Properties

Label 882.2.h.i
Level 882882
Weight 22
Character orbit 882.h
Analytic conductor 7.0437.043
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(67,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 882.h (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.042805458287.04280545828
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ6+1)q2+(ζ6+2)q3ζ6q43q5+(2ζ6+1)q6q8+(3ζ6+3)q9+(3ζ63)q103q11+(ζ61)q12++(9ζ69)q99+O(q100) q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} - 3 q^{5} + ( - 2 \zeta_{6} + 1) q^{6} - q^{8} + ( - 3 \zeta_{6} + 3) q^{9} + (3 \zeta_{6} - 3) q^{10} - 3 q^{11} + ( - \zeta_{6} - 1) q^{12} + \cdots + (9 \zeta_{6} - 9) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2+3q3q46q52q8+3q93q106q113q12q139q15q16+3q173q187q19+3q203q2218q233q24+9q99+O(q100) 2 q + q^{2} + 3 q^{3} - q^{4} - 6 q^{5} - 2 q^{8} + 3 q^{9} - 3 q^{10} - 6 q^{11} - 3 q^{12} - q^{13} - 9 q^{15} - q^{16} + 3 q^{17} - 3 q^{18} - 7 q^{19} + 3 q^{20} - 3 q^{22} - 18 q^{23} - 3 q^{24}+ \cdots - 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/882Z)×\left(\mathbb{Z}/882\mathbb{Z}\right)^\times.

nn 199199 785785
χ(n)\chi(n) ζ6-\zeta_{6} 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 1.50000 0.866025i −0.500000 0.866025i −3.00000 1.73205i 0 −1.00000 1.50000 2.59808i −1.50000 + 2.59808i
79.1 0.500000 + 0.866025i 1.50000 + 0.866025i −0.500000 + 0.866025i −3.00000 1.73205i 0 −1.00000 1.50000 + 2.59808i −1.50000 2.59808i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.h.i 2
3.b odd 2 1 2646.2.h.d 2
7.b odd 2 1 126.2.h.b yes 2
7.c even 3 1 882.2.e.c 2
7.c even 3 1 882.2.f.g 2
7.d odd 6 1 126.2.e.a 2
7.d odd 6 1 882.2.f.i 2
9.c even 3 1 882.2.e.c 2
9.d odd 6 1 2646.2.e.g 2
21.c even 2 1 378.2.h.a 2
21.g even 6 1 378.2.e.b 2
21.g even 6 1 2646.2.f.d 2
21.h odd 6 1 2646.2.e.g 2
21.h odd 6 1 2646.2.f.a 2
28.d even 2 1 1008.2.t.f 2
28.f even 6 1 1008.2.q.a 2
63.g even 3 1 inner 882.2.h.i 2
63.g even 3 1 7938.2.a.b 1
63.h even 3 1 882.2.f.g 2
63.i even 6 1 1134.2.g.c 2
63.i even 6 1 2646.2.f.d 2
63.j odd 6 1 2646.2.f.a 2
63.k odd 6 1 126.2.h.b yes 2
63.k odd 6 1 7938.2.a.m 1
63.l odd 6 1 126.2.e.a 2
63.l odd 6 1 1134.2.g.e 2
63.n odd 6 1 2646.2.h.d 2
63.n odd 6 1 7938.2.a.be 1
63.o even 6 1 378.2.e.b 2
63.o even 6 1 1134.2.g.c 2
63.s even 6 1 378.2.h.a 2
63.s even 6 1 7938.2.a.t 1
63.t odd 6 1 882.2.f.i 2
63.t odd 6 1 1134.2.g.e 2
84.h odd 2 1 3024.2.t.a 2
84.j odd 6 1 3024.2.q.f 2
252.n even 6 1 1008.2.t.f 2
252.s odd 6 1 3024.2.q.f 2
252.bi even 6 1 1008.2.q.a 2
252.bn odd 6 1 3024.2.t.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.a 2 7.d odd 6 1
126.2.e.a 2 63.l odd 6 1
126.2.h.b yes 2 7.b odd 2 1
126.2.h.b yes 2 63.k odd 6 1
378.2.e.b 2 21.g even 6 1
378.2.e.b 2 63.o even 6 1
378.2.h.a 2 21.c even 2 1
378.2.h.a 2 63.s even 6 1
882.2.e.c 2 7.c even 3 1
882.2.e.c 2 9.c even 3 1
882.2.f.g 2 7.c even 3 1
882.2.f.g 2 63.h even 3 1
882.2.f.i 2 7.d odd 6 1
882.2.f.i 2 63.t odd 6 1
882.2.h.i 2 1.a even 1 1 trivial
882.2.h.i 2 63.g even 3 1 inner
1008.2.q.a 2 28.f even 6 1
1008.2.q.a 2 252.bi even 6 1
1008.2.t.f 2 28.d even 2 1
1008.2.t.f 2 252.n even 6 1
1134.2.g.c 2 63.i even 6 1
1134.2.g.c 2 63.o even 6 1
1134.2.g.e 2 63.l odd 6 1
1134.2.g.e 2 63.t odd 6 1
2646.2.e.g 2 9.d odd 6 1
2646.2.e.g 2 21.h odd 6 1
2646.2.f.a 2 21.h odd 6 1
2646.2.f.a 2 63.j odd 6 1
2646.2.f.d 2 21.g even 6 1
2646.2.f.d 2 63.i even 6 1
2646.2.h.d 2 3.b odd 2 1
2646.2.h.d 2 63.n odd 6 1
3024.2.q.f 2 84.j odd 6 1
3024.2.q.f 2 252.s odd 6 1
3024.2.t.a 2 84.h odd 2 1
3024.2.t.a 2 252.bn odd 6 1
7938.2.a.b 1 63.g even 3 1
7938.2.a.m 1 63.k odd 6 1
7938.2.a.t 1 63.s even 6 1
7938.2.a.be 1 63.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(882,[χ])S_{2}^{\mathrm{new}}(882, [\chi]):

T5+3 T_{5} + 3 Copy content Toggle raw display
T11+3 T_{11} + 3 Copy content Toggle raw display
T132+T13+1 T_{13}^{2} + T_{13} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1919 T2+7T+49 T^{2} + 7T + 49 Copy content Toggle raw display
2323 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
2929 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
3131 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
3737 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4141 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
7979 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
8383 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8989 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
9797 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
show more
show less