Properties

Label 3024.2.t.a
Level $3024$
Weight $2$
Character orbit 3024.t
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(289,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{5} + (\zeta_{6} - 3) q^{7} - 3 q^{11} + ( - \zeta_{6} + 1) q^{13} + ( - 3 \zeta_{6} + 3) q^{17} - 7 \zeta_{6} q^{19} - 9 q^{23} + 4 q^{25} + 3 \zeta_{6} q^{29} + 8 \zeta_{6} q^{31} + ( - 3 \zeta_{6} + 9) q^{35} + \cdots + \zeta_{6} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} - 5 q^{7} - 6 q^{11} + q^{13} + 3 q^{17} - 7 q^{19} - 18 q^{23} + 8 q^{25} + 3 q^{29} + 8 q^{31} + 15 q^{35} + q^{37} + 3 q^{41} - q^{43} + 11 q^{49} + 3 q^{53} + 18 q^{55} - 2 q^{61} - 3 q^{65}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −3.00000 0 −2.50000 0.866025i 0 0 0
1873.1 0 0 0 −3.00000 0 −2.50000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.t.a 2
3.b odd 2 1 1008.2.t.f 2
4.b odd 2 1 378.2.h.a 2
7.c even 3 1 3024.2.q.f 2
9.c even 3 1 3024.2.q.f 2
9.d odd 6 1 1008.2.q.a 2
12.b even 2 1 126.2.h.b yes 2
21.h odd 6 1 1008.2.q.a 2
28.d even 2 1 2646.2.h.d 2
28.f even 6 1 2646.2.e.g 2
28.f even 6 1 2646.2.f.a 2
28.g odd 6 1 378.2.e.b 2
28.g odd 6 1 2646.2.f.d 2
36.f odd 6 1 378.2.e.b 2
36.f odd 6 1 1134.2.g.c 2
36.h even 6 1 126.2.e.a 2
36.h even 6 1 1134.2.g.e 2
63.g even 3 1 inner 3024.2.t.a 2
63.n odd 6 1 1008.2.t.f 2
84.h odd 2 1 882.2.h.i 2
84.j odd 6 1 882.2.e.c 2
84.j odd 6 1 882.2.f.g 2
84.n even 6 1 126.2.e.a 2
84.n even 6 1 882.2.f.i 2
252.n even 6 1 2646.2.h.d 2
252.n even 6 1 7938.2.a.be 1
252.o even 6 1 126.2.h.b yes 2
252.o even 6 1 7938.2.a.m 1
252.r odd 6 1 882.2.f.g 2
252.s odd 6 1 882.2.e.c 2
252.u odd 6 1 1134.2.g.c 2
252.u odd 6 1 2646.2.f.d 2
252.bb even 6 1 882.2.f.i 2
252.bb even 6 1 1134.2.g.e 2
252.bi even 6 1 2646.2.e.g 2
252.bj even 6 1 2646.2.f.a 2
252.bl odd 6 1 378.2.h.a 2
252.bl odd 6 1 7938.2.a.t 1
252.bn odd 6 1 882.2.h.i 2
252.bn odd 6 1 7938.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.a 2 36.h even 6 1
126.2.e.a 2 84.n even 6 1
126.2.h.b yes 2 12.b even 2 1
126.2.h.b yes 2 252.o even 6 1
378.2.e.b 2 28.g odd 6 1
378.2.e.b 2 36.f odd 6 1
378.2.h.a 2 4.b odd 2 1
378.2.h.a 2 252.bl odd 6 1
882.2.e.c 2 84.j odd 6 1
882.2.e.c 2 252.s odd 6 1
882.2.f.g 2 84.j odd 6 1
882.2.f.g 2 252.r odd 6 1
882.2.f.i 2 84.n even 6 1
882.2.f.i 2 252.bb even 6 1
882.2.h.i 2 84.h odd 2 1
882.2.h.i 2 252.bn odd 6 1
1008.2.q.a 2 9.d odd 6 1
1008.2.q.a 2 21.h odd 6 1
1008.2.t.f 2 3.b odd 2 1
1008.2.t.f 2 63.n odd 6 1
1134.2.g.c 2 36.f odd 6 1
1134.2.g.c 2 252.u odd 6 1
1134.2.g.e 2 36.h even 6 1
1134.2.g.e 2 252.bb even 6 1
2646.2.e.g 2 28.f even 6 1
2646.2.e.g 2 252.bi even 6 1
2646.2.f.a 2 28.f even 6 1
2646.2.f.a 2 252.bj even 6 1
2646.2.f.d 2 28.g odd 6 1
2646.2.f.d 2 252.u odd 6 1
2646.2.h.d 2 28.d even 2 1
2646.2.h.d 2 252.n even 6 1
3024.2.q.f 2 7.c even 3 1
3024.2.q.f 2 9.c even 3 1
3024.2.t.a 2 1.a even 1 1 trivial
3024.2.t.a 2 63.g even 3 1 inner
7938.2.a.b 1 252.bn odd 6 1
7938.2.a.m 1 252.o even 6 1
7938.2.a.t 1 252.bl odd 6 1
7938.2.a.be 1 252.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$23$ \( (T + 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$83$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$89$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less