.194740\pi\)
\(420\) 0 0
\(421\) 4.83901 0.235839 0.117919 0.993023i \(-0.462378\pi\)
0.117919 + 0.993023i \(0.462378\pi\)
\(422\) 2.52210 4.36841i 0.122774 0.212651i
\(423\) 0 0
\(424\) 0.976394 + 1.69116i 0.0474179 + 0.0821302i
\(425\) 1.66247 2.87949i 0.0806418 0.139676i
\(426\) 0 0
\(427\) 0.166732 + 0.108874i 0.00806874 + 0.00526877i
\(428\) −11.8785 −0.574167
\(429\) 0 0
\(430\) −0.475980 0.824422i −0.0229538 0.0397571i
\(431\) −17.6643 30.5954i −0.850858 1.47373i −0.880435 0.474166i \(-0.842749\pi\)
0.0295774 0.999562i \(-0.490584\pi\)
\(432\) 0 0
\(433\) 5.47404 0.263066 0.131533 0.991312i \(-0.458010\pi\)
0.131533 + 0.991312i \(0.458010\pi\)
\(434\) −0.243742 + 4.43750i −0.0117000 + 0.213007i
\(435\) 0 0
\(436\) 1.31712 2.28131i 0.0630785 0.109255i
\(437\) 10.9141 + 18.9038i 0.522093 + 0.904292i
\(438\) 0 0
\(439\) −3.19906 + 5.54093i −0.152683 + 0.264454i −0.932213 0.361911i \(-0.882125\pi\)
0.779530 + 0.626365i \(0.215458\pi\)
\(440\) −16.7228 −0.797229
\(441\) 0 0
\(442\) −2.06749 −0.0983404
\(443\) −3.19341 + 5.53115i −0.151723 + 0.262793i −0.931861 0.362815i \(-0.881816\pi\)
0.780138 + 0.625608i \(0.215149\pi\)
\(444\) 0 0
\(445\) 9.63674 + 16.6913i 0.456825 + 0.791245i
\(446\) −4.35200 + 7.53789i −0.206073 + 0.356929i
\(447\) 0 0
\(448\) 0.124199 2.26112i 0.00586783 0.106828i
\(449\) 11.7460 0.554327 0.277163 0.960823i \(-0.410606\pi\)
0.277163 + 0.960823i \(0.410606\pi\)
\(450\) 0 0
\(451\) −0.613311 1.06229i −0.0288797 0.0500210i
\(452\) −0.465741 0.806687i −0.0219066 0.0379434i
\(453\) 0 0
\(454\) −19.4172 −0.911293
\(455\) −8.69531 5.67791i −0.407642 0.266185i
\(456\) 0 0
\(457\) −5.26120 + 9.11266i −0.246108 + 0.426272i −0.962443 0.271485i \(-0.912485\pi\)
0.716334 + 0.697757i \(0.245819\pi\)
\(458\) 5.17356 + 8.96087i 0.241745 + 0.418714i
\(459\) 0 0
\(460\) 6.00633 10.4033i 0.280046 0.485055i
\(461\) −7.08555 −0.330007 −0.165004 0.986293i \(-0.552764\pi\)
−0.165004 + 0.986293i \(0.552764\pi\)
\(462\) 0 0
\(463\) −32.7521 −1.52212 −0.761059 0.648683i \(-0.775320\pi\)
−0.761059 + 0.648683i \(0.775320\pi\)
\(464\) −5.12820 + 8.88230i −0.238071 + 0.412350i
\(465\) 0 0
\(466\) −1.65789 2.87156i −0.0768004 0.133022i
\(467\) −1.96216 + 3.39856i −0.0907978 + 0.157266i −0.907847 0.419301i \(-0.862275\pi\)
0.817049 + 0.576568i \(0.195608\pi\)
\(468\) 0 0
\(469\) 29.7119 15.0450i 1.37197 0.694716i
\(470\) 9.05111 0.417497
\(471\) 0 0
\(472\) −7.83544 13.5714i −0.360655 0.624673i
\(473\) −2.45707 4.25577i −0.112976 0.195681i
\(474\) 0 0
\(475\) −11.9229 −0.547060
\(476\) −3.84626 2.51155i −0.176293 0.115117i
\(477\) 0 0
\(478\) 4.36878 7.56694i 0.199823 0.346104i
\(479\) 8.04324 + 13.9313i 0.367505 + 0.636537i 0.989175 0.146742i \(-0.0468787\pi\)
−0.621670 + 0.783279i \(0.713545\pi\)
\(480\) 0 0
\(481\) 1.95518 3.38647i 0.0891486 0.154410i
\(482\) −9.77510 −0.445244
\(483\) 0 0
\(484\) −20.6431 −0.938324
\(485\) −3.84961 + 6.66771i −0.174802 + 0.302765i
\(486\) 0 0
\(487\) −1.75172 3.03407i −0.0793781 0.137487i 0.823604 0.567166i \(-0.191960\pi\)
−0.902982 + 0.429679i \(0.858627\pi\)
\(488\) −0.0895692 + 0.155138i −0.00405461 + 0.00702279i
\(489\) 0 0
\(490\) 2.68882 + 6.12181i 0.121469 + 0.276555i
\(491\) −41.1093 −1.85524 −0.927618 0.373531i \(-0.878147\pi\)
−0.927618 + 0.373531i \(0.878147\pi\)
\(492\) 0 0
\(493\) −3.81312 6.60452i −0.171734 0.297452i
\(494\) 3.70689 + 6.42053i 0.166781 + 0.288873i
\(495\) 0 0
\(496\) 3.77338 0.169430
\(497\) −0.0116804 + 0.212649i −0.000523936 + 0.00953863i
\(498\) 0 0
\(499\) −5.91486 + 10.2448i −0.264785 + 0.458622i −0.967507 0.252843i \(-0.918634\pi\)
0.702722 + 0.711465i \(0.251968\pi\)
\(500\) 8.80470 + 15.2502i 0.393758 + 0.682009i
\(501\) 0 0
\(502\) 4.71631 8.16888i 0.210499 0.364595i
\(503\) −21.8595 −0.974665 −0.487332 0.873217i \(-0.662030\pi\)
−0.487332 + 0.873217i \(0.662030\pi\)
\(504\) 0 0
\(505\) −7.31762 −0.325630
\(506\) −8.98470 + 15.5620i −0.399419 + 0.691813i
\(507\) 0 0
\(508\) 5.62869 + 9.74918i 0.249733 + 0.432550i
\(509\) 8.44831 14.6329i 0.374465 0.648592i −0.615782 0.787917i \(-0.711160\pi\)
0.990247 + 0.139324i \(0.0444931\pi\)
\(510\) 0 0
\(511\) 25.2350 12.7781i 1.11633 0.565270i
\(512\) −15.8563 −0.700756
\(513\) 0 0
\(514\) 2.80271 + 4.85444i 0.123622 + 0.214120i
\(515\) −10.1250 17.5371i −0.446163 0.772777i
\(516\) 0 0
\(517\) 46.7230 2.05487
\(518\) −2.24612 + 1.13735i −0.0986888 + 0.0499725i
\(519\) 0 0
\(520\) 4.67115 8.09067i 0.204843 0.354799i
\(521\) 17.2466 + 29.8720i 0.755587 + 1.30872i 0.945082 + 0.326834i \(0.105982\pi\)
−0.189495 + 0.981882i \(0.560685\pi\)
\(522\) 0 0
\(523\) 0.995615 1.72445i 0.0435352 0.0754051i −0.843437 0.537229i \(-0.819471\pi\)
0.886972 + 0.461823i \(0.152805\pi\)
\(524\) −31.7155 −1.38550
\(525\) 0 0
\(526\) 2.19243 0.0955945
\(527\) −1.40287 + 2.42983i −0.0611098 + 0.105845i
\(528\) 0 0
\(529\) −3.27836 5.67829i −0.142538 0.246882i
\(530\) 0.391843 0.678693i 0.0170206 0.0294805i
\(531\) 0 0
\(532\) −0.903426 + 16.4475i −0.0391685 + 0.713090i
\(533\) 0.685259 0.0296819
\(534\) 0 0
\(535\) 5.45772 + 9.45305i 0.235958 + 0.408691i
\(536\) 14.9801 + 25.9463i 0.647042 + 1.12071i
\(537\) 0 0
\(538\) 10.3144 0.444685
\(539\) 13.8800 + 31.6016i 0.597856 + 1.36118i
\(540\) 0 0
\(541\) −15.0681 + 26.0988i −0.647830 + 1.12207i 0.335810 + 0.941930i \(0.390990\pi\)
−0.983640 + 0.180145i \(0.942343\pi\)
\(542\) −2.72362 4.71745i −0.116989 0.202632i
\(543\) 0 0
\(544\) 3.23008 5.59466i 0.138488 0.239869i
\(545\) −2.42067 −0.103690
\(546\) 0 0
\(547\) −15.3614 −0.656806 −0.328403 0.944538i \(-0.606510\pi\)
−0.328403 + 0.944538i \(0.606510\pi\)
\(548\) −9.46800 + 16.3991i −0.404453 + 0.700533i
\(549\) 0 0
\(550\) −4.90757 8.50016i −0.209260 0.362448i
\(551\) −13.6734 + 23.6831i −0.582508 + 1.00893i
\(552\) 0 0
\(553\) −4.08701 2.66876i −0.173797 0.113487i
\(554\) −8.61092 −0.365843
\(555\) 0 0
\(556\) 1.92423 + 3.33287i 0.0816056 + 0.141345i
\(557\) 11.6412 + 20.1631i 0.493252 + 0.854338i 0.999970 0.00777438i \(-0.00247469\pi\)
−0.506718 + 0.862112i \(0.669141\pi\)
\(558\) 0 0
\(559\) 2.74531 0.116114
\(560\) 5.06475 2.56461i 0.214025 0.108374i
\(561\) 0 0
\(562\) −0.485375 + 0.840695i −0.0204743 + 0.0354626i
\(563\) 2.27942 + 3.94808i 0.0960663 + 0.166392i 0.910053 0.414492i \(-0.136041\pi\)
−0.813987 + 0.580883i \(0.802707\pi\)
\(564\) 0 0
\(565\) −0.427982 + 0.741286i −0.0180053 + 0.0311861i
\(566\) 11.6896 0.491351
\(567\) 0 0
\(568\) −0.191588 −0.00803885
\(569\) 9.09976 15.7612i 0.381482 0.660746i −0.609793 0.792561i \(-0.708747\pi\)
0.991274 + 0.131815i \(0.0420806\pi\)
\(570\) 0 0
\(571\) 8.52275 + 14.7618i 0.356666 + 0.617763i 0.987402 0.158234i \(-0.0505801\pi\)
−0.630736 + 0.775998i \(0.717247\pi\)
\(572\) 10.5307 18.2398i 0.440313 0.762644i
\(573\) 0 0
\(574\) −0.369416 0.241223i −0.0154191 0.0100685i
\(575\) 16.1443 0.673264
\(576\) 0 0
\(577\) −5.70473 9.88088i −0.237491 0.411346i 0.722503 0.691368i \(-0.242992\pi\)
−0.959994 + 0.280022i \(0.909658\pi\)
\(578\) −5.27764 9.14113i −0.219521 0.380221i
\(579\) 0 0
\(580\) 15.0497 0.624904
\(581\) −2.09993 + 38.2308i −0.0871199 + 1.58608i
\(582\) 0 0
\(583\) 2.02275 3.50350i 0.0837736 0.145100i
\(584\) 12.7229 + 22.0368i 0.526479 + 0.911889i
\(585\) 0 0
\(586\) −0.603332 + 1.04500i −0.0249234 + 0.0431686i
\(587\) 5.05089 0.208473 0.104236 0.994553i \(-0.466760\pi\)
0.104236 + 0.994553i \(0.466760\pi\)
\(588\) 0 0
\(589\) 10.0610 0.414558
\(590\) −3.14449 + 5.44642i −0.129457 + 0.224226i
\(591\) 0 0
\(592\) 1.06882 + 1.85126i 0.0439283 + 0.0760861i
\(593\) 9.98892 17.3013i 0.410196 0.710480i −0.584715 0.811239i \(-0.698794\pi\)
0.994911 + 0.100759i \(0.0321271\pi\)
\(594\) 0 0
\(595\) −0.231513 + 4.21487i −0.00949113 + 0.172793i
\(596\) −13.2673 −0.543449
\(597\) 0 0
\(598\) −5.01935 8.69378i −0.205257 0.355515i
\(599\) 2.19660 + 3.80463i 0.0897508 + 0.155453i 0.907406 0.420256i \(-0.138060\pi\)
−0.817655 + 0.575709i \(0.804726\pi\)
\(600\) 0 0
\(601\) −24.3556 −0.993487 −0.496743 0.867897i \(-0.665471\pi\)
−0.496743 + 0.867897i \(0.665471\pi\)
\(602\) −1.47997 0.966399i −0.0603191 0.0393875i
\(603\) 0 0
\(604\) −13.6917 + 23.7147i −0.557107 + 0.964937i
\(605\) 9.48476 + 16.4281i 0.385610 + 0.667897i
\(606\) 0 0
\(607\) −6.56281 + 11.3671i −0.266376 + 0.461377i −0.967923 0.251246i \(-0.919160\pi\)
0.701547 + 0.712623i \(0.252493\pi\)
\(608\) −23.1654 −0.939481
\(609\) 0 0
\(610\) 0.0718913 0.00291079
\(611\) −13.0510 + 22.6051i −0.527988 + 0.914502i
\(612\) 0 0
\(613\) −23.2403 40.2534i −0.938667 1.62582i −0.767960 0.640497i \(-0.778728\pi\)
−0.170707 0.985322i \(-0.554605\pi\)
\(614\) 0.356877 0.618129i 0.0144024 0.0249456i
\(615\) 0 0
\(616\) −27.7012 + 14.0269i −1.11611 + 0.565159i
\(617\) 28.3897 1.14293 0.571463 0.820628i \(-0.306376\pi\)
0.571463 + 0.820628i \(0.306376\pi\)
\(618\) 0 0
\(619\) −15.9606 27.6446i −0.641511 1.11113i −0.985096 0.172008i \(-0.944975\pi\)
0.343585 0.939122i \(-0.388359\pi\)
\(620\) −2.76843 4.79506i −0.111183 0.192574i
\(621\) 0 0
\(622\) −11.3482 −0.455023
\(623\) 29.9636 + 19.5658i 1.20047 + 0.783888i
\(624\) 0 0
\(625\) 0.666993 1.15527i 0.0266797 0.0462106i
\(626\) −2.77469 4.80591i −0.110899 0.192083i
\(627\) 0 0
\(628\) 4.90122 8.48916i 0.195580 0.338754i
\(629\) −1.58947 −0.0633762
\(630\) 0 0
\(631\) 38.7184 1.54135 0.770677 0.637226i \(-0.219918\pi\)
0.770677 + 0.637226i \(0.219918\pi\)
\(632\) 2.19556 3.80282i 0.0873346 0.151268i
\(633\) 0 0
\(634\) −2.19447 3.80094i −0.0871537 0.150955i
\(635\) 5.17236 8.95878i 0.205259 0.355519i
\(636\) 0 0
\(637\) −19.1662 2.11189i −0.759394 0.0836761i
\(638\) −22.5124 −0.891276
\(639\) 0 0
\(640\) 7.81261 + 13.5318i 0.308821 + 0.534893i
\(641\) −20.2001 34.9875i −0.797854 1.38192i −0.921011 0.389537i \(-0.872635\pi\)
0.123157 0.992387i \(-0.460698\pi\)
\(642\) 0 0
\(643\) −12.5471 −0.494809 −0.247405 0.968912i \(-0.579578\pi\)
−0.247405 + 0.968912i \(0.579578\pi\)
\(644\) 1.22329 22.2709i 0.0482045 0.877597i
\(645\) 0 0
\(646\) 1.50676 2.60979i 0.0592827 0.102681i
\(647\) −17.2774 29.9253i −0.679245 1.17649i −0.975209 0.221287i \(-0.928974\pi\)
0.295964 0.955199i \(-0.404359\pi\)
\(648\) 0 0
\(649\) −16.2323 + 28.1151i −0.637173 + 1.10362i
\(650\) 5.48329 0.215072
\(651\) 0 0
\(652\) −12.4404 −0.487203
\(653\) −11.1472 + 19.3075i −0.436223 + 0.755560i −0.997395 0.0721392i \(-0.977017\pi\)
0.561172 + 0.827699i \(0.310351\pi\)
\(654\) 0 0
\(655\) 14.5721 + 25.2396i 0.569379 + 0.986194i
\(656\) −0.187302 + 0.324417i −0.00731293 + 0.0126664i
\(657\) 0 0
\(658\) 14.9931 7.59195i 0.584490 0.295965i
\(659\) 7.14986 0.278519 0.139259 0.990256i \(-0.455528\pi\)
0.139259 + 0.990256i \(0.455528\pi\)
\(660\) 0 0
\(661\) −21.4530 37.1577i −0.834425 1.44527i −0.894498 0.447072i \(-0.852467\pi\)
0.0600736 0.998194i \(-0.480866\pi\)
\(662\) −8.95760 15.5150i −0.348147 0.603008i
\(663\) 0 0
\(664\) −34.4443 −1.33670
\(665\) 13.5043 6.83807i 0.523672 0.265169i
\(666\) 0 0
\(667\) 18.5146 32.0683i 0.716889 1.24169i
\(668\) 1.64428 + 2.84798i 0.0636191 + 0.110192i
\(669\) 0 0
\(670\) 6.01177 10.4127i 0.232255 0.402277i
\(671\) 0.371112 0.0143266
\(672\) 0 0
\(673\) 37.6541 1.45146 0.725729 0.687980i \(-0.241503\pi\)
0.725729 + 0.687980i \(0.241503\pi\)
\(674\) 3.19188 5.52850i 0.122947 0.212950i
\(675\) 0 0
\(676\) −4.19619 7.26801i −0.161392 0.279539i
\(677\) −13.1808 + 22.8298i −0.506580 + 0.877422i 0.493391 + 0.869808i \(0.335757\pi\)
−0.999971 + 0.00761453i \(0.997576\pi\)
\(678\) 0 0
\(679\) −0.784039 + 14.2740i −0.0300887 + 0.547785i
\(680\) −3.79741 −0.145624
\(681\) 0 0
\(682\) 4.14122 + 7.17280i 0.158575 + 0.274661i
\(683\) −1.96588 3.40500i −0.0752222 0.130289i 0.825961 0.563728i \(-0.190633\pi\)
−0.901183 + 0.433439i \(0.857300\pi\)
\(684\) 0 0
\(685\) 17.4008 0.664850
\(686\) 9.58889 + 7.88535i 0.366106 + 0.301064i
\(687\) 0 0
\(688\) −0.750378 + 1.29969i −0.0286079 + 0.0495503i
\(689\) 1.13002 + 1.95725i 0.0430503 + 0.0745653i
\(690\) 0 0
\(691\) −9.95052 + 17.2348i −0.378536 + 0.655643i −0.990849 0.134972i \(-0.956906\pi\)
0.612314 + 0.790615i \(0.290239\pi\)
\(692\) −28.3585 −1.07803
\(693\) 0 0
\(694\) −12.5373 −0.475910
\(695\) 1.76823 3.06266i 0.0670727 0.116173i
\(696\) 0 0
\(697\) −0.139270 0.241223i −0.00527524 0.00913699i
\(698\) 10.0913 17.4787i 0.381963 0.661579i
\(699\) 0 0
\(700\) 10.2008 + 6.66100i 0.385555 + 0.251762i
\(701\) −43.7908 −1.65396 −0.826979 0.562234i \(-0.809942\pi\)
−0.826979 + 0.562234i \(0.809942\pi\)
\(702\) 0 0
\(703\) 2.84983 + 4.93604i 0.107483 + 0.186166i
\(704\) −2.11016 3.65490i −0.0795295 0.137749i
\(705\) 0 0
\(706\) 4.19583 0.157912
\(707\) −12.1216 + 6.13792i −0.455878 + 0.230840i
\(708\) 0 0
\(709\) −22.3172 + 38.6545i −0.838139 + 1.45170i 0.0533097 + 0.998578i \(0.483023\pi\)
−0.891449 + 0.453121i \(0.850310\pi\)
\(710\) 0.0384437 + 0.0665865i 0.00144277 + 0.00249895i
\(711\) 0 0
\(712\) −16.0966 + 27.8801i −0.603244 + 1.04485i
\(713\) −13.6233 −0.510195
\(714\) 0 0
\(715\) −19.3540 −0.723798
\(716\) 5.91227 10.2403i 0.220952 0.382700i
\(717\) 0 0
\(718\) −3.41705 5.91851i −0.127523 0.220877i
\(719\) 19.5096 33.7917i 0.727586 1.26022i −0.230315 0.973116i \(-0.573976\pi\)
0.957901 0.287100i \(-0.0926912\pi\)
\(720\) 0 0
\(721\) −31.4819 20.5572i −1.17245 0.765592i
\(722\) 1.93016 0.0718332
\(723\) 0 0
\(724\) 12.0413 + 20.8561i 0.447510 + 0.775109i
\(725\) 10.1130 + 17.5162i 0.375586 + 0.650534i
\(726\) 0 0
\(727\) 22.5107 0.834877 0.417439 0.908705i \(-0.362928\pi\)
0.417439 + 0.908705i \(0.362928\pi\)
\(728\) 0.951361 17.3202i 0.0352598 0.641929i
\(729\) 0 0
\(730\) 5.10593 8.84373i 0.188979 0.327321i
\(731\) −0.557951 0.966399i −0.0206366 0.0357436i
\(732\) 0 0
\(733\) 0.448519 0.776858i 0.0165664 0.0286939i −0.857623 0.514278i \(-0.828060\pi\)
0.874190 + 0.485584i \(0.161393\pi\)
\(734\) 19.2088 0.709011
\(735\) 0 0
\(736\) 31.3673 1.15622
\(737\) 31.0335 53.7517i 1.14314 1.97997i
\(738\) 0 0
\(739\) 1.79032 + 3.10092i 0.0658578 + 0.114069i 0.897074 0.441880i \(-0.145688\pi\)
−0.831216 + 0.555949i \(0.812355\pi\)
\(740\) 1.56833 2.71643i 0.0576531 0.0998581i
\(741\) 0 0
\(742\) 0.0798057 1.45292i 0.00292976 0.0533384i
\(743\) −49.5928 −1.81938 −0.909691 0.415286i \(-0.863682\pi\)
−0.909691 + 0.415286i \(0.863682\pi\)
\(744\) 0 0
\(745\) 6.09583 + 10.5583i 0.223334 + 0.386826i
\(746\) −5.38726 9.33101i −0.197242 0.341633i
\(747\) 0 0
\(748\) −8.56098 −0.313020
\(749\) 16.9697 + 11.0810i 0.620061 + 0.404891i
\(750\) 0 0
\(751\) 21.4515 37.1551i 0.782776 1.35581i −0.147543 0.989056i \(-0.547136\pi\)
0.930319 0.366752i \(-0.119530\pi\)
\(752\) −7.13450 12.3573i −0.260168 0.450625i
\(753\) 0 0
\(754\) 6.28835 10.8917i 0.229008 0.396654i
\(755\) 25.1633 0.915786
\(756\) 0 0
\(757\) 13.8029 0.501677 0.250838 0.968029i \(-0.419294\pi\)
0.250838 + 0.968029i \(0.419294\pi\)
\(758\) −0.341510 + 0.591513i −0.0124042 + 0.0214847i
\(759\) 0 0
\(760\) 6.80856 + 11.7928i 0.246972 + 0.427769i
\(761\) 20.3599 35.2643i 0.738044 1.27833i −0.215330 0.976541i \(-0.569083\pi\)
0.953375 0.301789i \(-0.0975839\pi\)
\(762\) 0 0
\(763\) −4.00981 + 2.03042i −0.145165 + 0.0735063i
\(764\) 23.0001 0.832113
\(765\) 0 0
\(766\) 3.88342 + 6.72627i 0.140313 + 0.243030i
\(767\) −9.06826 15.7067i −0.327436 0.567135i
\(768\) 0 0
\(769\) −11.1476 −0.401994 −0.200997 0.979592i \(-0.564418\pi\)
−0.200997 + 0.979592i \(0.564418\pi\)
\(770\) 10.4335 + 6.81294i 0.375998 + 0.245521i
\(771\) 0 0
\(772\) 12.8454 22.2489i 0.462317 0.800756i
\(773\) 0.462831 + 0.801647i 0.0166469 + 0.0288332i 0.874229 0.485514i \(-0.161368\pi\)
−0.857582 + 0.514347i \(0.828034\pi\)
\(774\) 0 0
\(775\) 3.72061 6.44428i 0.133648 0.231485i
\(776\) −12.8602 −0.461656
\(777\) 0 0
\(778\) 11.9410 0.428105
\(779\) −0.499408 + 0.865001i −0.0178932 + 0.0309919i
\(780\) 0 0
\(781\) 0.198452 + 0.343728i 0.00710116 + 0.0122996i
\(782\) −2.04024 + 3.53381i −0.0729590 + 0.126369i
\(783\) 0 0
\(784\) 6.23854 8.49648i 0.222805 0.303446i
\(785\) −9.00772 −0.321499
\(786\) 0 0
\(787\) −11.5120 19.9393i −0.410358 0.710761i 0.584571 0.811343i \(-0.301263\pi\)
−0.994929 + 0.100582i \(0.967930\pi\)
\(788\) 3.13030 + 5.42184i 0.111512 + 0.193145i
\(789\) 0 0
\(790\) −1.76223 −0.0626973
\(791\) −0.0871659 + 1.58692i −0.00309926 + 0.0564243i
\(792\) 0 0
\(793\) −0.103662 + 0.179548i −0.00368114 + 0.00637593i
\(794\) 4.38551 + 7.59592i 0.155636 + 0.269569i
\(795\) 0 0
\(796\) 19.6014 33.9505i 0.694752 1.20335i
\(797\) 22.7851 0.807089 0.403544 0.914960i \(-0.367778\pi\)
0.403544 + 0.914960i \(0.367778\pi\)
\(798\) 0 0
\(799\) 10.6098 0.375349
\(800\) −8.56664 + 14.8379i −0.302877 + 0.524598i
\(801\) 0 0
\(802\) −4.72695 8.18732i −0.166914 0.289104i
\(803\) 26.3575 45.6525i 0.930135 1.61104i
\(804\) 0 0
\(805\) −18.2856 + 9.25915i −0.644481 + 0.326342i
\(806\) −4.62703 −0.162980
\(807\) 0 0
\(808\) −6.11143 10.5853i −0.214999 0.372390i
\(809\) −6.73753 11.6697i −0.236879 0.410286i 0.722938 0.690913i \(-0.242791\pi\)
−0.959817 + 0.280627i \(0.909458\pi\)
\(810\) 0 0
\(811\) −30.7348 −1.07924 −0.539622 0.841907i \(-0.681433\pi\)
−0.539622 + 0.841907i \(0.681433\pi\)
\(812\) 24.9296 12.6235i 0.874859 0.442997i
\(813\) 0 0
\(814\) −2.34603 + 4.06344i −0.0822283 + 0.142424i
\(815\) 5.71590 + 9.90023i 0.200219 + 0.346790i
\(816\) 0 0
\(817\) −2.00075 + 3.46540i −0.0699974 + 0.121239i
\(818\) 1.77369 0.0620158
\(819\) 0 0
\(820\) 0.549675 0.0191955
\(821\) −8.49319 + 14.7106i −0.296414 + 0.513405i −0.975313 0.220827i \(-0.929124\pi\)
0.678899 + 0.734232i \(0.262458\pi\)
\(822\) 0 0
\(823\) 9.29157 + 16.0935i 0.323884 + 0.560983i 0.981286 0.192557i \(-0.0616780\pi\)
−0.657402 + 0.753540i \(0.728345\pi\)
\(824\) 16.9122 29.2928i 0.589164 1.02046i
\(825\) 0 0
\(826\) −0.640430 + 11.6595i −0.0222834 + 0.405686i
\(827\) −14.5419 −0.505670 −0.252835 0.967509i \(-0.581363\pi\)
−0.252835 + 0.967509i \(0.581363\pi\)
\(828\) 0 0
\(829\) 4.78717 + 8.29161i 0.166265 + 0.287980i 0.937104 0.349051i \(-0.113496\pi\)
−0.770839 + 0.637030i \(0.780163\pi\)
\(830\) 6.91154 + 11.9711i 0.239903 + 0.415524i
\(831\) 0 0
\(832\) 2.35770 0.0817386
\(833\) 3.15188 + 7.17607i 0.109206 + 0.248636i
\(834\) 0 0
\(835\) 1.51097 2.61708i 0.0522894 0.0905678i
\(836\) 15.3494 + 26.5859i 0.530869 + 0.919492i
\(837\) 0 0
\(838\) 11.2326 19.4554i 0.388023 0.672075i
\(839\) 42.4606 1.46590 0.732952 0.680281i \(-0.238142\pi\)
0.732952 + 0.680281i \(0.238142\pi\)
\(840\) 0 0
\(841\) 17.3910 0.599690
\(842\) 1.62187 2.80917i 0.0558934 0.0968103i
\(843\) 0 0
\(844\) 5.83428 + 10.1053i 0.200824 + 0.347838i
\(845\) −3.85599 + 6.67877i −0.132650 + 0.229757i
\(846\) 0 0
\(847\) 29.4911 + 19.2572i 1.01332 + 0.661687i
\(848\) −1.23548 −0.0424264
\(849\) 0 0
\(850\) −1.11441 1.93021i −0.0382239 0.0662058i
\(851\) −3.85883 6.68370i −0.132279 0.229114i
\(852\) 0 0
\(853\) −14.2808 −0.488965 −0.244482 0.969654i \(-0.578618\pi\)
−0.244482 + 0.969654i \(0.578618\pi\)
\(854\) 0.119087 0.0603014i 0.00407507 0.00206347i
\(855\) 0 0
\(856\) −9.11621 + 15.7897i −0.311586 + 0.539682i
\(857\) 17.3895 + 30.1195i 0.594013 + 1.02886i 0.993685 + 0.112203i \(0.0357907\pi\)
−0.399672 + 0.916658i \(0.630876\pi\)
\(858\) 0 0
\(859\) 6.32429 10.9540i 0.215782 0.373745i −0.737732 0.675093i \(-0.764103\pi\)
0.953514 + 0.301348i \(0.0974366\pi\)
\(860\) 2.20213 0.0750921
\(861\) 0 0
\(862\) −23.6819 −0.806608
\(863\) −13.2398 + 22.9321i −0.450690 + 0.780617i −0.998429 0.0560318i \(-0.982155\pi\)
0.547739 + 0.836649i \(0.315489\pi\)
\(864\) 0 0
\(865\) 13.0297 + 22.5681i 0.443022 + 0.767337i
\(866\) 1.83471 3.17782i 0.0623461 0.107987i
\(867\) 0 0
\(868\) −8.60790 5.62084i −0.292171 0.190784i
\(869\) −9.09686 −0.308590
\(870\) 0 0
\(871\) 17.3371 + 30.0287i 0.587444 + 1.01748i
\(872\) −2.02166 3.50162i −0.0684621 0.118580i
\(873\) 0 0
\(874\) 14.6322 0.494941
\(875\) 1.64785 30.0002i 0.0557074 1.01419i
\(876\) 0 0
\(877\) −14.2267 + 24.6414i −0.480402 + 0.832081i −0.999747 0.0224835i \(-0.992843\pi\)
0.519345 + 0.854565i \(0.326176\pi\)
\(878\) 2.14443 + 3.71427i 0.0723711 + 0.125350i
\(879\) 0 0
\(880\) 5.29004 9.16261i 0.178327 0.308872i
\(881\) 20.3637 0.686071 0.343036 0.939322i \(-0.388545\pi\)
0.343036 + 0.939322i \(0.388545\pi\)
\(882\) 0 0
\(883\) 49.1950 1.65554 0.827772 0.561065i \(-0.189608\pi\)
0.827772 + 0.561065i \(0.189608\pi\)
\(884\) 2.39132 4.14189i 0.0804288 0.139307i
\(885\) 0 0
\(886\) 2.14065 + 3.70771i 0.0719164 + 0.124563i
\(887\) −2.10846 + 3.65196i −0.0707952 + 0.122621i −0.899250 0.437435i \(-0.855887\pi\)
0.828455 + 0.560056i \(0.189220\pi\)
\(888\) 0 0
\(889\) 1.05344 19.1786i 0.0353312 0.643231i
\(890\) 12.9196 0.433067
\(891\) 0 0
\(892\) −10.0673 17.4371i −0.337078 0.583837i
\(893\) −19.0229 32.9486i −0.636576 1.10258i
\(894\) 0 0
\(895\) −10.8659 −0.363206
\(896\) 24.2918 + 15.8622i 0.811533 + 0.529920i
\(897\) 0 0
\(898\) 3.93685 6.81883i 0.131375 0.227547i
\(899\) −8.53374 14.7809i −0.284616 0.492970i
\(900\) 0 0
\(901\) 0.459325 0.795574i 0.0153023 0.0265044i
\(902\) −0.822244 −0.0273777
\(903\) 0 0
\(904\) −1.42974 −0.0475526
\(905\) 11.0650 19.1652i 0.367814 0.637072i
\(906\) 0 0
\(907\) −23.9925 41.5563i −0.796659 1.37985i −0.921780 0.387713i \(-0.873265\pi\)
0.125121 0.992142i \(-0.460068\pi\)
\(908\) 22.4585 38.8993i 0.745311 1.29092i
\(909\) 0 0
\(910\) −6.21054 + 3.14480i −0.205878 + 0.104249i
\(911\) −25.7335 −0.852587 −0.426294 0.904585i \(-0.640181\pi\)
−0.426294 + 0.904585i \(0.640181\pi\)
\(912\) 0 0
\(913\) 35.6782 + 61.7965i 1.18078 + 2.04517i
\(914\) 3.52675 + 6.10852i 0.116655 + 0.202052i
\(915\) 0 0
\(916\) −23.9356 −0.790854
\(917\) 45.3092 + 29.5863i 1.49624 + 0.977024i
\(918\) 0 0
\(919\) 1.13478 1.96550i 0.0374330 0.0648359i −0.846702 0.532068i \(-0.821415\pi\)
0.884135 + 0.467232i \(0.154749\pi\)
\(920\) −9.21919 15.9681i −0.303948 0.526453i
\(921\) 0 0
\(922\) −2.37484 + 4.11334i −0.0782111 + 0.135466i
\(923\) −0.221732 −0.00729840
\(924\) 0 0
\(925\) 4.21550 0.138605
\(926\) −10.9774 + 19.0134i −0.360740 + 0.624819i
\(927\) 0 0
\(928\) 19.6488 + 34.0328i 0.645004 + 1.11718i
\(929\) 22.9248 39.7069i 0.752138 1.30274i −0.194647 0.980873i \(-0.562356\pi\)
0.946785 0.321868i \(-0.104311\pi\)
\(930\) 0 0
\(931\) 16.6340 22.6544i 0.545156 0.742467i
\(932\) 7.67028 0.251248
\(933\) 0 0
\(934\) 1.31530 + 2.27816i 0.0430379 + 0.0745438i
\(935\) 3.93346 + 6.81294i 0.128638 + 0.222807i
\(936\) 0 0
\(937\) −56.2075 −1.83622 −0.918110 0.396325i \(-0.870285\pi\)
−0.918110 + 0.396325i \(0.870285\pi\)
\(938\) 1.22440 22.2911i 0.0399781 0.727830i
\(939\) 0 0
\(940\) −10.4688 + 18.1325i −0.341454 + 0.591416i
\(941\) −17.6402 30.5536i −0.575053 0.996020i −0.996036 0.0889519i \(-0.971648\pi\)
0.420983 0.907068i \(-0.361685\pi\)
\(942\) 0 0
\(943\) 0.676229 1.17126i 0.0220210 0.0381415i
\(944\) 9.91453 0.322691
\(945\) 0 0
\(946\) −3.29411 −0.107101
\(947\) −25.3565 + 43.9188i −0.823976 + 1.42717i 0.0787236 + 0.996896i \(0.474916\pi\)
−0.902699 + 0.430272i \(0.858418\pi\)
\(948\) 0 0
\(949\) 14.7248 + 25.5040i 0.477986 + 0.827896i
\(950\) −3.99615 + 6.92154i −0.129652 + 0.224564i
\(951\) 0 0
\(952\) −6.29037 + 3.18522i −0.203872 + 0.103234i
\(953\) −25.9988 −0.842184 −0.421092 0.907018i \(-0.638353\pi\)
−0.421092 + 0.907018i \(0.638353\pi\)
\(954\) 0 0
\(955\) −10.5677 18.3038i −0.341962 0.592296i
\(956\) 10.1061 + 17.5043i 0.326855 + 0.566130i
\(957\) 0 0
\(958\) 10.7833 0.348392
\(959\) 28.8242 14.5956i 0.930783 0.471315i
\(960\) 0 0
\(961\) 12.3604 21.4088i 0.398722 0.690607i
\(962\) −1.31062 2.27006i −0.0422562 0.0731898i
\(963\) 0 0
\(964\) 11.3062 19.5829i 0.364148 0.630722i
\(965\) −23.6080 −0.759968
\(966\) 0 0
\(967\) 25.9621 0.834885 0.417442 0.908703i \(-0.362927\pi\)
0.417442 + 0.908703i \(0.362927\pi\)
\(968\) −15.8427 + 27.4404i −0.509204 + 0.881967i
\(969\) 0 0
\(970\) 2.58052 + 4.46959i 0.0828554 + 0.143510i
\(971\) 3.97206 6.87981i 0.127469 0.220783i −0.795226 0.606313i \(-0.792648\pi\)
0.922696 + 0.385530i \(0.125981\pi\)
\(972\) 0 0
\(973\) 0.360130 6.55643i 0.0115452 0.210189i
\(974\) −2.34847 −0.0752499
\(975\) 0 0
\(976\) −0.0566680 0.0981518i −0.00181390 0.00314176i
\(977\) −26.1274 45.2540i −0.835889 1.44780i −0.893304 0.449452i \(-0.851619\pi\)
0.0574149 0.998350i \(-0.481714\pi\)
\(978\) 0 0
\(979\) 66.6929 2.13151
\(980\) −15.3740 1.69404i −0.491106 0.0541140i
\(981\) 0 0
\(982\) −13.7784 + 23.8650i −0.439688 + 0.761562i
\(983\) −19.4190 33.6346i −0.619369 1.07278i −0.989601 0.143839i \(-0.954055\pi\)
0.370232 0.928939i \(-0.379278\pi\)
\(984\) 0 0
\(985\) 2.87652 4.98228i 0.0916535 0.158749i
\(986\) −5.11212 −0.162803
\(987\) 0 0
\(988\) −17.1500 −0.545615
\(989\) 2.70914 4.69236i 0.0861455 0.149208i
\(990\) 0 0
\(991\) −15.4689 26.7929i −0.491385 0.851104i 0.508565 0.861023i \(-0.330176\pi\)
−0.999951 + 0.00991892i \(0.996843\pi\)
\(992\) 7.22890 12.5208i 0.229518 0.397536i
\(993\) 0 0
\(994\) 0.119534 + 0.0780537i 0.00379137 + 0.00247571i
\(995\) −36.0244 −1.14205
\(996\) 0 0
\(997\) −23.5335 40.7612i −0.745313 1.29092i −0.950048 0.312103i \(-0.898967\pi\)
0.204735 0.978817i \(-0.434367\pi\)
\(998\) 3.96492 + 6.86745i 0.125507 + 0.217385i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.e.163.4 10
3.2 odd 2 567.2.e.f.163.2 10
7.2 even 3 3969.2.a.bc.1.2 5
7.4 even 3 inner 567.2.e.e.487.4 10
7.5 odd 6 3969.2.a.bb.1.2 5
9.2 odd 6 63.2.h.b.58.4 yes 10
9.4 even 3 189.2.g.b.100.4 10
9.5 odd 6 63.2.g.b.16.2 yes 10
9.7 even 3 189.2.h.b.37.2 10
21.2 odd 6 3969.2.a.z.1.4 5
21.5 even 6 3969.2.a.ba.1.4 5
21.11 odd 6 567.2.e.f.487.2 10
36.7 odd 6 3024.2.q.i.2305.5 10
36.11 even 6 1008.2.q.i.625.1 10
36.23 even 6 1008.2.t.i.961.4 10
36.31 odd 6 3024.2.t.i.289.1 10
63.2 odd 6 441.2.f.e.148.2 10
63.4 even 3 189.2.h.b.46.2 10
63.5 even 6 441.2.f.f.295.2 10
63.11 odd 6 63.2.g.b.4.2 10
63.13 odd 6 1323.2.g.f.667.4 10
63.16 even 3 1323.2.f.e.442.4 10
63.20 even 6 441.2.h.f.373.4 10
63.23 odd 6 441.2.f.e.295.2 10
63.25 even 3 189.2.g.b.172.4 10
63.31 odd 6 1323.2.h.f.802.2 10
63.32 odd 6 63.2.h.b.25.4 yes 10
63.34 odd 6 1323.2.h.f.226.2 10
63.38 even 6 441.2.g.f.67.2 10
63.40 odd 6 1323.2.f.f.883.4 10
63.41 even 6 441.2.g.f.79.2 10
63.47 even 6 441.2.f.f.148.2 10
63.52 odd 6 1323.2.g.f.361.4 10
63.58 even 3 1323.2.f.e.883.4 10
63.59 even 6 441.2.h.f.214.4 10
63.61 odd 6 1323.2.f.f.442.4 10
252.11 even 6 1008.2.t.i.193.4 10
252.67 odd 6 3024.2.q.i.2881.5 10
252.95 even 6 1008.2.q.i.529.1 10
252.151 odd 6 3024.2.t.i.1873.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.g.b.4.2 10 63.11 odd 6
63.2.g.b.16.2 yes 10 9.5 odd 6
63.2.h.b.25.4 yes 10 63.32 odd 6
63.2.h.b.58.4 yes 10 9.2 odd 6
189.2.g.b.100.4 10 9.4 even 3
189.2.g.b.172.4 10 63.25 even 3
189.2.h.b.37.2 10 9.7 even 3
189.2.h.b.46.2 10 63.4 even 3
441.2.f.e.148.2 10 63.2 odd 6
441.2.f.e.295.2 10 63.23 odd 6
441.2.f.f.148.2 10 63.47 even 6
441.2.f.f.295.2 10 63.5 even 6
441.2.g.f.67.2 10 63.38 even 6
441.2.g.f.79.2 10 63.41 even 6
441.2.h.f.214.4 10 63.59 even 6
441.2.h.f.373.4 10 63.20 even 6
567.2.e.e.163.4 10 1.1 even 1 trivial
567.2.e.e.487.4 10 7.4 even 3 inner
567.2.e.f.163.2 10 3.2 odd 2
567.2.e.f.487.2 10 21.11 odd 6
1008.2.q.i.529.1 10 252.95 even 6
1008.2.q.i.625.1 10 36.11 even 6
1008.2.t.i.193.4 10 252.11 even 6
1008.2.t.i.961.4 10 36.23 even 6
1323.2.f.e.442.4 10 63.16 even 3
1323.2.f.e.883.4 10 63.58 even 3
1323.2.f.f.442.4 10 63.61 odd 6
1323.2.f.f.883.4 10 63.40 odd 6
1323.2.g.f.361.4 10 63.52 odd 6
1323.2.g.f.667.4 10 63.13 odd 6
1323.2.h.f.226.2 10 63.34 odd 6
1323.2.h.f.802.2 10 63.31 odd 6
3024.2.q.i.2305.5 10 36.7 odd 6
3024.2.q.i.2881.5 10 252.67 odd 6
3024.2.t.i.289.1 10 36.31 odd 6
3024.2.t.i.1873.1 10 252.151 odd 6
3969.2.a.z.1.4 5 21.2 odd 6
3969.2.a.ba.1.4 5 21.5 even 6
3969.2.a.bb.1.2 5 7.5 odd 6
3969.2.a.bc.1.2 5 7.2 even 3