Properties

Label 882.2.h.i
Level $882$
Weight $2$
Character orbit 882.h
Analytic conductor $7.043$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(67,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 2) q^{3} - \zeta_{6} q^{4} - 3 q^{5} + ( - 2 \zeta_{6} + 1) q^{6} - q^{8} + ( - 3 \zeta_{6} + 3) q^{9} + (3 \zeta_{6} - 3) q^{10} - 3 q^{11} + ( - \zeta_{6} - 1) q^{12} + \cdots + (9 \zeta_{6} - 9) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} - 6 q^{5} - 2 q^{8} + 3 q^{9} - 3 q^{10} - 6 q^{11} - 3 q^{12} - q^{13} - 9 q^{15} - q^{16} + 3 q^{17} - 3 q^{18} - 7 q^{19} + 3 q^{20} - 3 q^{22} - 18 q^{23} - 3 q^{24}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 1.50000 0.866025i −0.500000 0.866025i −3.00000 1.73205i 0 −1.00000 1.50000 2.59808i −1.50000 + 2.59808i
79.1 0.500000 + 0.866025i 1.50000 + 0.866025i −0.500000 + 0.866025i −3.00000 1.73205i 0 −1.00000 1.50000 + 2.59808i −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.h.i 2
3.b odd 2 1 2646.2.h.d 2
7.b odd 2 1 126.2.h.b yes 2
7.c even 3 1 882.2.e.c 2
7.c even 3 1 882.2.f.g 2
7.d odd 6 1 126.2.e.a 2
7.d odd 6 1 882.2.f.i 2
9.c even 3 1 882.2.e.c 2
9.d odd 6 1 2646.2.e.g 2
21.c even 2 1 378.2.h.a 2
21.g even 6 1 378.2.e.b 2
21.g even 6 1 2646.2.f.d 2
21.h odd 6 1 2646.2.e.g 2
21.h odd 6 1 2646.2.f.a 2
28.d even 2 1 1008.2.t.f 2
28.f even 6 1 1008.2.q.a 2
63.g even 3 1 inner 882.2.h.i 2
63.g even 3 1 7938.2.a.b 1
63.h even 3 1 882.2.f.g 2
63.i even 6 1 1134.2.g.c 2
63.i even 6 1 2646.2.f.d 2
63.j odd 6 1 2646.2.f.a 2
63.k odd 6 1 126.2.h.b yes 2
63.k odd 6 1 7938.2.a.m 1
63.l odd 6 1 126.2.e.a 2
63.l odd 6 1 1134.2.g.e 2
63.n odd 6 1 2646.2.h.d 2
63.n odd 6 1 7938.2.a.be 1
63.o even 6 1 378.2.e.b 2
63.o even 6 1 1134.2.g.c 2
63.s even 6 1 378.2.h.a 2
63.s even 6 1 7938.2.a.t 1
63.t odd 6 1 882.2.f.i 2
63.t odd 6 1 1134.2.g.e 2
84.h odd 2 1 3024.2.t.a 2
84.j odd 6 1 3024.2.q.f 2
252.n even 6 1 1008.2.t.f 2
252.s odd 6 1 3024.2.q.f 2
252.bi even 6 1 1008.2.q.a 2
252.bn odd 6 1 3024.2.t.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.e.a 2 7.d odd 6 1
126.2.e.a 2 63.l odd 6 1
126.2.h.b yes 2 7.b odd 2 1
126.2.h.b yes 2 63.k odd 6 1
378.2.e.b 2 21.g even 6 1
378.2.e.b 2 63.o even 6 1
378.2.h.a 2 21.c even 2 1
378.2.h.a 2 63.s even 6 1
882.2.e.c 2 7.c even 3 1
882.2.e.c 2 9.c even 3 1
882.2.f.g 2 7.c even 3 1
882.2.f.g 2 63.h even 3 1
882.2.f.i 2 7.d odd 6 1
882.2.f.i 2 63.t odd 6 1
882.2.h.i 2 1.a even 1 1 trivial
882.2.h.i 2 63.g even 3 1 inner
1008.2.q.a 2 28.f even 6 1
1008.2.q.a 2 252.bi even 6 1
1008.2.t.f 2 28.d even 2 1
1008.2.t.f 2 252.n even 6 1
1134.2.g.c 2 63.i even 6 1
1134.2.g.c 2 63.o even 6 1
1134.2.g.e 2 63.l odd 6 1
1134.2.g.e 2 63.t odd 6 1
2646.2.e.g 2 9.d odd 6 1
2646.2.e.g 2 21.h odd 6 1
2646.2.f.a 2 21.h odd 6 1
2646.2.f.a 2 63.j odd 6 1
2646.2.f.d 2 21.g even 6 1
2646.2.f.d 2 63.i even 6 1
2646.2.h.d 2 3.b odd 2 1
2646.2.h.d 2 63.n odd 6 1
3024.2.q.f 2 84.j odd 6 1
3024.2.q.f 2 252.s odd 6 1
3024.2.t.a 2 84.h odd 2 1
3024.2.t.a 2 252.bn odd 6 1
7938.2.a.b 1 63.g even 3 1
7938.2.a.m 1 63.k odd 6 1
7938.2.a.t 1 63.s even 6 1
7938.2.a.be 1 63.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(882, [\chi])\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} + T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$23$ \( (T + 9)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$83$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$89$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$97$ \( T^{2} + T + 1 \) Copy content Toggle raw display
show more
show less