Properties

Label 3024.2.t.l.1873.9
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(289,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.9
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.l.289.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52290 q^{5} +(1.07705 - 2.41660i) q^{7} -5.71296 q^{11} +(-2.45245 + 4.24777i) q^{13} +(-2.49483 + 4.32118i) q^{17} +(0.00383929 + 0.00664984i) q^{19} +0.667754 q^{23} +1.36505 q^{25} +(-3.85082 - 6.66981i) q^{29} +(-3.88302 - 6.72560i) q^{31} +(2.71729 - 6.09686i) q^{35} +(-3.19562 - 5.53498i) q^{37} +(-5.21159 + 9.02673i) q^{41} +(-4.42935 - 7.67185i) q^{43} +(-1.08052 + 1.87152i) q^{47} +(-4.67994 - 5.20559i) q^{49} +(3.69858 - 6.40613i) q^{53} -14.4133 q^{55} +(0.261797 + 0.453446i) q^{59} +(4.49541 - 7.78628i) q^{61} +(-6.18730 + 10.7167i) q^{65} +(-2.54791 - 4.41311i) q^{67} -5.68471 q^{71} +(-1.52062 + 2.63379i) q^{73} +(-6.15314 + 13.8060i) q^{77} +(3.08115 - 5.33671i) q^{79} +(-0.258726 - 0.448126i) q^{83} +(-6.29422 + 10.9019i) q^{85} +(-1.19093 - 2.06274i) q^{89} +(7.62377 + 10.5017i) q^{91} +(0.00968615 + 0.0167769i) q^{95} +(4.32994 + 7.49968i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 6 q^{5} - 7 q^{7} + 6 q^{11} - 3 q^{13} - 7 q^{17} + q^{19} - 4 q^{23} + 20 q^{25} - 9 q^{29} + 4 q^{31} + 14 q^{35} + 2 q^{37} - 16 q^{41} + 5 q^{47} - 15 q^{49} - 11 q^{53} - 22 q^{55} - 19 q^{59}+ \cdots - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.52290 1.12828 0.564139 0.825680i \(-0.309208\pi\)
0.564139 + 0.825680i \(0.309208\pi\)
\(6\) 0 0
\(7\) 1.07705 2.41660i 0.407086 0.913390i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.71296 −1.72252 −0.861262 0.508161i \(-0.830325\pi\)
−0.861262 + 0.508161i \(0.830325\pi\)
\(12\) 0 0
\(13\) −2.45245 + 4.24777i −0.680188 + 1.17812i 0.294735 + 0.955579i \(0.404769\pi\)
−0.974923 + 0.222541i \(0.928565\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.49483 + 4.32118i −0.605086 + 1.04804i 0.386952 + 0.922100i \(0.373528\pi\)
−0.992038 + 0.125939i \(0.959806\pi\)
\(18\) 0 0
\(19\) 0.00383929 + 0.00664984i 0.000880793 + 0.00152558i 0.866465 0.499237i \(-0.166386\pi\)
−0.865585 + 0.500763i \(0.833053\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.667754 0.139236 0.0696181 0.997574i \(-0.477822\pi\)
0.0696181 + 0.997574i \(0.477822\pi\)
\(24\) 0 0
\(25\) 1.36505 0.273010
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.85082 6.66981i −0.715079 1.23855i −0.962929 0.269754i \(-0.913058\pi\)
0.247851 0.968798i \(-0.420276\pi\)
\(30\) 0 0
\(31\) −3.88302 6.72560i −0.697412 1.20795i −0.969361 0.245641i \(-0.921002\pi\)
0.271949 0.962312i \(-0.412332\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.71729 6.09686i 0.459306 1.03056i
\(36\) 0 0
\(37\) −3.19562 5.53498i −0.525357 0.909946i −0.999564 0.0295319i \(-0.990598\pi\)
0.474207 0.880414i \(-0.342735\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.21159 + 9.02673i −0.813913 + 1.40974i 0.0961931 + 0.995363i \(0.469333\pi\)
−0.910106 + 0.414376i \(0.864000\pi\)
\(42\) 0 0
\(43\) −4.42935 7.67185i −0.675469 1.16995i −0.976332 0.216279i \(-0.930608\pi\)
0.300863 0.953668i \(-0.402725\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.08052 + 1.87152i −0.157610 + 0.272989i −0.934006 0.357256i \(-0.883712\pi\)
0.776396 + 0.630245i \(0.217046\pi\)
\(48\) 0 0
\(49\) −4.67994 5.20559i −0.668562 0.743656i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.69858 6.40613i 0.508039 0.879950i −0.491917 0.870642i \(-0.663704\pi\)
0.999957 0.00930815i \(-0.00296292\pi\)
\(54\) 0 0
\(55\) −14.4133 −1.94348
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.261797 + 0.453446i 0.0340831 + 0.0590336i 0.882564 0.470193i \(-0.155816\pi\)
−0.848481 + 0.529226i \(0.822482\pi\)
\(60\) 0 0
\(61\) 4.49541 7.78628i 0.575578 0.996931i −0.420400 0.907339i \(-0.638110\pi\)
0.995979 0.0895919i \(-0.0285563\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.18730 + 10.7167i −0.767441 + 1.32925i
\(66\) 0 0
\(67\) −2.54791 4.41311i −0.311277 0.539147i 0.667362 0.744733i \(-0.267423\pi\)
−0.978639 + 0.205586i \(0.934090\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.68471 −0.674651 −0.337325 0.941388i \(-0.609522\pi\)
−0.337325 + 0.941388i \(0.609522\pi\)
\(72\) 0 0
\(73\) −1.52062 + 2.63379i −0.177975 + 0.308262i −0.941187 0.337887i \(-0.890288\pi\)
0.763212 + 0.646148i \(0.223621\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.15314 + 13.8060i −0.701215 + 1.57334i
\(78\) 0 0
\(79\) 3.08115 5.33671i 0.346657 0.600427i −0.638997 0.769209i \(-0.720650\pi\)
0.985653 + 0.168783i \(0.0539836\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.258726 0.448126i −0.0283988 0.0491882i 0.851477 0.524392i \(-0.175708\pi\)
−0.879876 + 0.475204i \(0.842374\pi\)
\(84\) 0 0
\(85\) −6.29422 + 10.9019i −0.682704 + 1.18248i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.19093 2.06274i −0.126238 0.218650i 0.795978 0.605325i \(-0.206957\pi\)
−0.922216 + 0.386675i \(0.873624\pi\)
\(90\) 0 0
\(91\) 7.62377 + 10.5017i 0.799188 + 1.10087i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.00968615 + 0.0167769i 0.000993778 + 0.00172127i
\(96\) 0 0
\(97\) 4.32994 + 7.49968i 0.439639 + 0.761477i 0.997662 0.0683485i \(-0.0217730\pi\)
−0.558022 + 0.829826i \(0.688440\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.33566 0.928933 0.464466 0.885591i \(-0.346246\pi\)
0.464466 + 0.885591i \(0.346246\pi\)
\(102\) 0 0
\(103\) −16.2185 −1.59806 −0.799029 0.601293i \(-0.794653\pi\)
−0.799029 + 0.601293i \(0.794653\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.50171 + 7.79718i 0.435196 + 0.753782i 0.997312 0.0732767i \(-0.0233456\pi\)
−0.562115 + 0.827059i \(0.690012\pi\)
\(108\) 0 0
\(109\) 3.71563 6.43566i 0.355893 0.616424i −0.631378 0.775476i \(-0.717510\pi\)
0.987270 + 0.159051i \(0.0508435\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.14642 + 12.3780i −0.672278 + 1.16442i 0.304978 + 0.952359i \(0.401351\pi\)
−0.977256 + 0.212061i \(0.931982\pi\)
\(114\) 0 0
\(115\) 1.68468 0.157097
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.75551 + 10.6831i 0.710947 + 0.979321i
\(120\) 0 0
\(121\) 21.6380 1.96709
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.17064 −0.820247
\(126\) 0 0
\(127\) 1.96011 0.173932 0.0869660 0.996211i \(-0.472283\pi\)
0.0869660 + 0.996211i \(0.472283\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.98825 −0.348455 −0.174227 0.984705i \(-0.555743\pi\)
−0.174227 + 0.984705i \(0.555743\pi\)
\(132\) 0 0
\(133\) 0.0202051 0.00211583i 0.00175201 0.000183466i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.40843 0.632945 0.316473 0.948602i \(-0.397501\pi\)
0.316473 + 0.948602i \(0.397501\pi\)
\(138\) 0 0
\(139\) −6.92660 + 11.9972i −0.587507 + 1.01759i 0.407051 + 0.913405i \(0.366557\pi\)
−0.994558 + 0.104186i \(0.966776\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.0108 24.2674i 1.17164 2.02934i
\(144\) 0 0
\(145\) −9.71524 16.8273i −0.806807 1.39743i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.1040 1.15545 0.577724 0.816232i \(-0.303941\pi\)
0.577724 + 0.816232i \(0.303941\pi\)
\(150\) 0 0
\(151\) 10.6005 0.862660 0.431330 0.902194i \(-0.358044\pi\)
0.431330 + 0.902194i \(0.358044\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.79650 16.9680i −0.786874 1.36291i
\(156\) 0 0
\(157\) 0.129779 + 0.224784i 0.0103575 + 0.0179397i 0.871158 0.491003i \(-0.163370\pi\)
−0.860800 + 0.508943i \(0.830036\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.719203 1.61370i 0.0566811 0.127177i
\(162\) 0 0
\(163\) −6.31882 10.9445i −0.494928 0.857241i 0.505055 0.863087i \(-0.331472\pi\)
−0.999983 + 0.00584647i \(0.998139\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.74959 + 9.95859i −0.444917 + 0.770619i −0.998046 0.0624765i \(-0.980100\pi\)
0.553129 + 0.833095i \(0.313433\pi\)
\(168\) 0 0
\(169\) −5.52905 9.57659i −0.425311 0.736661i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.90471 + 13.6914i −0.600984 + 1.04094i 0.391688 + 0.920098i \(0.371891\pi\)
−0.992672 + 0.120837i \(0.961442\pi\)
\(174\) 0 0
\(175\) 1.47022 3.29878i 0.111138 0.249364i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.49849 + 14.7198i −0.635207 + 1.10021i 0.351265 + 0.936276i \(0.385752\pi\)
−0.986471 + 0.163934i \(0.947582\pi\)
\(180\) 0 0
\(181\) 6.35841 0.472617 0.236308 0.971678i \(-0.424062\pi\)
0.236308 + 0.971678i \(0.424062\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.06225 13.9642i −0.592749 1.02667i
\(186\) 0 0
\(187\) 14.2529 24.6867i 1.04227 1.80527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.07047 3.58616i 0.149814 0.259485i −0.781345 0.624100i \(-0.785466\pi\)
0.931159 + 0.364614i \(0.118799\pi\)
\(192\) 0 0
\(193\) 3.84793 + 6.66481i 0.276980 + 0.479743i 0.970633 0.240566i \(-0.0773331\pi\)
−0.693653 + 0.720310i \(0.744000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.29508 −0.234765 −0.117383 0.993087i \(-0.537450\pi\)
−0.117383 + 0.993087i \(0.537450\pi\)
\(198\) 0 0
\(199\) −8.08840 + 14.0095i −0.573371 + 0.993108i 0.422845 + 0.906202i \(0.361031\pi\)
−0.996216 + 0.0869063i \(0.972302\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −20.2658 + 2.12219i −1.42238 + 0.148948i
\(204\) 0 0
\(205\) −13.1483 + 22.7736i −0.918319 + 1.59058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.0219337 0.0379903i −0.00151719 0.00262784i
\(210\) 0 0
\(211\) 13.9633 24.1851i 0.961273 1.66497i 0.241961 0.970286i \(-0.422209\pi\)
0.719312 0.694687i \(-0.244457\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.1748 19.3554i −0.762116 1.32002i
\(216\) 0 0
\(217\) −20.4353 + 2.13994i −1.38724 + 0.145268i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.2369 21.1950i −0.823144 1.42573i
\(222\) 0 0
\(223\) 10.1652 + 17.6066i 0.680711 + 1.17903i 0.974764 + 0.223237i \(0.0716623\pi\)
−0.294054 + 0.955789i \(0.595004\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.68939 −0.377618 −0.188809 0.982014i \(-0.560463\pi\)
−0.188809 + 0.982014i \(0.560463\pi\)
\(228\) 0 0
\(229\) 14.8542 0.981590 0.490795 0.871275i \(-0.336706\pi\)
0.490795 + 0.871275i \(0.336706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.70652 11.6160i −0.439358 0.760991i 0.558282 0.829652i \(-0.311461\pi\)
−0.997640 + 0.0686603i \(0.978128\pi\)
\(234\) 0 0
\(235\) −2.72605 + 4.72166i −0.177828 + 0.308007i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.33123 + 16.1622i −0.603587 + 1.04544i 0.388686 + 0.921370i \(0.372929\pi\)
−0.992273 + 0.124073i \(0.960404\pi\)
\(240\) 0 0
\(241\) −21.4160 −1.37952 −0.689762 0.724036i \(-0.742285\pi\)
−0.689762 + 0.724036i \(0.742285\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.8070 13.1332i −0.754324 0.839050i
\(246\) 0 0
\(247\) −0.0376627 −0.00239642
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.462898 −0.0292179 −0.0146089 0.999893i \(-0.504650\pi\)
−0.0146089 + 0.999893i \(0.504650\pi\)
\(252\) 0 0
\(253\) −3.81485 −0.239838
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.802512 −0.0500593 −0.0250297 0.999687i \(-0.507968\pi\)
−0.0250297 + 0.999687i \(0.507968\pi\)
\(258\) 0 0
\(259\) −16.8177 + 1.76111i −1.04500 + 0.109430i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.201387 0.0124180 0.00620902 0.999981i \(-0.498024\pi\)
0.00620902 + 0.999981i \(0.498024\pi\)
\(264\) 0 0
\(265\) 9.33117 16.1621i 0.573209 0.992828i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.1773 19.3596i 0.681490 1.18038i −0.293036 0.956101i \(-0.594666\pi\)
0.974526 0.224274i \(-0.0720011\pi\)
\(270\) 0 0
\(271\) 1.78925 + 3.09907i 0.108689 + 0.188255i 0.915240 0.402910i \(-0.132001\pi\)
−0.806550 + 0.591166i \(0.798668\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.79847 −0.470266
\(276\) 0 0
\(277\) −10.1067 −0.607254 −0.303627 0.952791i \(-0.598198\pi\)
−0.303627 + 0.952791i \(0.598198\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.7114 22.0167i −0.758296 1.31341i −0.943719 0.330749i \(-0.892699\pi\)
0.185422 0.982659i \(-0.440635\pi\)
\(282\) 0 0
\(283\) 1.93833 + 3.35728i 0.115222 + 0.199570i 0.917868 0.396885i \(-0.129909\pi\)
−0.802647 + 0.596455i \(0.796575\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.2009 + 22.3166i 0.956308 + 1.31730i
\(288\) 0 0
\(289\) −3.94838 6.83879i −0.232257 0.402282i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.428834 + 0.742762i −0.0250527 + 0.0433926i −0.878280 0.478147i \(-0.841309\pi\)
0.853227 + 0.521539i \(0.174642\pi\)
\(294\) 0 0
\(295\) 0.660489 + 1.14400i 0.0384551 + 0.0666063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.63763 + 2.83647i −0.0947068 + 0.164037i
\(300\) 0 0
\(301\) −23.3104 + 2.44102i −1.34359 + 0.140698i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.3415 19.6440i 0.649412 1.12481i
\(306\) 0 0
\(307\) 0.717950 0.0409756 0.0204878 0.999790i \(-0.493478\pi\)
0.0204878 + 0.999790i \(0.493478\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.72606 + 8.18578i 0.267990 + 0.464173i 0.968343 0.249624i \(-0.0803071\pi\)
−0.700352 + 0.713797i \(0.746974\pi\)
\(312\) 0 0
\(313\) 11.6317 20.1467i 0.657464 1.13876i −0.323806 0.946124i \(-0.604962\pi\)
0.981270 0.192638i \(-0.0617043\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.61771 11.4622i 0.371687 0.643781i −0.618138 0.786070i \(-0.712113\pi\)
0.989825 + 0.142288i \(0.0454460\pi\)
\(318\) 0 0
\(319\) 21.9996 + 38.1044i 1.23174 + 2.13344i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.0383135 −0.00213182
\(324\) 0 0
\(325\) −3.34772 + 5.79841i −0.185698 + 0.321638i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.35894 + 4.62690i 0.185184 + 0.255089i
\(330\) 0 0
\(331\) −15.2165 + 26.3558i −0.836375 + 1.44864i 0.0565316 + 0.998401i \(0.481996\pi\)
−0.892906 + 0.450243i \(0.851338\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.42813 11.1339i −0.351206 0.608307i
\(336\) 0 0
\(337\) −0.767420 + 1.32921i −0.0418041 + 0.0724067i −0.886170 0.463360i \(-0.846644\pi\)
0.844366 + 0.535766i \(0.179977\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.1836 + 38.4231i 1.20131 + 2.08073i
\(342\) 0 0
\(343\) −17.6204 + 5.70287i −0.951410 + 0.307926i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.3036 + 24.7745i 0.767856 + 1.32997i 0.938723 + 0.344672i \(0.112010\pi\)
−0.170867 + 0.985294i \(0.554657\pi\)
\(348\) 0 0
\(349\) −9.05123 15.6772i −0.484501 0.839181i 0.515340 0.856986i \(-0.327666\pi\)
−0.999841 + 0.0178047i \(0.994332\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.5908 −0.776591 −0.388295 0.921535i \(-0.626936\pi\)
−0.388295 + 0.921535i \(0.626936\pi\)
\(354\) 0 0
\(355\) −14.3420 −0.761193
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.05831 1.83304i −0.0558554 0.0967443i 0.836746 0.547592i \(-0.184455\pi\)
−0.892601 + 0.450847i \(0.851122\pi\)
\(360\) 0 0
\(361\) 9.49997 16.4544i 0.499998 0.866023i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.83638 + 6.64480i −0.200805 + 0.347805i
\(366\) 0 0
\(367\) −6.66209 −0.347758 −0.173879 0.984767i \(-0.555630\pi\)
−0.173879 + 0.984767i \(0.555630\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.4975 15.8377i −0.596922 0.822253i
\(372\) 0 0
\(373\) −12.4983 −0.647138 −0.323569 0.946205i \(-0.604883\pi\)
−0.323569 + 0.946205i \(0.604883\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.7758 1.94555
\(378\) 0 0
\(379\) 19.5504 1.00423 0.502117 0.864800i \(-0.332555\pi\)
0.502117 + 0.864800i \(0.332555\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.67480 −0.136676 −0.0683379 0.997662i \(-0.521770\pi\)
−0.0683379 + 0.997662i \(0.521770\pi\)
\(384\) 0 0
\(385\) −15.5238 + 34.8311i −0.791165 + 1.77516i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.96310 0.200937 0.100469 0.994940i \(-0.467966\pi\)
0.100469 + 0.994940i \(0.467966\pi\)
\(390\) 0 0
\(391\) −1.66593 + 2.88548i −0.0842499 + 0.145925i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.77345 13.4640i 0.391125 0.677448i
\(396\) 0 0
\(397\) 10.2978 + 17.8362i 0.516829 + 0.895175i 0.999809 + 0.0195431i \(0.00622114\pi\)
−0.482980 + 0.875632i \(0.660446\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.83957 0.191739 0.0958696 0.995394i \(-0.469437\pi\)
0.0958696 + 0.995394i \(0.469437\pi\)
\(402\) 0 0
\(403\) 38.0917 1.89748
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.2565 + 31.6212i 0.904940 + 1.56740i
\(408\) 0 0
\(409\) 14.7113 + 25.4808i 0.727428 + 1.25994i 0.957967 + 0.286880i \(0.0926180\pi\)
−0.230538 + 0.973063i \(0.574049\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.37777 0.144276i 0.0677954 0.00709938i
\(414\) 0 0
\(415\) −0.652741 1.13058i −0.0320418 0.0554980i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.40821 7.63525i 0.215355 0.373006i −0.738027 0.674771i \(-0.764242\pi\)
0.953382 + 0.301765i \(0.0975757\pi\)
\(420\) 0 0
\(421\) −17.6437 30.5597i −0.859899 1.48939i −0.872024 0.489462i \(-0.837193\pi\)
0.0121255 0.999926i \(-0.496140\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.40557 + 5.89861i −0.165194 + 0.286125i
\(426\) 0 0
\(427\) −13.9746 19.2498i −0.676277 0.931564i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.8099 + 22.1873i −0.617030 + 1.06873i 0.372995 + 0.927833i \(0.378331\pi\)
−0.990025 + 0.140893i \(0.955003\pi\)
\(432\) 0 0
\(433\) 16.8556 0.810030 0.405015 0.914310i \(-0.367266\pi\)
0.405015 + 0.914310i \(0.367266\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.00256370 + 0.00444045i 0.000122638 + 0.000212416i
\(438\) 0 0
\(439\) 15.4596 26.7768i 0.737846 1.27799i −0.215618 0.976478i \(-0.569176\pi\)
0.953463 0.301509i \(-0.0974902\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.65544 8.06345i 0.221186 0.383106i −0.733982 0.679169i \(-0.762340\pi\)
0.955169 + 0.296063i \(0.0956737\pi\)
\(444\) 0 0
\(445\) −3.00459 5.20410i −0.142431 0.246698i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.8055 −1.12345 −0.561724 0.827324i \(-0.689862\pi\)
−0.561724 + 0.827324i \(0.689862\pi\)
\(450\) 0 0
\(451\) 29.7736 51.5694i 1.40198 2.42831i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.2340 + 26.4947i 0.901706 + 1.24209i
\(456\) 0 0
\(457\) 6.90552 11.9607i 0.323027 0.559498i −0.658084 0.752944i \(-0.728633\pi\)
0.981111 + 0.193446i \(0.0619663\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.00256407 + 0.00444110i 0.000119421 + 0.000206843i 0.866085 0.499897i \(-0.166629\pi\)
−0.865966 + 0.500103i \(0.833295\pi\)
\(462\) 0 0
\(463\) −12.9682 + 22.4616i −0.602685 + 1.04388i 0.389728 + 0.920930i \(0.372569\pi\)
−0.992413 + 0.122951i \(0.960764\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0484 20.8684i −0.557532 0.965673i −0.997702 0.0677588i \(-0.978415\pi\)
0.440170 0.897914i \(-0.354918\pi\)
\(468\) 0 0
\(469\) −13.4090 + 1.40416i −0.619168 + 0.0648379i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.3047 + 43.8290i 1.16351 + 2.01526i
\(474\) 0 0
\(475\) 0.00524081 + 0.00907735i 0.000240465 + 0.000416497i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.7823 0.675420 0.337710 0.941250i \(-0.390348\pi\)
0.337710 + 0.941250i \(0.390348\pi\)
\(480\) 0 0
\(481\) 31.3485 1.42937
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.9240 + 18.9210i 0.496035 + 0.859158i
\(486\) 0 0
\(487\) −9.38360 + 16.2529i −0.425211 + 0.736488i −0.996440 0.0843033i \(-0.973134\pi\)
0.571229 + 0.820791i \(0.306467\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.2871 31.6741i 0.825284 1.42943i −0.0764182 0.997076i \(-0.524348\pi\)
0.901702 0.432358i \(-0.142318\pi\)
\(492\) 0 0
\(493\) 38.4286 1.73074
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.12270 + 13.7377i −0.274641 + 0.616219i
\(498\) 0 0
\(499\) −4.63182 −0.207349 −0.103674 0.994611i \(-0.533060\pi\)
−0.103674 + 0.994611i \(0.533060\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.4143 0.731879 0.365940 0.930639i \(-0.380748\pi\)
0.365940 + 0.930639i \(0.380748\pi\)
\(504\) 0 0
\(505\) 23.5530 1.04809
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.4834 −0.464668 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(510\) 0 0
\(511\) 4.72705 + 6.51145i 0.209112 + 0.288050i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −40.9178 −1.80305
\(516\) 0 0
\(517\) 6.17298 10.6919i 0.271487 0.470230i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.0087 19.0675i 0.482298 0.835364i −0.517496 0.855686i \(-0.673136\pi\)
0.999793 + 0.0203215i \(0.00646899\pi\)
\(522\) 0 0
\(523\) 1.18541 + 2.05320i 0.0518346 + 0.0897801i 0.890778 0.454438i \(-0.150160\pi\)
−0.838944 + 0.544218i \(0.816826\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.7500 1.68798
\(528\) 0 0
\(529\) −22.5541 −0.980613
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25.5623 44.2753i −1.10723 1.91777i
\(534\) 0 0
\(535\) 11.3574 + 19.6715i 0.491022 + 0.850475i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.7363 + 29.7394i 1.15161 + 1.28097i
\(540\) 0 0
\(541\) 6.65209 + 11.5218i 0.285996 + 0.495359i 0.972850 0.231436i \(-0.0743423\pi\)
−0.686854 + 0.726795i \(0.741009\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.37418 16.2366i 0.401546 0.695498i
\(546\) 0 0
\(547\) 2.43685 + 4.22074i 0.104192 + 0.180466i 0.913408 0.407046i \(-0.133441\pi\)
−0.809216 + 0.587512i \(0.800108\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.0295688 0.0512146i 0.00125967 0.00218182i
\(552\) 0 0
\(553\) −9.57816 13.1938i −0.407305 0.561058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.09601 + 12.2907i −0.300668 + 0.520772i −0.976287 0.216479i \(-0.930543\pi\)
0.675620 + 0.737250i \(0.263876\pi\)
\(558\) 0 0
\(559\) 43.4511 1.83778
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.51985 6.09657i −0.148344 0.256940i 0.782271 0.622938i \(-0.214061\pi\)
−0.930616 + 0.365998i \(0.880728\pi\)
\(564\) 0 0
\(565\) −18.0297 + 31.2284i −0.758516 + 1.31379i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.15081 + 15.8497i −0.383622 + 0.664453i −0.991577 0.129519i \(-0.958657\pi\)
0.607955 + 0.793972i \(0.291990\pi\)
\(570\) 0 0
\(571\) −15.2192 26.3604i −0.636902 1.10315i −0.986109 0.166102i \(-0.946882\pi\)
0.349206 0.937046i \(-0.386451\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.911516 0.0380128
\(576\) 0 0
\(577\) 5.65385 9.79275i 0.235373 0.407678i −0.724008 0.689791i \(-0.757702\pi\)
0.959381 + 0.282114i \(0.0910356\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.36160 + 0.142584i −0.0564888 + 0.00591538i
\(582\) 0 0
\(583\) −21.1299 + 36.5980i −0.875110 + 1.51573i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.89755 17.1431i −0.408516 0.707570i 0.586208 0.810161i \(-0.300620\pi\)
−0.994724 + 0.102591i \(0.967287\pi\)
\(588\) 0 0
\(589\) 0.0298161 0.0516430i 0.00122855 0.00212791i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.69067 4.66038i −0.110493 0.191379i 0.805476 0.592628i \(-0.201910\pi\)
−0.915969 + 0.401249i \(0.868576\pi\)
\(594\) 0 0
\(595\) 19.5664 + 26.9525i 0.802145 + 1.10495i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.12979 1.95686i −0.0461622 0.0799552i 0.842021 0.539445i \(-0.181366\pi\)
−0.888183 + 0.459489i \(0.848032\pi\)
\(600\) 0 0
\(601\) 18.1873 + 31.5013i 0.741875 + 1.28496i 0.951641 + 0.307213i \(0.0993964\pi\)
−0.209766 + 0.977752i \(0.567270\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 54.5905 2.21942
\(606\) 0 0
\(607\) −16.2161 −0.658190 −0.329095 0.944297i \(-0.606744\pi\)
−0.329095 + 0.944297i \(0.606744\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.29985 9.17961i −0.214409 0.371367i
\(612\) 0 0
\(613\) 21.6357 37.4741i 0.873857 1.51357i 0.0158822 0.999874i \(-0.494944\pi\)
0.857975 0.513691i \(-0.171722\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.92248 10.2580i 0.238430 0.412973i −0.721834 0.692066i \(-0.756701\pi\)
0.960264 + 0.279093i \(0.0900339\pi\)
\(618\) 0 0
\(619\) −40.3288 −1.62095 −0.810475 0.585773i \(-0.800791\pi\)
−0.810475 + 0.585773i \(0.800791\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.26751 + 0.656320i −0.251103 + 0.0262949i
\(624\) 0 0
\(625\) −29.9619 −1.19848
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 31.8902 1.27154
\(630\) 0 0
\(631\) −13.9489 −0.555298 −0.277649 0.960683i \(-0.589555\pi\)
−0.277649 + 0.960683i \(0.589555\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.94518 0.196243
\(636\) 0 0
\(637\) 33.5895 7.11283i 1.33086 0.281821i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.5395 −0.692768 −0.346384 0.938093i \(-0.612591\pi\)
−0.346384 + 0.938093i \(0.612591\pi\)
\(642\) 0 0
\(643\) 13.5329 23.4397i 0.533686 0.924371i −0.465540 0.885027i \(-0.654140\pi\)
0.999226 0.0393443i \(-0.0125269\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.3252 19.6159i 0.445240 0.771179i −0.552828 0.833295i \(-0.686452\pi\)
0.998069 + 0.0621160i \(0.0197849\pi\)
\(648\) 0 0
\(649\) −1.49564 2.59052i −0.0587089 0.101687i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.784108 0.0306845 0.0153423 0.999882i \(-0.495116\pi\)
0.0153423 + 0.999882i \(0.495116\pi\)
\(654\) 0 0
\(655\) −10.0620 −0.393154
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7219 28.9632i −0.651392 1.12824i −0.982785 0.184752i \(-0.940852\pi\)
0.331393 0.943493i \(-0.392481\pi\)
\(660\) 0 0
\(661\) −1.53258 2.65450i −0.0596104 0.103248i 0.834680 0.550735i \(-0.185652\pi\)
−0.894291 + 0.447487i \(0.852319\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0509756 0.00533805i 0.00197675 0.000207001i
\(666\) 0 0
\(667\) −2.57140 4.45379i −0.0995649 0.172451i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −25.6821 + 44.4827i −0.991447 + 1.71724i
\(672\) 0 0
\(673\) 14.4618 + 25.0487i 0.557463 + 0.965555i 0.997707 + 0.0676766i \(0.0215586\pi\)
−0.440244 + 0.897878i \(0.645108\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.85818 + 10.1467i −0.225148 + 0.389968i −0.956364 0.292178i \(-0.905620\pi\)
0.731216 + 0.682146i \(0.238953\pi\)
\(678\) 0 0
\(679\) 22.7873 2.38624i 0.874497 0.0915753i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.7190 35.8864i 0.792791 1.37315i −0.131441 0.991324i \(-0.541960\pi\)
0.924232 0.381831i \(-0.124706\pi\)
\(684\) 0 0
\(685\) 18.6908 0.714138
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.1412 + 31.4215i 0.691125 + 1.19706i
\(690\) 0 0
\(691\) −3.45675 + 5.98727i −0.131501 + 0.227766i −0.924255 0.381775i \(-0.875313\pi\)
0.792754 + 0.609541i \(0.208646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.4752 + 30.2679i −0.662871 + 1.14813i
\(696\) 0 0
\(697\) −26.0041 45.0404i −0.984974 1.70603i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.1954 −1.48039 −0.740195 0.672392i \(-0.765267\pi\)
−0.740195 + 0.672392i \(0.765267\pi\)
\(702\) 0 0
\(703\) 0.0245378 0.0425008i 0.000925462 0.00160295i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10.0550 22.5606i 0.378155 0.848478i
\(708\) 0 0
\(709\) −10.2436 + 17.7424i −0.384705 + 0.666328i −0.991728 0.128356i \(-0.959030\pi\)
0.607023 + 0.794684i \(0.292363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.59290 4.49104i −0.0971050 0.168191i
\(714\) 0 0
\(715\) 35.3479 61.2243i 1.32193 2.28966i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.1300 + 29.6700i 0.638840 + 1.10650i 0.985688 + 0.168582i \(0.0539187\pi\)
−0.346848 + 0.937921i \(0.612748\pi\)
\(720\) 0 0
\(721\) −17.4681 + 39.1937i −0.650547 + 1.45965i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.25655 9.10461i −0.195223 0.338137i
\(726\) 0 0
\(727\) −7.18914 12.4520i −0.266631 0.461818i 0.701359 0.712808i \(-0.252577\pi\)
−0.967990 + 0.250991i \(0.919244\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 44.2019 1.63487
\(732\) 0 0
\(733\) 39.5773 1.46182 0.730911 0.682473i \(-0.239096\pi\)
0.730911 + 0.682473i \(0.239096\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5561 + 25.2119i 0.536182 + 0.928694i
\(738\) 0 0
\(739\) −10.8407 + 18.7767i −0.398783 + 0.690712i −0.993576 0.113167i \(-0.963901\pi\)
0.594793 + 0.803879i \(0.297234\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.5692 28.6987i 0.607864 1.05285i −0.383727 0.923446i \(-0.625360\pi\)
0.991592 0.129406i \(-0.0413069\pi\)
\(744\) 0 0
\(745\) 35.5831 1.30366
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 23.6912 2.48089i 0.865659 0.0906499i
\(750\) 0 0
\(751\) 25.9324 0.946288 0.473144 0.880985i \(-0.343119\pi\)
0.473144 + 0.880985i \(0.343119\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 26.7442 0.973320
\(756\) 0 0
\(757\) −30.5846 −1.11162 −0.555808 0.831311i \(-0.687591\pi\)
−0.555808 + 0.831311i \(0.687591\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.5295 1.32419 0.662097 0.749418i \(-0.269667\pi\)
0.662097 + 0.749418i \(0.269667\pi\)
\(762\) 0 0
\(763\) −11.5505 15.9107i −0.418157 0.576007i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.56818 −0.0927315
\(768\) 0 0
\(769\) −21.3107 + 36.9113i −0.768485 + 1.33105i 0.169900 + 0.985461i \(0.445656\pi\)
−0.938384 + 0.345593i \(0.887678\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −16.1309 + 27.9395i −0.580187 + 1.00491i 0.415270 + 0.909698i \(0.363687\pi\)
−0.995457 + 0.0952148i \(0.969646\pi\)
\(774\) 0 0
\(775\) −5.30051 9.18076i −0.190400 0.329783i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.0800351 −0.00286755
\(780\) 0 0
\(781\) 32.4765 1.16210
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.327420 + 0.567107i 0.0116861 + 0.0202409i
\(786\) 0 0
\(787\) 15.3838 + 26.6455i 0.548373 + 0.949810i 0.998386 + 0.0567879i \(0.0180859\pi\)
−0.450013 + 0.893022i \(0.648581\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.2156 + 30.6017i 0.789895 + 1.08807i
\(792\) 0 0
\(793\) 22.0496 + 38.1910i 0.783003 + 1.35620i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.59378 6.22460i 0.127298 0.220487i −0.795331 0.606176i \(-0.792703\pi\)
0.922629 + 0.385689i \(0.126036\pi\)
\(798\) 0 0
\(799\) −5.39144 9.33824i −0.190735 0.330363i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.68725 15.0468i 0.306566 0.530989i
\(804\) 0 0
\(805\) 1.81448 4.07120i 0.0639520 0.143491i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23.3886 40.5103i 0.822301 1.42427i −0.0816637 0.996660i \(-0.526023\pi\)
0.903965 0.427607i \(-0.140643\pi\)
\(810\) 0 0
\(811\) −17.6946 −0.621341 −0.310671 0.950518i \(-0.600554\pi\)
−0.310671 + 0.950518i \(0.600554\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.9418 27.6120i −0.558416 0.967205i
\(816\) 0 0
\(817\) 0.0340111 0.0589089i 0.00118990 0.00206096i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.61075 + 14.9143i −0.300517 + 0.520511i −0.976253 0.216633i \(-0.930493\pi\)
0.675736 + 0.737144i \(0.263826\pi\)
\(822\) 0 0
\(823\) 5.77170 + 9.99688i 0.201189 + 0.348469i 0.948912 0.315542i \(-0.102186\pi\)
−0.747723 + 0.664011i \(0.768853\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.1448 −0.700503 −0.350251 0.936656i \(-0.613904\pi\)
−0.350251 + 0.936656i \(0.613904\pi\)
\(828\) 0 0
\(829\) −4.01358 + 6.95172i −0.139397 + 0.241443i −0.927269 0.374397i \(-0.877850\pi\)
0.787871 + 0.615840i \(0.211183\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 34.1699 7.23574i 1.18392 0.250704i
\(834\) 0 0
\(835\) −14.5057 + 25.1246i −0.501990 + 0.869472i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.59341 7.95603i −0.158582 0.274673i 0.775775 0.631009i \(-0.217359\pi\)
−0.934358 + 0.356337i \(0.884026\pi\)
\(840\) 0 0
\(841\) −15.1576 + 26.2537i −0.522675 + 0.905299i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.9493 24.1608i −0.479869 0.831158i
\(846\) 0 0
\(847\) 23.3051 52.2904i 0.800774 1.79672i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.13389 3.69600i −0.0731488 0.126697i
\(852\) 0 0
\(853\) −10.7925 18.6931i −0.369527 0.640040i 0.619964 0.784630i \(-0.287147\pi\)
−0.989492 + 0.144590i \(0.953814\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.0651 −0.822049 −0.411024 0.911624i \(-0.634829\pi\)
−0.411024 + 0.911624i \(0.634829\pi\)
\(858\) 0 0
\(859\) 16.3172 0.556737 0.278368 0.960474i \(-0.410206\pi\)
0.278368 + 0.960474i \(0.410206\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.64675 16.7087i −0.328379 0.568770i 0.653811 0.756658i \(-0.273169\pi\)
−0.982190 + 0.187888i \(0.939836\pi\)
\(864\) 0 0
\(865\) −19.9428 + 34.5420i −0.678077 + 1.17446i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −17.6025 + 30.4884i −0.597124 + 1.03425i
\(870\) 0 0
\(871\) 24.9945 0.846907
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.87722 + 22.1618i −0.333911 + 0.749205i
\(876\) 0 0
\(877\) 30.2928 1.02291 0.511457 0.859309i \(-0.329106\pi\)
0.511457 + 0.859309i \(0.329106\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −19.4943 −0.656779 −0.328390 0.944542i \(-0.606506\pi\)
−0.328390 + 0.944542i \(0.606506\pi\)
\(882\) 0 0
\(883\) −47.5302 −1.59952 −0.799759 0.600321i \(-0.795040\pi\)
−0.799759 + 0.600321i \(0.795040\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.11892 −0.138300 −0.0691499 0.997606i \(-0.522029\pi\)
−0.0691499 + 0.997606i \(0.522029\pi\)
\(888\) 0 0
\(889\) 2.11114 4.73682i 0.0708052 0.158868i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.0165937 −0.000555287
\(894\) 0 0
\(895\) −21.4409 + 37.1367i −0.716689 + 1.24134i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −29.9056 + 51.7981i −0.997408 + 1.72756i
\(900\) 0 0
\(901\) 18.4547 + 31.9645i 0.614815 + 1.06489i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.0417 0.533243
\(906\) 0 0
\(907\) −8.14168 −0.270340 −0.135170 0.990822i \(-0.543158\pi\)
−0.135170 + 0.990822i \(0.543158\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.6454 42.6871i −0.816540 1.41429i −0.908217 0.418499i \(-0.862556\pi\)
0.0916774 0.995789i \(-0.470777\pi\)
\(912\) 0 0
\(913\) 1.47809 + 2.56013i 0.0489177 + 0.0847279i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.29553 + 9.63801i −0.141851 + 0.318275i
\(918\) 0 0
\(919\) 4.71585 + 8.16809i 0.155561 + 0.269440i 0.933263 0.359193i \(-0.116948\pi\)
−0.777702 + 0.628633i \(0.783615\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.9415 24.1473i 0.458889 0.794819i
\(924\) 0 0
\(925\) −4.36218 7.55552i −0.143428 0.248424i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.7369 25.5251i 0.483503 0.837452i −0.516317 0.856397i \(-0.672697\pi\)
0.999821 + 0.0189453i \(0.00603083\pi\)
\(930\) 0 0
\(931\) 0.0166487 0.0511066i 0.000545641 0.00167495i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 35.9587 62.2823i 1.17597 2.03685i
\(936\) 0 0
\(937\) −54.3451 −1.77538 −0.887688 0.460445i \(-0.847690\pi\)
−0.887688 + 0.460445i \(0.847690\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.49087 2.58226i −0.0486008 0.0841791i 0.840702 0.541499i \(-0.182143\pi\)
−0.889302 + 0.457320i \(0.848810\pi\)
\(942\) 0 0
\(943\) −3.48005 + 6.02763i −0.113326 + 0.196287i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.1646 + 26.2659i −0.492783 + 0.853526i −0.999965 0.00831303i \(-0.997354\pi\)
0.507182 + 0.861839i \(0.330687\pi\)
\(948\) 0 0
\(949\) −7.45850 12.9185i −0.242113 0.419352i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.380127 −0.0123135 −0.00615676 0.999981i \(-0.501960\pi\)
−0.00615676 + 0.999981i \(0.501960\pi\)
\(954\) 0 0
\(955\) 5.22360 9.04754i 0.169032 0.292771i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.97924 17.9032i 0.257663 0.578126i
\(960\) 0 0
\(961\) −14.6558 + 25.3845i −0.472766 + 0.818855i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.70796 + 16.8147i 0.312510 + 0.541284i
\(966\) 0 0
\(967\) 22.6744 39.2732i 0.729160 1.26294i −0.228078 0.973643i \(-0.573244\pi\)
0.957239 0.289300i \(-0.0934224\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −27.3746 47.4141i −0.878491 1.52159i −0.852996 0.521917i \(-0.825217\pi\)
−0.0254951 0.999675i \(-0.508116\pi\)
\(972\) 0 0
\(973\) 21.5323 + 29.6604i 0.690292 + 0.950870i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.35656 + 2.34962i 0.0434001 + 0.0751711i 0.886909 0.461943i \(-0.152848\pi\)
−0.843509 + 0.537114i \(0.819514\pi\)
\(978\) 0 0
\(979\) 6.80371 + 11.7844i 0.217448 + 0.376630i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.7656 1.36401 0.682006 0.731347i \(-0.261108\pi\)
0.682006 + 0.731347i \(0.261108\pi\)
\(984\) 0 0
\(985\) −8.31318 −0.264880
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.95771 5.12291i −0.0940498 0.162899i
\(990\) 0 0
\(991\) −29.6731 + 51.3954i −0.942598 + 1.63263i −0.182107 + 0.983279i \(0.558292\pi\)
−0.760491 + 0.649349i \(0.775042\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.4063 + 35.3447i −0.646922 + 1.12050i
\(996\) 0 0
\(997\) 44.0641 1.39552 0.697762 0.716330i \(-0.254179\pi\)
0.697762 + 0.716330i \(0.254179\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.t.l.1873.9 22
3.2 odd 2 1008.2.t.k.193.2 22
4.3 odd 2 1512.2.t.d.361.9 22
7.2 even 3 3024.2.q.k.2305.3 22
9.2 odd 6 1008.2.q.k.529.9 22
9.7 even 3 3024.2.q.k.2881.3 22
12.11 even 2 504.2.t.d.193.10 yes 22
21.2 odd 6 1008.2.q.k.625.9 22
28.23 odd 6 1512.2.q.c.793.3 22
36.7 odd 6 1512.2.q.c.1369.3 22
36.11 even 6 504.2.q.d.25.3 22
63.2 odd 6 1008.2.t.k.961.2 22
63.16 even 3 inner 3024.2.t.l.289.9 22
84.23 even 6 504.2.q.d.121.3 yes 22
252.79 odd 6 1512.2.t.d.289.9 22
252.191 even 6 504.2.t.d.457.10 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.3 22 36.11 even 6
504.2.q.d.121.3 yes 22 84.23 even 6
504.2.t.d.193.10 yes 22 12.11 even 2
504.2.t.d.457.10 yes 22 252.191 even 6
1008.2.q.k.529.9 22 9.2 odd 6
1008.2.q.k.625.9 22 21.2 odd 6
1008.2.t.k.193.2 22 3.2 odd 2
1008.2.t.k.961.2 22 63.2 odd 6
1512.2.q.c.793.3 22 28.23 odd 6
1512.2.q.c.1369.3 22 36.7 odd 6
1512.2.t.d.289.9 22 252.79 odd 6
1512.2.t.d.361.9 22 4.3 odd 2
3024.2.q.k.2305.3 22 7.2 even 3
3024.2.q.k.2881.3 22 9.7 even 3
3024.2.t.l.289.9 22 63.16 even 3 inner
3024.2.t.l.1873.9 22 1.1 even 1 trivial